
1 Attiny Solar Energy Harvest Tests

I have the following:
• Solar panels

• Attiny 10

To this list, I will add a supercap, and an energy harvesting IC. The
goal being to load the super cap during the day, and to run 24/7. I
will need an exceptionally low power micro. The super cap will need
to be about 3.3V or 5V.

1.1 Micro Considerations

The Arduino Atmega328P is not an option. I’m looking to have
a current draw of only 1mA max, (ideally 500uA) when active.
Moteino is also not an option for this. Those are made for bat-
teries. I want to be battery free. A super cap, however can be used
to store energy. I’ll get to that shortly.

For micros, I have some Attiny10 on hand, and these have a
reasonably low power pull in active mode. Let’s build those up first.
What will the micro do? No idea. I haven’t a clue.

1.1.1 Micro Notes

Must run at 1.8V / 1MHz per front page of data sheet, for 200uA
draw in active mode.

1.2 Energy Storage

I don’t want a battery. Let’s go with a super cap. The solar
panels will only be active some of the time, so I will want to harvest

1

energy with some kind of IC into the cap when the sun is out.1

1.3 Make parts, not scrap

I will want to make sure that all parts I build are perf board
parts, not breadboard scrap (to be torn down and rebuilt again).
This is an Attiny, so no need to test much, yet.

1.4 Programming

To program the Attiny10, I’ll use the Arduino adapter from the
Junk + Arduino blog. I built it up2, and was able to Read the
memory. In order to upload to the board, you will need a compiler
setup. You can possibly do it in AVRGCC, but instead I opted for
either Arduino IDE (via Attiny10Core which didn’t work), and then
went to Mplab. In order for mplab 5.25 to work, it will need XC8
compiler, and there is a pack that can be downloaded through the
IDE to get Attiny10 support.

It appears the AVR Dragon (which I have) can not be used.
However, other programmers can be used. Pickit 4, Mkavrii, stk600,
I think.

1.4.1 Testing Arduino Loader

Tested this with the blink LED.c in code folder. The code is as
simple as possible. It is the following:
//#include <xc.h>

#include <avr/io.h>

#include <util/delay.h>

int main(void)

{

1Reference: www.analog.com/media/en/technical-documentation/technical-
articles/solarenergyharvesting.pdf is a start. I’ll need to do more research.

2Had slight error where the Arduino + board wouldn’t read - pins too short on
headers, then the arduino wouldn’t boot - due to bad connection on perf board
shield. Thankfully, the USB port didn’t try to run. Protection circuitry cut in
on the laptop.

2

// PB2 output

DDRB = 1<<2;

while(1)

{

// Toggle PB2

PINB = 1<<2;

_delay_ms(500);

}

}

When programmed in Mplab, with XC8 compiler, and Attiny10 sup-
port, I get the following hex output:

:100000000AC020C01FC01EC01DC01CC01BC01AC01B

:1000100019C018C017C011271FBFCFE5D0E0DEBF41

:0A002000CDBF03D000C0F894FFCF5D

:10002A0044E041B940B95FE966E871E05150604087

:0A003A007040E1F700C00000F5CFB0

:02004400DDCF0E

:00000001FF

The content of this hex isn’t the focus of this passage. Instead, I
want you to review the results of a D for Dump Memory, by the
Arduino Loader.

Current memory state:

registers, SRAM

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

0000: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

0030: 00 00 00 00 00 00 03 00 00 79 00 03 00 00 00 00

0040: B7 AD AE FA 58 70 63 6B FB 5A B4 1B FF FF 35 3F

0050: 67 D7 33 43 DF 5F FB 72 C9 7D FE E9 9D C5 00 12

NVM lock

3

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

3F00: FF FF

configuration

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

3F40: FF FF

calibration

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

3F80: 79 FF

device ID

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

3FC0: 1E 90 03 FF

program

+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F

4000: 0A C0 20 C0 1F C0 1E C0 1D C0 1C C0 1B C0 1A C0

4010: 19 C0 18 C0 17 C0 11 27 1F BF CF E5 D0 E0 DE BF

4020: CD BF 03 D0 00 C0 F8 94 FF CF 44 E0 41 B9 40 B9

4030: 5F E9 66 E8 71 E0 51 50 60 40 70 40 E1 F7 00 C0

4040: 00 00 F5 CF DD CF FF FF FF FF FF FF FF FF FF FF

4050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

4060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

(...some memory omitted here for brevity...)

43E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

43F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF

Notice that the ”AC020C01F” is set. That is from the hex. But
the 01000... before it seems to be missing. Some deciphering of how
the Arduino programs the Attiny is in order here. It also doesn’t
end the same.

Regardless, when programming, the Arduino reports 70 bytes
written, and likewise in the Mplab project memorymap.xml file, it
also notes 70 bytes for the sketch. This lines up.3

The blinking LED works. Let’s move on.

3Although for an unknown reason, every command registers twice on the Ar-
duino serial monitor, but this appears to be harmless.

4

1.4.2 Conclusion on Arduino Programming Attiny10

It’s possible, but you have to make a dedicated jig (almost),
so it might be easier to use the official programming tools. How-
ever, based on this https://www.avrfreaks.net/forum/pickit-4-and-
avr-mcu I might not have a choice. So I will use the Arduino for
now. But will have to devise what on board parts are req’d for
programming, and incorporate into proto board layout.

1.4.3 IO Port Switching Speed

Using the above code without any delay ms, I get the following
results from a default clock speed, and a 128KHz clock speed. This
test was done to confirm that I could change the clock with

//Write CCP

CCP = 0xD8;

//change CLK to 128KHz

CLKMSR = 0b01;

There was no issue.

Default CLK (8MHz? or 1MHz?): 160KHz IO Switch

128KHz CLK: 2.5KHz IO Switch

I am going to pursue 128KHz for starters, for lower current dissipa-
tion. Note that with the Arduino loader, it is cumbersome to test and
change code as you move along. It is therefore going to be necessary
to use a programmer, with a dedicated header on board.

1.4.4 VCC 1.8V

The lowest power supported: 1.8V can be applied, without any
configuration needed. It does not affect IO switching speed (although
obviously amplitude is affected).
128KHz CLK (5.0V): 2.5256 KHz IO switch

128KHz CLK (3.3V): 2.5477 KHz IO switch

128KHz CLK (1.8V): 2.5849 KHz IO switch

5

As voltage drops, IO increases.

VCC Dropout voltage:
From 1.5, it drops out at 1.248V or so. Comes back at about 1.34V

Test size of 1.

Can’t run this with one (AA) battery, but you could with 2.

Current Draw: 128KHz - IO test, 1.8V, 0.08mA (78uA) (tested
w/3478A)

1.5 Application

First, I need a board for these and a programmer, to quickly
program. Second, I need an application. I want extremely low power.
Hopefully, solar with no batteries, to start. This is extremely low -
that is the point.

Given the power requirements put me under 1mA (with my cur-
rent panels), I’m considering the following: EEPROMs would require
SPI protocol. Doable, but overcomplicated for now.

Eink (need to find a small and cheap enough option. So far, they
have either too many pins, and/or use too much current. Something
like what stores use to display prices would work, but that doesn’t
get the data out, only makes it readable.),

Third option would be RF. That is a viable path, but not today.
Let’s skip that for now.

Fourth option that comes to mind is IR. IR diodes, as in TV re-
motes, would work well here. I am choosing this as the first project.
I will have dumb clients, that consist of - Attiny / IR / Sensor pow-
ered by solar. I will have a BBB that receives the IR data, and does

6

all intelligent data gathering. To keep things simple, the IR will be
binary ADC data, or otherwise sensor numbers. No SPI, no protocol
complexity. That would require space on the Attiny.

Let’s build some boards based on the above.

For sensors: While building, I came across an option. Hall effect
sensors. I think also capacitive sensors can be used. This may find
a use in a gate sensor, for when a driveway gate is opened or closed.
With a small battery, it would work for years.

Footprints: I had to make a footprint for this module on board
package for one sensor. The solution to get footprints right? copy
graphic image and make it into silkscreen on the board. Easy.

7

