
AutoSSH - a Reverse Proxy Alternative

This document is best read printed out on paper.

1 Overview

I recently added another apache server to an existing infrastruc-
ture, and I wanted it to be accessible under a similar IP as another
server. Due to the complexity of the website, it was not possible to
simply do a reverse proxy without knowing the correct settings (e.g.
X-Forwarded for). Instead, AutoSSH was used.

2 Work Log

Ok, I’m going to get right to the configs that I used. You want
the tool, you don’t need to know all the details.

2.1 Crontab

Here is the crontab script I used. I put this in /etc/crontab, so
it has root after the times. I only use /etc/crontab, as it’s easier to
manage.
* * * * * root pgrep autossh > /dev/null || \

/usr/local/bin/autosshzm/autosshzm.sh

A few notes about this. Pgrep will search for autossh. If it doesn’t
find it, then it will try the next command. (—— is an OR). Put the
bash script wherever you want.

2.2 Bash Script

This script is obviously what the crontab calls.
#!/bin/bash

logger " /usr/local/bin/autosshzm script started."

#source $HOME/.bash_profile #not needed.

source $HOME/.keychain/$HOSTNAME-sh

1

logger " /usr/local/bin/autosshzm sourced."

autossh -L 0.0.0.0:2:localhost:80 -f user@ipaddress sleep 31536000

&> /var/log/autosshzm/autosshzm.log

#autossh -M 0 -o "ServerAliveInterval 30" -o "ServerAliveCountMax 3"

-L 0.0.0.0:2:localhost:80 user@ipaddress &>

/var/log/autosshzm/autosshzm.log

logger "auto ssh ran"

Note that the second autossh does not work, as it’s missing the sleep
and the -f command. 1 In order for this to work, you’ll also need the
following commands:

apt-get install keychain autossh

There were some more setup steps required for keychain... From
stackexchange:

25

keychain

solves this in a painless way. It’s in the repos for Debian/Ubuntu:

sudo apt-get install keychain

and perhaps for many other distros (it looks like it originated

from Gentoo).

This program will start an ssh-agent if none is running, and

provide shell scripts that can be sourced and connect the current

shell to this particular ssh-agent.

For bash, with a private key named id_rsa, add the following to

your .profile:

keychain --nogui id_rsa

1Figuring this kind of stuff out can take about an hour.

2

This will start an ssh-agent and add the id_rsa key on the first

login after reboot. If the key is passphrase-protected, it will

also ask for the passphrase. No need to use unprotected keys

anymore! For subsequent logins, it will recognize the agent

and not ask for a passphrase again.

Also, add the following as a last line of your .bashrc:

. ~/.keychain/$HOSTNAME-sh

This will let the shell know where to reach the SSH agent managed

by keychain. Make sure that .bashrc is sourced from .profile.

However, it seems that cron jobs still don’t see this. As a

remedy, include the line above in the crontab, just before

your actual command:

* * * * * . ~/.keychain/$HOSTNAME-sh; your-actual-command

The only thing that I needed to do here was
keychain –nogui id rsa
The rest of it (notes about crontab) was not required.

3 What Did NOT Work

Here’s some things I tried that did not work.
• https://github.com/obfusk/autossh-init - This init script, didn’t

do much for me. Remember, I’m stuck with systemd in Ubuntu
19.04...2

2The scourge of deleting software history. Keep backwards compatibility at
ALL COSTS, developers.

3

• Reverse proxy with Apache - As I said, my website 3 was too
complex, and I didn’t want to go down that rabbit hole.

• Starting AutoSSH in rc.local. Didn’t work.

3Some people might call it a web application. I will not.

4

