
ZMHW Project
Infrared Diode Laser Motion Sensor

Objective: To make a motion sensor that acts as motion detection for Zoneminder cameras. As the
cameras often have false alarms, an external sensor is a possible solution. This uses a Laser Diode
Infrared Sensor.

Parts List:
Arduino Uno (official recommended)(DIP recommended)
ENC28J60 ethernet module
Passive PoE adaptors for IP Cameras
Series 1A fuse
Sick WS15-D1130 Infrared Laser Diode Motion Sensor
General Purpose Diode (I used 1N4818 diode) (may also use transistor, per data sheet for Sick)
Jumper Wires
Copper Wire (22-26 gauge)
Enclosure
Ethernet Wire
(optional) Low Profile one and two gang wall outlet
(optional) Blank cover plate, for one and two wall gang wall outlet
(optional) Electrical tape (I prefer halfway decent electrical tape)
(optional) piezo speaker
(optional) extras of everything, in case anything fails

Work Log:

Main half of the sensor before putting in enclosure.

This work log will be pictures with
some notes thrown in. I'll try to make
note of all important parts.

Device was assembled and using the
ZMHW Project source code. This is
simply an Arduino sketch with
UIPEthernet (to use the ENC28J60)
(make sure CS is pin 10 on Uno). For
more details see source code.
Explaining the details is out of the
spec of this doc. Simply put, the
ENC28J60 is connected, the Sick
sensor black wire is connected to
Analog input 1, and a speaker is
connected. See source code. I will try
to put a fritzing diagram in the git
repo.

Of importance, Figure 1 shows two
things, first off a diode connected in
series with the output of the Sick
sensor, and also the orange LED on
the top of the sensor. The
orange led will be green when there is
no connection between the diodes and orange when the Laser Diodes (or LEDs) are lined up correctly.
When someone moves across the field of their vision, the orange LED will change to green.

Diode on output of Sick sensor
Some laser sensors output a high or low. Some, like the Sick sensor, output a high or low (depending
on whether you connect to white or black wire), however they are meant to be connected to a transistor,
and thus if you connect it directly to a micro expecting it to go high or low, it will not. I dont want to
deal with a transistor as I am lazy, so instead I put a 1N4819 in series with the output of the Sick sensor.
TODO: pictures showing waveforms
Edit: This is possibly an issue of output impedance.

Using the black wire, it will be normally low and go high when motion is detected (the white wire is
the opposite). If you connect to a micro it will fail to go high (why?). If you put a diode on the end in
series, it will turn the normally low to a noisy normally low, and sometimes it will go between 2.5-5
volts in spikes. This allows us to use the ADC to read the Sick sensor, and avoid the use of adding a
transistor in. The transistor would allow for a digitalRead to
be used, but we have plenty of Analog inputs to use, so let's
use one of those.

It's very important to line up these sensors. If they are not
lined up precisely, they will not get a sync, and the motion
detection will fail. This will become important later, when
we install.

Figure 1: Orange LED on top of sensor when link detected.
Series diode on output of sensor to cheat the need for transistor.

Broken ENC28J60
During my testing, I suddenly was unable to get an IP address. I checked the example sketches, then
began tearing down my setup, testing another Arduino and ENC module.

It turned out, the ENC28J60 module failed on me. Make sure to buy
backups.

Picture Log:

Choosing location for the sensors. Keep in mind,
that the laser diode path must remain open. This
is where the main board and sensor will be.

Feeding nylon string, and a wire up from the
bottom of the wall to the ceiling. This is where the
single sensor will be.

Low profile two gang wall plate installed.

Installing the single sensor. I used ethernet as the
power line. I also used a passive PoE adapter on
both sides to transfer the power onto the ethernet,
and back out to a 5.5, 2.1mm barrel plug

Box installed on the wall. This is a temporary box I used for
testing purposes. The additional hole at the top is an error, but
allows viewing the LED (though this sensor does not change
its LED colour, it's always green).

This mangled web of wires, is a temporary testing
ground, while I go to the store to purchase a two
gang blank plate. In this setup, I will calibrate the
diodes to point correctly at each other by setting
this double gang receiver diode to be fixed, and
then adjusting the opposite laser diode. For
testing though, some electrical tape, and the
power wire pulled out will do temporarily. When
the lights are off, the red diode light is more
visible and may be easier to calibrate.

Checking the device is on the Camera LAN by pinging it,
then reviewing the arp tables to make sure it's the right
device (IP is static, so it's possible a conflict could arise)

Omrom Motion Sensor
All electronics is also currently selling used Omrom photoelectric
sensors, they are model: e3f2-r2c4. These types of photoelectric
sensors are from a large catalog of different types. Some AC some
DC powered. Different reaches, etc...
See resources in this git repository for
some PDFs.

I tested one but had poor results. I was
only able to get the light to flash when

I dismantled the device. Teardown pictures are in the photos folder. Here's
an example. The devices were not easy to dismantle, and can't really be
put back together as they were originally. However, they did seem
otherwise well made. More testing will be needed on these.

Testing Attempt #2
After finding some documentation on these in the reviews, I figured out
why it wasn't working. These opto electronics absolutely require some
type of reflector opposite them. Now, not all photoelectric sensors are like
this, but this Omrom model is. I've also purchased low cost ebay
photoelectric sensors in the past, and those require no kind of reflector.
Here is the review which details how to use the Omrom sensors:

Good quality product. It has reverse polarity protection, etc. This has the emitter and receiver built-
in. Best to use a retroreflector like a bicycle reflector or retroreflector tape. The indicator light will
come on to show the state. The logic output is open collector and you'll get whatever the supply
voltage is. To use with 5v ttl (using a second 5v source) wire as such:

Brown to +12V; Blue to ground; Pink to either +12 or ground depending whether you want Light-ON
or Dark-ON mode;

Black to a 4.7K resistor with the other side of the resistor connected to a separate +5V source (the
arduino). The 5v ttl signal is at the point where the black wire connects to the resistor.

Here's how the outlet looks just
before putting the final machine
screws in. It was important to
buy a “non breakable” wall
plate (essentially a bendable
more rubberized one), as the
normal wall plate, simply
shattered when drilled into. The
non breakable version worked
well with the drill.

An example of a low cost photo
electric sensor from ebay.

After trying with a component bag, which is slightly reflective, I was able to find a point where the
emitter was consistently able to get a high result. This comment also tells you where to obtain the TTL
signal, we need for a micro to register a high. Therefore, I purchased some reflective stickers available
from all electronics, as well as some iron-on reflective material from ebay. I will test both of these out
next.

One thing I also noticed, was that used photo electric sensors from brand names can be obtained for
discounts on the auction site. I saw a sick motion sensor for $10. It may be wise in the future to look at
auction sites, to see if a good deal can be had. When buying them new, they can be relatively expensive
for a hobbyist working out of his/her garage.

Revision 2
Using the HFS-DC06H Microwave Sensor
As I've tried with the HB100, without success, likely due to no included op amp (I tried throwing a
cheapo one at it, but results were inconsistent), I've moved to the HFS-DC06H microwave sensor
which includes the Op Amp and accompanying circuitry (simply outputs a digital high or low). The
code in the repo has been updated. I've also made a arduino uno shield layout to speed up assembly,
which will be in this repo at some point. For now, perf board will do, while I wait for the boards to
arrive.

During testing, I found that the HFS sensor would not work correctly with my laptops usb 2.0 power
supply. I thought it might be RF interferance from the metallic perf board – something I've seen before
with the FM bug radio – but it was not. The solution was to use external power. See the four pictures
(50mV/div). 1) with HFS powered direct from a bench PSU, 2) Arduino USB powered without HFS,
but with ENC28J60 3) HFS from Arduino powered by USB (ENC+HFS), 4) from Arduino Uno with
external 12V PSU (ENC+HFS).

The HFS draws negligible power, in this application, <5mA. The ENC on the other hand... (ethernet or
wifi are around 200mA each, 3.3v). I suspect capacity was the problem. Simply adding a capacitor to
the HFS (I tried a 220uF name brand), did not resolve the issue. A worthy test would be an HFS with
Arduino and no ENC. The usb power has limits that may be the culprit.

The HFS seems sensitive and responsive No false alarms upon initial testing. I use it at the shortest
time setting on the potentiometer.

Uno Memory Limitations
Using ethernet with the Uno is always touchy. Version control is important, to have a functional
version to work off of.

When writing my code, I found errors creep in due to using too much dynamic memory. You can see
how much dynamic memory is used in Arduino by hitting verify (not upload but verify). You can also
use a tool to see how much SRAM is used (code is online:https://jeelabs.org/2011/05/22/atmega-
memory-use/) the following function:

“Here’s a small utility function which determines how much RAM is currently unused:
int freeRam () {
 extern int __heap_start, *__brkval;
 int v;
 return (int) &v - (__brkval == 0 ? (int) &__heap_start : (int) __brkval);
}

And here’s a sketch using that code:
void setup () {
 Serial.begin(57600);
 Serial.println("\n[memCheck]");
 Serial.println(freeRam());
}

void loop () {}

The result will be:
[memCheck]
1846

“

This is not a new problem for me, but it rears its ugly head again. However, this is a good thing. Limits
are good.

An easy resolution for this is to put all serial.print lines into flash memory. You can verify this helps, by
taking a serial.print, and commenting it out, and comparing the before and after dynamic memory used
in verify. To put serial print lines in flash:
(https://www.arduino.cc/reference/en/language/functions/communication/serial/write/)
(https://www.arduino.cc/reference/en/language/functions/communication/serial/print/)
As I recall, there may be limitations to what you can do with Serial.print(F()), fotr example, converting
variables into it will likely not work without further finesse.

Low RAM errors can creep into strange places. For example, see these two wiresharks, where my code
was running, equally as well, but the new code revision simply didn't work:

https://jeelabs.org/2011/05/22/atmega-memory-use/
https://jeelabs.org/2011/05/22/atmega-memory-use/
https://www.arduino.cc/reference/en/language/functions/communication/serial/print/
https://www.arduino.cc/reference/en/language/functions/communication/serial/write/

As you can see the data packet is mangled in the new rev. I've seen this enough to know, it was low
SRAM. Otherwise, the code worked without major error. This small error effectively broke the
program! Testing is always important.

Here are some pictures of the build. As I mentioned this perf board was NOT the fast way of doing
things. I've already got a PCB in the mail to make this faster in the future, but the customer needed
boards sooner rather than later, so perf board was used for a quick build.

Hammond cases (relatively large) with hammond cable glands. Purchased from the local Needham,
MA You do it electronics (the benefit of shopping there, is that you can see the boxes before you buy
them). (box is 1591ESBK. 1427CG7 – gland – Just big enough for one cat6 cable – Fits snug). I like
large boxes so I don't have to worry about space. There's also expansion room. Only one cable gland
going into the box (ethernet with passive PoE adapters). I also made a little plywood platform from
some thin plywood inside the box. Sanding the edges with 80 grit sandpaper (see WoodWorking for
Mere Mortals if you have not used sand paper much before).

Deployment

Today I deployed both sensor boxes on site, connecting them to the ZM system. They both work. I
found that these HFS sensors appear to be fairly directional. I've been unable to get them to fire, when
behind a wall, or up a floor, which is good – I don't want them to do that. The metal shield they have,
seems to work well – blocking radio waves from going behind it. I mounted one on the ceiling and one
on a wall, setting the cameras to nodect. Success.

I'm not sure exactly what frequency they are, but I think it is around 5GHz, comparable to 5GHz wifi
(not going through walls well). I'm also considering putting some copper tape on the inside of the box,
to help block anything through the wall it's mounted to, possibly...

The final build, had also a passive PoE adapter inside the
box.

