
Contents

1 60Hz Divider 1
1.1 Overview . 1
1.2 Initial Notes: Counting the Hz 1
1.3 MAX7219 8 digit 7 LED segment Display Driver . . . 2
1.4 CPLD Programming 2

1.4.1 6KHz clock . 2

1 60Hz Divider

1.1 Overview

Let’s count. There is a schematic in Practical Electronics For Be-
ginners 4th edition. I’ve built that up, and will add some CPLD
counter logic, along with a micro to output the SPI to a 7seg counter
module.

The goal is relative accuracy. Not absolute. No GPS here. I’m
going from 60 to 6,000 cycles.1 This is just meant to be fun.

1.2 Initial Notes: Counting the Hz

pseudo code goal:

Using 1Hz signal

Start counting 1MHz every 1Hz

when next cycle is received,

display count

start counting again

That’s all the objective is here. Easy with a micro, but goal is to
complete using cmos or 74 logic.

4553 x 5 74hct132 1MHz clock (or 6MHz clock), or some variation
thereof jk flip flop 74376 - quad jk flip flop 7476 - jk flip flop 1mhz
clk will be main counter, 6 hz or 1 hz will be latch / reset

1Due to limitations of CPLD

1

I ended up skipping the 74 CMOS, in favor of a CPLD. Practical
Electronics also mentions this approach as favored. Even a micro
alone could be used. Schematic entry in the CPLD could also be
used.

1.3 MAX7219 8 digit 7 LED segment Display Driver

Basic code tested with this was the LedControl arduino library.

/*

Now we need a LedControl to work with.

***** These pin numbers will probably not work with your hardware *****

pin 12 is connected to the DataIn

pin 11 is connected to the CLK

pin 10 is connected to LOAD

We have only a single MAX72XX.

*/

Some of the lines have to be edited to allow for all digits to be
read, and also to lower intensity of display. I think also a component
package (dark grey clear plastic bag) in front of the leds with intensity
1 is about right.

1.4 CPLD Programming

Using the XC9500XL series. This chip has some limitations - which
are good.

As you get faster clocks, you need bigger registers to handle pars-
ing the clocks. Bigger registers, use more power. Maybe this is one
reason why high clock speeds mean more power.

1.4.1 6KHz clock

Due to limitations of the XC9500XL FPGA logic blocks, I ended up
limiting the counter registers to 12+1 bits2, so I have around 6,000

2Possibly I could use multiple smaller registers in a type of cascade, but let’s
not bother with that for now. I had 600KHz resolution, until I added the UART
out/

2

(assuming 60Hz), resolution. With this, I need a 6KHz clock. I could
do this with the uno, but let’s throw an attiny in there because it’s a
good tool for this kind of purpose and resolution. It should be able
to function as a rough 6KHz timer, easily.

1.5 Divide by N Counters

The schematics appear to be incorrect for the divide by 6 counter
in the Practical Electronics for Beginners book. Having looked at
my built up circuit carefully, I see a 20Hz output from the 60Hz.
I managed to get my hands on a copy of the TTL Cookbook by
Don Lancaster recently, and that details correct divide by 6 and 10
counters (which are different from what’s on my proto board), and
while I could fix the divide by 6 counter, instead, I’m going to build
another divide by 2 counter, and leave the original incorrect one there
as a warning (it’s also easier to just build a new one).

3

