
Docker Primer

Steak Electronics

08/30/19

Contents

1 Overview 1

2 General Notes 2
2.1 Docker Commands Reference 3

3 Specific Tips 4
3.1 YAML is space sensitive 4
3.2 If you restart a containers namesake process, it will

probably restart / reset the container 4
3.3 Use a single reverse proxy, to handle multiple websites 4
3.4 If you use a single reverse proxy, Lets Encrypt can be

done easy . 5
3.5 Give every Container a Containername 5
3.6 Beware of Interrupting Initting Containers 6
3.7 Put Apache or Program logs from the Container in a

volume that is locally accessible 6
3.8 Only Restart Containers you need to Restart 6
3.9 Volumes Mounting Over Existing Directories 6

1 Overview

Docker is a program in the tradition of Virtualization. However,
Docker differs from a Virtual Machine, in that it uses less resources,

1

and allows for more containers (essentially isolated OS’) to run. With
Docker I can run 8 different websites on a Core 2 Duo. Docker
makes it trivial to transport these websites to a new machine. It’s as
simple as copying the docker-compose (you should be using docker
compose) yml configuration, and keeping all permenant volumes, and
saved files in one folder. Docker is a little more setup upfront, but
promises savings in time plus interest down the line.

2 General Notes

It always helps to read a book on a subject, and then keep it as
a Reference. I have read “Using Docker” By Adrian Mouat. It is a
decent book. Not bad.

Here are some general tips:

First off, Docker is 64 bit only for i386 architecture. ARM has a
separate build. There is no 32 bit, unfortunately.

You will want ’some’ RAM. I had 1GB on a P4 machine, and that
was not enough. 4GB was enough.

You should always use docker compose. If you read the book above,
you will understand why. Docker can run on the command line (com-
mands are somewhat complex for each container), but with a com-
pose file, you can write everything down in a much simpler fashion.
Use compose. It’s a separate install, currently. Install it.1

One of the benefits of docker, is its simplicity. There are essen-
tially two commands you will ever need to know to use docker.
Both must be run as root. One is #docker (e.g. docker restart
container name here). The other is docker-compose (e.g. #docker-
compose up -d).

1Seriously, just ignore the (non-docker compose) docker command lines. I
consider them useless. More of a red herring for rookies.

2

2.1 Docker Commands Reference

Here is just the good stuff.
• docker-compose up -d (starts the containers in the docker com-

pose file, if they aren’t already started. the -d detaches from
the stdout logging. You don’t need to use stdout logging, you
can use docker logs, but its there if you want it)

• docker ps (lists containers running. If one fails to start, you’ll
see it missing from here)

• docker logs ¡containername¿ (gives you some logging output
from the container. Often enough to troubleshoot.)

• docker exec -it ¡containername¿ /bin/bash (this will get you in
a shell in the docker container. From here you can do what you
need to. Most are debian, and need apt-get install less nano
or whatever program you are missing. Ping is missing from
possibly all containers, so if you want to test via ping, you’ll
have to apt-get it).

• docker-compose restart (this will restart all containers. How-
ever, I don’t recommend it. Initting containers can get cor-
rupted this way, and also its much easier to restart a single
faulty container via...)

• docker restart ¡containername¿ (this will restart one single con-
tainer.)

• docker cp ¡containername¿:/dir/to/file dest (you can copy files
from local machine to docker, or vice versa with this. Ex-
tremely useful).

Less often, you might want to know docker kill ¡containername¿ and
docker rmi -f ¡imagename¿. The first will stop a container, the second
will remove an image. If you corrupt the install of a container, the
second will save you. The force switch (-f) is required. Alternatively,

3

you can just install a container of the same type with a new container
name. 2

3 Specific Tips

3.1 YAML is space sensitive

When you edit the .yml file for docker-compose, you have to hit
spaces in a certain pattern (tabs not allowed). This is absurd, but
just be aware. The errors are cryptic, and its often just because the
spacing doesn’t stick to what it expects.

3.2 If you restart a containers namesake process, it
will probably restart / reset the container

So if you are troubleshooting an apache container, you edit some
files, then /etc/init.d/apache2 restart, uh oh... You just undid all
the edits you made, if they aren’t in a permanent volume. You can
shell in, make edits, and then exit the shell, but a service restart
often resets the container.

3.3 Use a single reverse proxy, to handle multiple web-
sites

There are many ways to do this. I use an nginx proxy from
scratch. You can also use some containers that are built for this
purpose (I personally think it’s bloated but a lot of people use Jason
Wilder’s proxy) 3

2This is a good way to test that your containers are built in a reproducible
way. If you are able to rebuild them by deleting everything, then you likely won’t
have trouble down the road.

3https://github.com/jwilder/nginx-proxy - A lot of people swear by this, but
I think it’s straying too far from the motorcycle.

4

3.4 If you use a single reverse proxy, Lets Encrypt can
be done easy

In this case scenario you would have certbot on the host and a
local volume that the proxy has access to which is the webroot of
the Lets Encrypt scripts. The nginx proxy entry look something like
this:
location ^~ /.well-known {

alias /var/www/html/.well-known/;

autoindex on;

}

And this is put in every server declaration of nginx.conf. Real simple,
real easy. The docker compose of the nginx proxy is something like:

nginx:

image: nginx:latest

container_name: custom_name_for_my_proxy

volumes:

- ./nginx.conf:/etc/nginx/nginx.conf

- /etc/letsencrypt/:/etc/letsencrypt/

- ./webroot/:/var/www/html/

The volumes section is extremely simple, don’t be scared. There are
two entries. Local and remote. You specify what folder will be the
local directory which will be cloned to the host at the remote path
you specify. So, the host runs certbot at /etc/letsencrypt, and this
folder is cloned to the nginx proxy container, at the same location.
Finally, webroot must be set in certbot, but it prompts you for this4

3.5 Give every Container a Containername

This makes it easier to refer to them later. All you need to do in
the compose file is include container name: something. Much better
than the gibberish they give these names if you don’t include it.

4And if you forget or get it wrong, it can be configured somewhere in
/etc/letsencrypt. it’s a one liner text entry).

5

3.6 Beware of Interrupting Initting Containers

When you first build a container, it might take 30-60 or more
seconds to do whatever it needs to do. If, before then, you restart
it... It may get corrupted. This has happened to me more than once.
When you are testing a new container, and it doesn’t seem to work
for some inexplicable reason, create a container with a new name (it
will create a new one), or delete the first one, and start it again.

3.7 Put Apache or Program logs from the Container
in a volume that is locally accessible

This means you want a volume something like ./containerA files/logs:/var/www/log/apache2/
so that you can monitor the logs from your host machine easily.
docker logs doesn’t have everything.

3.8 Only Restart Containers you need to Restart

You can restart everything with docker-compose restart, but it’s
faster, and less prone to break initting containers, if you docker
restart containername. Do the latter.

3.9 Volumes Mounting Over Existing Directories

As discussed here:
web.archive.org/web/https://github.com/moby/moby/issues/4361,

if you add a volume to an existing container, it will seem to delete the
folder’s contents. I’ve seen mixed behaviour with this. Sometimes it
deletes it even if you start a new container with the folder... Other
times it has not. In any case, just docker cp the files to the folder,
then add the volume mount.

6

