A [ESS

Corporation

Xilinx ISE 10 Tutonial

ATutorial on Using the Xilinx ISE Software to Create
FPGA Designs for the XESS XSA Boards

© 2008 by XESS Corp.
All XS-prefix product designations are trademarks of XESS Corp.

All XC-prefix product designations are trademarks of XILINX.

Table of Contents

What This IS @nd IS NOTccueiiieiiecieeeee e 1
FPGA Programmingccceeieeiiiiieeiee et 3
Installing WEDPACKcooei e 5
Getting WebPACK ... 5
Installing WEbPACKoo ettt eeevvesveenveeenaees 7
Getting XSTOOLS ... 8
INStalling XSTOOLS......cvviiiiiiiiiiiiiieiiieeiierieeivveeve e, 8
Getting the Design Examples..........cccccceiiiiiiiiiiie 8
OUr First DESIGN.....cooiiiieciee ettt et e 9
AN LED DECOUETeeiiiiiiiiiiiieteeee ettt 9
Starting WebPACK Project Navigator.................c..oooee. 11
Describing Your Design With VHDL...........ccccceeviiiiiiiiiiiee, 16
Checking the VHDL Syntax..........cccccoeeiiiiii, 21
FiXing VHDL EFTOrsccooooiiiiiiiieeeee e 22
Synthesizing the Logic circuitry for Your Design.................... 25
Implementing the Logic Circuitry in the FPGA 25
Checking the Implementation.............ccccceeeeiii . 28
Assigning Pins with Constraints.............cccccceeiiiiiiiiiee. 29
Viewing the Chip ... 35
Generating the Bitstream ... 42
Downloading the Bitstreamccooviiciii e 47
Testing the Circuitccuveiiiii e 50
Hierarchical Design.........c..coiiiiiiie e 51
A Displayable Counteruueeeiiiiiiiiiee e 51

Startinga New Design ... 52

Adding @ CoUNtErcoooviiiiiiieiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e 59

Tying Them Together............ooiiiiiii e 65
Constraining the Design.........ccoooeiiieii 84
Synthesizing and Implementing the Design.............ccccuueeee. 88
Checking the Implementation..............ccccceeeeii . 89
Checking the Timing ... 91
Generating the Bitstreamccceo 91
Downloading the Bitstreamcccccooiiiiiiiiiii 97
Testing the Circuit..............cccc 103
State Machine DeSigNooceiiiiiiiiieee e 104
Finite State Machines...........ccoccvviiiiiiii 104
Starting the Combination Lock Project.............cccccceeeiniiiis 106
Creating the Keyboard Interface Module 106
Creating the Lock&Key Module............cccoooiiiiiiiiiiiiininee. 112
Creating the Top-Level Module.............ccoooeeieiiiiiiiii e, 120
Constraining the Design..........coocciiiiiiiiiiiieeeeee e 122
Implementing the Design and Generating the Bitstream 122
Testing the Combination LocK...........cceevvveiiiiiiiiiiiien 123

GOING FUET ... oo 125

What This Is and Is Not

There are numerous requests on newgroups that go something like this:

"l am new to using programmable logic like FPGAs and CPLDs. How do | start? Is there a tutorial and
some free tools | can use to learn more?"

XILINX has released a free version of their ISE software on the web (they call it WebPACK) so
that anyone can download a set of tools for CPLD and FPGA-based logic designs. And XESS
Corp. has written this tutorial that attempts to give you a gentle introduction to using the ISE
tools.

This tutorial shows the use of the ISE tools on three simple design examples: 1) an LED
decoder, 2) a counter which displays its current value on a seven-segment LED and 3) a
reprogrammable combination lock. Along the way, you will see:

» How to start an FPGA project.

= How to target a design to a particular type of FPGA.

» How to describe a logic circuit using VHDL and/or schematics.

* How to detect and fix VHDL syntactical errors.

» How to synthesize a netlist from a circuit description.

= How to fit the netlist into an FPGA.

» How to check device utilization and timing for an FPGA.

= How to generate a bitstream for an FPGA.

= How to download a bitstream into an FPGA.

= How to test the programmed FPGA.

That said, it is important to say what this tutorial will not teach you:

= |t will not teach you how to design logic with VHDL.

= |t will not teach you how to choose the best type of FPGA or CPLD for your design.

= |t will not teach you how to arrange your logic for the most efficient use of the resources in
an FPGA.

= |t will not teach you what to do if your design doesn't fit in a particular FPGA.

= |t will not show you every feature of the ISE software and discuss how to set every option
and property.

= |t will not show you how to use the variety of peripheral devices available on the XSA
Boards.

In short, this is just a tutorial to get you started using the XILINX ISE FPGA tools. After you go
through this tutorial you should be able to move on to more advanced topics.

FPGA Programming

Implementing a logic design with an FPGA usually consists of the following steps (depicted in
the figure which follows):

1.

You enter a description of your logic circuit using a hardware description language (HDL)
such as VHDL or Verilog. You can also draw your design using a schematic editor.

You use a logic synthesizer program to transform the HDL or schematic into a netlist. The
netlist is just a description of the various logic gates in your design and how they are
interconnected.

You use the implementation tools to map the logic gates and interconnections into the
FPGA. The FPGA consists of many configurable logic blocks, which can be further
decomposed into look-up tables that perform logic operations. The CLBs and LUTs are
interwoven with various routing resources. The mapping tool collects your netlist gates into
groups that fit into the LUTs and then the place & route tool assigns the groups to specific
CLBs while opening or closing the switches in the routing matrices to connect them
together.

Once the implementation phase is complete, a program extracts the state of the switches in
the routing matrices and generates a bitstream where the ones and zeroes correspond to
open or closed switches. (This is a bit of a simplification, but it will serve for the purposes of
this tutorial.)

The bitstream is downloaded into a physical FPGA chip (usually embedded in some larger
system). The electronic switches in the FPGA open or close in response to the binary bits
in the bitstream. Upon completion of the downloading, the FPGA will perform the
operations specified by your HDL code or schematic.

That's really all there is to it. XILINX ISE provides the HDL and schematic editors, logic
synthesizer, fitter, and bitstream generator software. The XSTOOLs from XESS provide
utilities for downloading the bitstream into the FPGA on the XSA Board.

VHDL Source Code
entity leddcd is
port(HDL Source
d: in std_logic_vector(3 downto 0); Simulation
s: out std_logic_vector(6 downto 0);
)

end;

architecture leddcd_arch of leddcd is

begin

s <="1110111" when d="0000" else
"0010010" when d="0001" else
"1101101";

end leddcd_arch;

Synthesize .
Netlist

routing
resources FPGA Logic

Simulation

Map, Place & Route

oo] oo]
ogd 0od m]m] 0od

IVRITrYYeYY

Bitstream

101010010101100101
010110101010110101
010110100101101011
010101001010101010
101010101001101010
110110110101001010
110100101011001011
001011001010101001
010101101001101001
011001100010101010
101010100110010101

look-up table configurable

function block

Timing Generate Bitstream
Simulation

Download and Test

Installing ISE

You can download the free ISE WebPACK software from this location:
http://www.xilinx.com/ise/logic design prod/webpack.htm . Click on the link to download the
software as shown below.

9 Xilinx : ISE Foundation - Mozilla Firefox

@*@"@ ﬁjg_‘,”j File Edit View History Bookmarks Yahoo! Tools Help i: http: /v, dlinz. comfise logic_desiar | = | [B

I~ Biology) Electronics) Finances |) Miscl] Refi] Sd &Tech|) XESS|) Ilpanorama The Best-ever Freeware Utlitie. .. »
Goc ’Sle | |G| search - 4 ¥ Bookmarks~ ﬁu | = Send to- A @ Settings™
$ 7 xilinx : ISE Foundation x| -

27 XILINX e

Enter Keyword/Part

Advanoed Search

Product & Services

Silicon Devices | Design Tools | Intellectual Property | Boards & Kits | Training | Services | Third Party Alliances

Home : Products & Services : Design Tools : Logic Design : ISE WebPACK Software

ISE WebPACK Software

Buy ISE Design Suite
Request WebPACK DVD

=

- ISE WebPACK software is the industry’s only FREE, fully featured front-to-back
ziSE FPGA design solution for Linux, Windows XP, and Windows Vista.

No@

; ISE™ WebPACK™ software is the ideal downloadable solution for FPGA and CPLD design Subscribe to Free Xilinx
offering HOL synthesiz and simulation, implementation, device fitting, and JTAG programming. Newszletter
ISE WebPACK provides the tools and features along with the same easy-to-use design
environment az our award winning ISE™ Foundation™ dezign toolz providing instant access to the ISE features .
and functionality at no cost. Xilinx has created a solution that allews convenient productivity by providing a design Documentation
zolution that iz always up to date with error-free downloading and =ingle file installation. ‘@ ISE Product Brief

Download ISE WebPACK Now! @ Tcl Reference Card
> Software Manuals

> Download ISE WebPACK software for Windows and ?inux Training
Device Family Support » LearnISE
... Related Information
* Virtex™.-5 LX, LXT, SXT, FXT * Spartan™-34 DSP)
. » |SE Operating System
> Virtex-4 FX, LX, SX * Spartan-34, 3AN

Support b

) Downloads | \FAL A A A (A A I A (o VA (A oA 1A (A (ot VA A (G (A clear

https: ffsecure. xilinx.com/webreqg/reqister.do?group=esd_oms

http://www.xilinx.com/ise/logic_design_prod/webpack.htm

You will have to create an account and choose a user ID and password before you are allowed
to enter the download section of the site. Once you do that, you will get to a page where you
can select the software that you want to download. In this case, check the ISE WebPACK 10.1
box and click the Next button.

) Entitlement Center (OMS) - Mozilla Firefox

¢|' 'IE ﬁju_‘,uj File Edit View History Bookmarks Yahoo! Tools Help |:| https: ffxilin, entilenow. comfcocor 5% | ¥

I Biology [=) Electronics | =) Finances =) Misc/ =) Refl) Sd &Tech|)] XE35 /) Ilpanorama The Best-ever Freeware Utilitie. .. »

GU{-‘Sle | A | |G Search ~ *|' ‘ifi’ Bookmarks~ E E Send to~ (_‘Q @ Settings™

[D Entitlement Center (DMS) Q.' =
Home : Support : Product Registration and Download :

Product Registration and Download

Software Reg

Account: [XESS CORFORATION ~iw| Release No.: Help

IMPORTANT: Please register only one ISE configuration (ISE Foundation w/ISE Simulator, ISE Feundation, ISE Foundation Evaluation or ISE
WebPACK) in addition to any other products in the ISE Design Suite.

Select Products
Regiztration 1D
Entitied Products L?.

Ewvaluation / Free Products ISE WebPACK 10.1 (Free Download)

{optinal) [ISE Foundation 10.1 (Free 60-Day Evaluation)

Embedded Development Kit (EDK} 10.1 (Free 80-Day Evaluation}

ChipScope Pro 10.1 with Serial 'O Toolkit Licenze Key (Free §0-Day Evaluation)
System Generator for DSP and AccelDSP Synthesis Tool 10.1 (Free §0-Day Evaluation)
Plan&head Dezign Analyziz Tool 10.1 (Free 60-Day Evaluation}

(][]][]

[(Hex
& v
8 townioacs | T 20 0 20 2 A A A 2 e e A A A a2 e 2 A cex

Done xilinx. entitenow. com ﬁ

w

Now you are finally at the page where you can download the ISE WebPACK software. Expand
the Download Files Individually option, and then click on the Download link. This will download the
entire install file for ISE WebPACK. With a size of 2.25 GB, it will take at least an hour to
download, even with a 5 Mb/s link.

2 Entitlement Center (OMS) - Mozilla Firefox

¢|' 'LQ;I /I\"_.L}lﬂ File Edit Wiew History Bookmarks Yahoo! Tools Help ||[] https:/jxiine entitenow.com/ooco x| v | [

} Biology =) Electranics |} Finances | —) Miscl =) Refl ") 5d &Tech =) ¥XE5512) Ilpannrama The Best-ever Freeware Utilitie. .. »
C-S-nge | v | |C| search ~ | 7 Bookmarks~ 'T_| | Send tov A @ SettingsT
|| Entitlement Center (DMS) G =
Product Registration and Download b
Software Reg
Help
KESS CORPORATION - Software Release 101

Download Products

Download Registration ID:

Enter this Registration ID into the ISE Design Suite Installation Program.

N nsall Cliet (47 6 VB {El-Downlead Files Individualhyg
Each product must be downloaded and installed =eparately.

Downlead Alernatives:
@ DOWNLOAD

Product Details Files

ISE Webpack 10.1 225 GB Bcwnﬁﬂd . 4

(=) Reguesta DVD

Included Products
Evaluation Products

v |SE WebPACK 10.1 (Free Download)

Decumentation The following documents include information for all Entitled Products:

-
(2 Downloads | A A A A A A A A A A A A A oA A A (A D (A Clear
javascript:download(15690759, 15690801, 15690800','333932, ISE WebPACK 10. 1 (Free Download)’)

xilinx.entitenow,.com 3%

After the ISE WebPACK software download is complete, unpack the WebPACK_SFD.tar file and
double-click the setup.exe file to start the installer. During the installation, you will have to enter
the registration ID that you will receive in an email from Xilinx. Throughout the rest of the

installation, accept the default settings for everything and you shouldn’t have any problems.
The total installation will take at least an hour.

Getting XSTOOLs

If you are going to download your FPGA bitstreams into an XESS FPGA Board, then you will
need to get the XSTOOLS software from http://www.xess.com/ho07000.html. Just download the
latest XSTOOLs setup file.

Installing XSTOOLs

Double-click the XSTOOLs setup file. The installation script will run and install the software.
Accept the default settings for everything.

Getting the Design Examples

You can download the project files for the design examples shown in this tutorial from
http://www.xess.com/projects/ise-10.zip.

http://www.xess.com/ho07000.html
http://www.xess.com/projects/ise-10.zip

Our First Design

An LED Decoder

The first FPGA design you will try is an LED decoder. An LED decoder takes a four-bit input
and outputs seven signals, which drive the segments of an LED digit. The LED segments will
be driven to display the digit corresponding to the hexadecimal value of the four input bits as
follows:

Four-bit Input Hex Digit LED Display

0000 0 0
0001 1 !
0010 2 2
0011 3 3
0100 4 Y
0101 5 g
0110 6 5
0111 7 7
1000 8 g
1001 9 g
1010 A A
1011 B b
1100 C c
1101 D d
1110 E E
1111 F =

A high-level diagram of the LED decoder looks like this:

LED 7-Segment

Decoder LED

s1 s6

- = <2 —
dl——+» s3 35‘ s3 '34

d2— & s4 p’
R 52' '31

s6 . sO

XESS Corporation - www.xess.com ©2008 by XESS Corp.

Starting ISE Project Navigator

You start ISE by double-clicking the Il icon on the desktop. This will bring up an
empty project window as shown below. The window has four panes:

1. A source pane that shows the organization of the source files that make up your design.
There are four tabs so you can view the functional modules, source files, different
snapshots (or versions) of your project, or the HDL libraries for your project.

2. A process pane that lists the various operations you can perform on a given object in the
source pane.

3. A transcript pane that displays the various messages from the currently running process.

4. An editor pane where you can enter HDL code, schematics, state diagrams, etc.

S Xilinx - ISE

File Edit View Project Source Process Window Help

DPHA LidBREX e R:PLPHH AR (A BB OO : AN 00 GsoRworh w): Q s FE & T X HS

Sources x
No project is open

Select
File->Open Project

or
File->New Project

source
pane

B8 Source | [Fles | ps Snspshe [P Lirare
Processes x
No flow available.

editor
pane

process
pane

q{ Processes

ﬁ transcript pane

< i |
|5l Console | @Erors | g\ Warings | @ Tel Shell | [Findin Fies |

=

Transcrpt

To start your design, create a new project by selecting the File=»New Project item from the menu
bar. This brings up the New Project Wizard window where you can enter the name of your
project, the location of your project files, and the style in which you will describe your design at
the top level. | have given my project the descriptive name of design1 and will place the files

11
Xilinx ISE 10 Tutorial

in the C:\TEMP\fpga_designs\design1 folder. (You may choose differently.) | am going to describe
the LED decoder using VHDL, so | have set the top-level type (there will only be one level) to
HDL (which would also be used if the design was done with Verilog). Click Next to continue
creating your project.

ES New Project Wizard - Create New Project

Enter a name and location for the project

Project name: Project location

design CATEMPfpoa_designs*design1 E]

Select the type of topdevel source for the project

Topdevel source type:

HDL 5

< Back l Mexd > QJ ’ Cancel

Now you need to tell ISE what FPGA you are going to use for your design. The device family,
family member, package and speed grade for the FPGA on each model of XSA Board are
shown below.

XSA Board Device Family Device Package (SBF;:gg
XSA-50 Spartan2 XC2S50 TQ144 -5
XSA-100 Spartan2 XC25100 TQ144 -5
XSA-200 Spartan2 XC2S5200 FG256 -5

XSA-351000 Spartan3 XC3S1000 FT256 -4

For this tutorial, | will target my design to the XSA-3S1000 Board so | have set the Value field of
the Family, Device, Package and Speed properties as shown below. (Set these fields to whatever
values are appropriate for your particular board using the table shown above.) The other fields
can be left at their default values, so you can just click on the Next button to continue creating
the project.

ES New Project Wizard - Device Properties

Select the device and design flow far the project

Property Mame Walue

Product Category All A
Famiby Spartand w
Device X¥C351000 w
Paclkage FT256 "
Speed Id—v
Top-Level Source Type HOL

Synthesis Tool X5T (WHDLVerlog) L
Simulator ISE Simulator (VHDLVerlog) w
Prefered Language WHOL w

Enable Enhanced Design Summany
Enable Message Filtering d
Display Incremental Messages d

< Back I [Mea [Cancel

Click the Next button in the following two windows for creating or adding source files. (You will
create the VHDL source code for the LED decoder at a later step.)

ES New Project Wizard - Create New Source

Create a new source

Source File Type

1 Remove

Creating a new source to add to the project is optional. Only one new source can be created with the Mew Project Wizard.
Additional sources can be created and added to the project by using the "Project-=New Source” command.

Existing sources can be added on the next page.

< Back] [Meag = lg [Cancel]

ES New Project Wizard - Add Existing Sources

Add existing sources

Source File Copy to Project Add Source

Remove

Adding existing sources is optional. Additional sources can be added after the project is created using the "Project-=Add
Source” or "Project->Add Copy of Source” commands.

< Back ” Mext = l}J [Cancel

The final screen shows the pertinent information for the new project. Click on the Finish button
to complete the creation of the project.

ES New Project Wizard - Project Summary

Project Mavigator will create a new project with the following specifications:

Project:
Project Name: designl
Project Path: C:\TEMP\fpga designs\designl
Top Lewel Source Type: HDL

Device:
Device Family: Spartan3

Device: ®xc3s1000
Package: ftZ5e
Speed: -4

Synthesiz Tool: X5T (VHDL/Verilog)
Simulator: ISE Simulator (VHDL/Verilog)
Preferred Language: VHDL

Enhanced Design Summary: enabled
Message Filtering: disabled
Dizplay Incremental Messages: disabled

< Back][Finish ,}_] [Cancal
L)

Now the Sources pane contains two items:
1. A project object called design1.

2. A chip object called xc3s1000-4ft256.

= Xilinx - ISE - C:\TEMP\fpga_designs\de

File Edit Wiew Project Source Process Window

DPEF LidREX @B

Sources x

Sources far: | Implementation "

design
o £ xc3s1000-47256

[Files "ﬁ Snapshc" o UbIEII'iE|

Describing Your Design With VHDL

Once all the project set-up is complete, you can begin to actually design your LED decoder
circuit. Start by adding a VHDL file to the design1 project. Right-click on the xc3s1000-4{t256
object in the Sources pane and select New Source ... from the pop-up menu as shown below.

E= Xilinx - ISE - CATEMP\fpga_designs\design 1\d
File Edit View Project Source Process Window Help
DPEHS Ll RRX Do

Sources for: | Implementation w
'C'ﬂ design

E]

Add Source...
Add Copy of Source...

Togale Paths

B} Source |[u_~| Files

- Properties...

EEEE—.x

Processes for: xc3s 1000-4ft 256
1 Add Bdsting Source
[Create New Source

=P

Design Litilities

A window appears where you must select the type of source file you want to add. Since you
are describing the LED decoder with VHDL, highlight the VHDL Module item. Then type the

name of the module, leddcd, into the File name field and click on Next.

ES New Source Wizard - Select Source Type

J |P [CORE Generator & Architecture Wizard)

|4+] Schematic
< State Diagram

=] User Document
Verlog Module

(4] Verilog Test Fixture
2 VHDL Module

I VHDL Library

| P]VHDL Package
) VHDL Test Bench

Test Bench Waveform

File name:
lledded |
Location:

|C:"-.TEM P'fpga_designs"design1

Add to project

< Back [Mead = ’}J [Cancel
L

The Define Module window now appears where you can declare the inputs and outputs to the
LED decoder circuit. In the first row, click in the Port Name field and type in d (the name of the
inputs to the LED decoder). The d input bus has a width of four, so check the Bus box and type
3 in the MSB field while leaving 0 in the LSB field. Perform the same operations to create the
seven-bit wide s output bus that drives the LEDs.

E New Source Wizard - Define Module

Entity name |Ieu:|u:|u:u:|| |
Architecture name |Eehavinml |
Part Name Direction Bus M5B LSB e
d in v 3
g out w G
in A |:|
in + [
in + [
in + [
in + [
in W |:| =,
in b |:|
in b |:| "
’ < Back] [Mead = [}J ’ Cancel

Click on Next in the Define Module window to get a summary of the information you just typed
in:

E= New Source Wizard - Summary

Project Mavigator will create a new skeleton source with the following specffications:

Add to Project: Yes

Source Directony: C:ATEMPYpga_designs‘design1
Source Type: VHDL Module

Source MName: ledded vhd

Entity name: leddcd

Architecture name: Behavioral

Port Defintions:
d Bus: 3.0 in
g Bus: 60 out

< Back

I Finish [}J ’ Cancel

After clicking on Finish, the editor pane displays a design summary and a VHDL skeleton for the
LED decoder. (You can also see the leddcd.vhd file has been added to the Sources pane.) Click
on the leddcd tab at the bottom of the editor pane and then scroll to the bottom of the VHDL
skeleton. Lines 20-23 create links to the IEEE library and packages that contain various useful
definitions for describing a design. The LED decoder inputs and outputs are declared in the
VHDL entity on lines 30-33. You will describe the logic operations of the decoder in the
architecture section between lines 37 and 40.

B Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [ledded.vhd] =13
File Edit View Project Source Process Window Help (=11 (X

DAHS L XDEX ma RQIPLH MR ([ANi®E MO AK 0 @SADRWOTH v Q ifE @ @ & £ 98 %%t

Sources X Taol
[EE=IT |, . cooo versions:

-~
Sources for: | Implementation - 11 —— Description: T
ﬁdasigm 12 -
= £] xc3s 1000-4it 256 13 —— Dependencies:
[+dlefsledded - Behavioral fedded.vhd) 14—
i3 —- Revision:
is —- Revision 0.01 - File Created
17 —- Additional Comments:
@13 Source | [Fles g Snapshe| Py Lbrmrie | 18 -
—— i3
E—— | -
Processes for: ledded - Behavioral 21
P 22
1 Add Bdsting Source 23
[Create New Source
24
L View Design Summary 25 ry declaration if instantiating
ﬁ‘ Design Lilities 26 —— a ¥ilinx primitives in this code.
ﬁ‘ User Constraints 27 —-1i
T2 Synthesize - XST 28 -—-use UNISIM.VComponents.all;
®=- 82 Implsment Design 29))
) Generste Programming File 22 entl;y lec{id;d 1.:5 ~ o o)
ort t im 5T R oWnTo H
Configurs Target Devi
T Configurs Target Device 32 s : out 0% (6 downto 0));
33 end leddcd;
34
35 architecture Behavioral of leddcd is
36
377 begin
38
38
40 end Behavioral:
41
42 v
< | P 5
Q—: Processes

|) tecdedvhd

Started : "Launching ISE Text Editor to edit leddcd.vhd".

B < | >
Console | o Emors || _# Wamings ETC' Shell | Find in Files

CAPS [NUM |SCRL |Ln 1Col 1 | VHDL

The completed VHDL file for the LED decoder is shown below. The architecture section
contains a single statement which assigns a particular seven-bit pattern to the s output bus for
any given four-bit input on the d bus (lines 39-54).

¥ leddcd.vhd =13
File Edit View Window
‘He DR eMSHRWOTH v LXK BRE €)= =2 = »

20 M

21)

22

23

24

25 ———— Uncomment the following library declaration if instantiating

26 ———— any Xilinx primitives in this code.

27 ——library UNISIM:

28 ——uze UNISIM.VComponents.all:

29

30 entity ledded i=s

31 Porc (d : in (3 downto Q)

32 s @ out (6 downto Q)):

3 end leddecd:

34

= architecture Behawvioral of ledded i=s

36

37 begin

38

39 g <="1110111" when 4d="0000" else

40 TO010010"™ when 4d="0001" else

41 T1011101"™ when 4d="0010" else

42 T1011011"™ when 4d="0011" else

43 T0111010"™ when 4d="0100" else

44 "1101011"™ when 4d="0101" els

45 1101111"™ when 4d="0110" else

45 T1010010"™ when 4d="0111" else

47 1111111"™ when 4d="1000" else

48 1111011"™ when 4d="1001" else

49 1111110"™ when 4d="1010" else

50 T0101111"™ when 4d="1011" else

51 TO001101"™ when 4d="1100" else

52 TO011111"™ when 4d="1101" else

53 "1101101"™ when 4d="1110" else L3

54 ®1101100™

55

26 end Behavioral: b
< | >

CAPS |NUM | SCRL |Ln 44 Col 34 | VHDL

Once the VHDL source is entered, click on the [E button to save it in the leddcd.vhd file.

Checking the VHDL Syntax

You can check for errors in our VHDL by highlighting the leddcd object in the Sources pane and
then double-clicking on Check Syntax in the Process pane as shown below.

= XGlinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd.vhd] H=1E3

File Edit View Project Source Process Window Help =& <]
DPEHS LR REX e AL LPNX e
PR o B = = — o\ =
. ::@@P E%%%%EE == £ =
B vrory e -
Sources for: | Implementation 21 use IEE I
f‘ﬂdesigm 22 use I
= i xc3s1000-47256 23 use IEE il
Phele%ledded - Behavioral (edded vhd) 24
25 ———— Uncomment the following library declaration if instantiating
26 ———— any Xilinx primitives in this code.
27 ——library UNISIM:
E[?.SDLII'CB|IH"_“| Fles | gy Snapshe ELiblariE 28 —-—use UNISIM.VComponents.all:
29
30 entity ledded is
Processes for: leddcd - Behavioral o] 3 e O D R (2 downto 0):
L 32 2 @: out STD LOGIC TCOR (6 downto 0));»
Add Existing S - -
a e 33 end leddcd;
M Create Mew Source 34
E View Design Summary 35 architecture Behavioral of ledded is
‘ﬁ‘ Design Ltilties T
‘$‘ User Constraints 37 begin
=P Synthesize - XST 38
[2] View Synthesis Report 39 5 <="1110111" when d="0000" else 2
B Vo AT St 2 70010010" vhen d="0001" else
) 10 01" when d= o" alse
View Technology Schematic 1 42 " 11" when d= 117 else
e 43 01 10" when d= oo™ else
P2 Generate Post-Synthesis Simulz 44 w11 11" when d="0101" els
T2 Implement Design hd 45 "1101111" when d="0110" else F
< > < i >
Processes |
L | ledded vhd
Started : "Launching ISE Text Editor to edit ledded.vhd™.
H < ' -
Console | eElTors &‘Namings @Tc:l Shell |94 Find in Files
CAPS |NUM | SCRL |Lm 1Cel 1 | VHDL

The syntax checking tool grinds away and then displays the result in the process pane. In this

case, an error was found as indicated by the © next to the Check Syntax process. But what is the
error and where is it?

Fixing VHDL Errors

You can find the location of the error by clicking on the Errors tab at the bottom of the transcript
pane. In this case, the error is located on line 44 and you can manually scroll there. You can
also click on the error message in the log pane to go directly to the erroneous source. (This is
most useful in more complicated projects consisting of multiple source files.) You can also get
a more detailed explanation of the error by clicking on the ErRrOR hyperlink at the beginning of
the message.

S Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [ledded.vhd] 9[i=(E3]

File Edit View Project Source Process Window Help (=1 =]
DPEHS LidBEX e WiPLPHHAR | [A:i®E MO i/, K20 @ SADRWDTH v
o 3 = N og= k= = =
EQEFH A BEHHAUTEIEE 22 A% OH
- - =
Sources for: | Implementation 21
f‘ﬂdesigm 22
= £ xc3s1000-4256 23
[ralef: ledded - Behavioral {edded vhd) 24
25 ———— Uncomment the following library declaration if instantiating
26 ———— any Xilinx primitives in this code.
27 —=library UNISIM:
Ethourc:e|u4"_~| Fles |y Snapshe IDLiblarie 28 ——uze UNISIM.VComponents.all:
29
Processes for: ledded - Behavioral ~ 31 Port (d : in S5ID CR (3 downto 0);
- 32 s : out STD LOGIC E (6 downto 0})):
[Add Exdsting Source 33 end ledded:
[Create New Source 34
L View Design Summary 35 architecture Behavioral of leddcd is
‘ﬁ‘ Design |Utilties 36
H- 3 User Constraints 37 bkegin
=-fQ Synthesize - XST 38
@ View Synthesis Report 39) foooT else
D View RTL Schematic ji eise
; else
VIB\'\ Technology Schematic = ——
Ch ot 43 else
) Generste Post-Syrthesis Simulz 44 els
€@ _tmplement Deaign o | - TiTiianl wmen @soo ot edse v
4 > < 3
Processes |
= | [l ledded.vhd
b4 ERRCR:HDLParsers:164 — "C:/TEMP frga designs/designl/leddcd.vhd" Line 44. parse error, unexpected IDEl 4
Process "Check Syntax" failed
. v
=
B < >
= Console | @eEmors | p\ Wamings | {E0l Tel Shell | [pg Find in Files
Browse to C:/TEMP/fpga_designs/design1/leddcd.vhd at line 44 CAPS |NUM | 5CRL |Ln 1 Col 1 | VHDL

On line 44, you can see that the ‘e’ was left off the end of the e1se keyword. After correcting
this error and saving the file, double-click the on Check Syntax in the Process pane to re-check the
VHDL code. The syntax checker now finds another error on line 56 of the VHDL code.

EE Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [ledded.vhd] M=

File Edit View Project Source Process Window Help =[] X}
DPEHT LIXNDEX B RIPPHHMAR [NiB B MOh: S A2 :Qh G [SADRWDTH v
QI MEWMALAIE=E Z 222 4 A% IW
31 Porc (d : i . (3 downto 0): a
Sources for: | Implemertation 32 = E (6 downto 0)):)
design'l 33 end ledded;
= £ xc3s1000-4t256 34
ﬂ”ﬂleddcd-Behavioml{leddcd.vhd) 35 architecture Behavioral of ledded i=
36
3T begin
38
Eg Source |lu_‘| Files ||m Snapshc”lD IJblariE| 39
——— 40
41
Processes for: leddcd - Behavioral ~ 22
[Add Bisting Source :2
M Create New Source a5
E View Design Summary 46
‘y‘ Design Ltities 47
‘y‘ User Constraints 48
= @2 Synthesize - XST 49
@ View Synthesis Report S0
E"g View RTL Schematic 2;
@ View Technology Schematic 53
. 1 54 1101100
#-fQ Generate Post-Synthesis Simule 55 =
P2 Implement Design e 56 end Behavioral: -
¢ | 5 i ST FE i_
P
2, Processes | | [ledded vhd
! QERROR:HDLPEISEIS::LS‘] - "C:/TEMP fr:c:a_desicms designl/leddcd.vhd”™ Line 56. parse error, unexpected END :
Process "Check Syntax" failed
v
7 (R | £
Console | @ Erors " N\ Wamings || {0 Tc! Shell || |4 Find in Files
Ready CAPS |NUM | SCRL |Ln 54 Col 16 | VHDL

Examining line 56, you can see it is just the end statement for the architecture section. The
actual error occurred on line 54. The VHDL syntax checker was expecting to find a ;' but it is
missing. After adding the semicolon and saving the file, the Check Syntax process runs without

errors and displays a @

= Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [ledded.vhd] (=03

File Edit View Project Source Process Window Help =1E X}
- B o
DEPEHS LA REX na [Q,D):CMJD@ (AT B mMOh: A N0 @6[SADRWDTH v
P Y l'*@'l IﬁEE’tEtE'tE’t L E
31 . (3 downto 0); ~
Sources for: | Implementation 33 . |6 downto 0)): B
design‘l 33 end ledded;
B £ xc3s 100047256 34
nﬂnleddcd-Behavioml {leddcd vhd) 35 architecture Behavioral of leddcd is
36
27 begin
38
Er$ Source |lu_'-| Files ||m Snapshc”@ IJblariEl 39 5 <="11 ="000on else
———— 40 "g else
Processes for: ledded - Behavioral L) =2 ! S
- 43 "o else
[Add Exsting Source a4 - clze
[Create New Source 45 e e
View Design Summary 45 "y else
‘y‘ Design Ltiities 47 ny else
g‘ User Congtraints 48 "] else
=-F2 Synthesize - XST 49 "1 else
[E] View Syrthesis Report =0 "o else
"oy
E!g View RTL Schematic 2; - eise
. "o else
\u"lew Technology Schematic] 53 - clse
= 54 "110
) Generate Post-Synthesis Simulz 55
€2 Implement Design v 56 end Behavioral; 3
< | 3 || i B
Processes |
L | [ledded vhd
Entity <leddcd> (Architecture <Behavioralr) compiled. fad
Processzs "Check Syntax" completed successfully
v
< | >
. |§] Console | QEn'ors " LWamlngs || ﬂTd Shell || gﬁﬁnd in Files
Ready CAPS |NUM | SCRL | Ln 54 Col 17 | VHDL

Synthesizing the Logic circuitry for Your Design

Now that you have valid VHDL for your design, you need to convert it into a logic circuit. This is
done by highlighting the leddcd object in the Sources pane and then double-clicking on the
Synthesize-XST process as shown below.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd.vhd]

[W] File Edit View Project Source Process Window Help (=1 =]
DPEHS LidDRX 0 Qi PLPHEPRA|[AiBE MDh: AR M K(SADRWITH v
VI H M M E LI IE ZTEL AABHMIM
[Soces % | Port (d : in STD LOGI e a
Sources for: | Implementation b 32 s : out ST CR (6 downto 0)):
fﬂdesigm 33 end leddecd;
= £ xc3s1000-47t 256 34
;ﬁ;leddcd—Behavioml ledded vhd) 35 architecture Behavioral of leddecd is
36
37 begin
38
Eng Source lu_‘l Fles | g Snapshe |D Librarie 3% wWhen d="0o00ot else
40 when d="0001" else
Processes for: ledded - Behavioral ~ 42 when &="0011" else
- 43 when d="0100" else
M Add Bésling Source 44 when d4d="0101" else
[Ceste New Source 45 when d&="0110" else
E View Design Summary 45 when d="0111" else
+ ‘%‘ Design Lttilties 47 when d="1000" else
E ‘% User Constraints 4g when d="1001" alse
BR. . Synthesize - XST 49 when d="1010" else
@ Viiew Synthesis Report 50 when d="1011" el=e
¥ =117 00"
D View RTL Schematic gi‘ n_lnen g_llff . eise
@ View Technology Schematic < A n.nen I =-se
53 when d="1110" else
Q@ Creck Syntax 54 "1101100";
#-f) Generste Post-Syrthesis Simulz 55
#¥d Implement Design v 56 end Behavioral; 3
< > < N
Processes
= ledded vhd
Entity <ledded» (Architecture <Behavioralr») compiled. -
Process "Check Syntax" completed successfully
o= wv
h=1
= ¥
=2 [E] Console @crors | o\ Wamings | Z Tel Shell | [pg Find in Files
Ready CAPS | NUM | SCRL |Ln 54 Col 17 | VHDL

The synthesizer will read the VHDL code and transform it into a netlist of gates. This will take
less than a minute. If no problems are detected, a @ will appear next to the Synthesize process.
You can double-click on the View Synthesis Report to see the various synthesizer options that were
enabled and some device utilization and timing statistics for the synthesized design. (The
device utilization is also viewable on the Design Summary tab in the editor pane that appears
when you click on the Project=»View Design Summary menu item.) You can also double-click on
View RTL Schematic to see the schematic that was derived from the VHDL source code, but it's
not very interesting in this case.

Implementing the Logic Circuitry in the FPGA

You now have a synthesized logic circuit for the LED decoder, but you need to translate, map
and place & route it into the logic resources of the FPGA in order to actually use it. Start this

process by highlighting the leddcd object in the Sources pane and then double-click on the
Implement Design process.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\designi.ise - [leddcd.vhd]

[W] File Edit View Project Source Process Window Help =1 =]
DPEHS L:idREX o l'@@ﬁ}t{ﬁ’@ (Ai® B MDA K20 @[SADDRWDTH ¥
LV iEE Iv&zﬁ'tﬁ‘tﬁ'tﬁt =
a1 “TOR (3 downto 0) ~
Sources for: | Implementation 37 = : out TOR (6 downto 0)): B
design1 33 end leddecd;
= £ xc3s1000-4256 34
nﬁﬁleddcd—Behaviomllﬂeddcd.vhd) 35 architecture Behavioral of leddcd is
36
37 begin
38
En Source ||E Files Snapshc"@ Liblarie| 32 s <=l " when d=
———— 40 when d="
Processes x 41 when d="
Processes for: ledded - Behavioral = il
. =n
E View Design Summary :: w.nen e
when
= -
[E=] ‘ﬁ‘ Design Lttilities a5 e
‘ﬁ‘ User Constraints 46 e
= 0D Syrthesizs - XST a7 e
@@‘u“lew Synthesiz Report 48 when
View RTL Schematic 49 when
@ View Technology Schematic S0 when
P2 Check Syntax 51 when
P2 Generate Post-Syrthesis Simulz gi e
when
Implement Design 54
) Generate Programming File 55 B B
€2 Corfigurs Target Device v 56 end Behavioral: 3
< | > < | |
Processes | = o
L | [l ledded.vhd
Started : "Launching Design Summary™. o
Started : "Launching RTL Schematic Viewer for leddcd.ngr™.
o
il < | —
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files
CAPS |NUM | SCRL |Ln1Col 1 | VHDL

You can watch the progress of the implementation process in the console tab of the transcript
pane. For a simple design this, the implementation is completed in less than 30 seconds (on a
2.0 GHz Athlon 64 X2 PC with 3 Gbytes of RAM). A successful implementation is indicated by
the @ next to the Implement Design process. You can expand the Implement Design process to see
the subprocesses within it. The Translate process converts the netlist output by the synthesizer
into a Xilinx-specific format and annotates it with any design constraints you may specify (more
on that later). The Map process decomposes the netlist and rearranges it so it fits nicely into
the circuitry elements contained in the specified FPGA device. Then the Place & Route process
assigns the mapped elements to specific locations in the FPGA and sets the switches to route

the logic signals between them. If the Implement Design provcess had failed, a @ would appear

next to the subprocess where the error occured. You may also see a ¥ that indicates a
successful completion but some warnings were issued or not all the subprocesses were
enabled.

EE Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd.vhd] =13

File Edit View Project Source Process Window Help =1 =]
NP EHS LiREX o WiPLPH LR (H:i®E DDAk 0 @[sADDRWDTH v
eI = == | = =
O IFF R BEUHAALIEE 2 43N IN
3 Porc (d : in : R (3 downto 0): 3
Sources for: | Implementation 32 5 : out STD_ 3 OR (6 downto 0)); B
'E]design‘l 33 end leddcd;
= £ xc3s1000-41256 34
;ﬁ;leddcd—Eeha\rioml{leddCd.\rhd} 35 architecture Behavioral of ledded is
36
37 begin
38
E“IﬁSource|lu"_“| Files | gy Snapshe |[P) Librarie ES SRS s G LGRS e
e — 40 "oo 0" when d="0 else
a1 "1011101" when d="0010" else
Processes for: ledded - Behavioral ~ 2 gt L R Gl Slal
. 43 "0l 0" when d="0 else
=] Synthesize - XST
G%g\f \ Synthesis Report 44 "1 1" when d="0 else
S LR a5 ™11 1" when d="0 else
Q View RTL Schematic 45 "0 o" when d="0 else
@ View Technology Schematic a7 w1 1" when d="1 else
C}@Check Syritax 48 "] 1" when d="1 else
) Generate Post-Syrthesis Simulz 49 "11 0" when d="1 else
= "Zlmplement Desian 50 "] 1" when d="1 else
C}@Tmnslate 51 "0Q0 11" when d="1 else
man LD =n1q
C}@Map 52 L : w.nen s = else
33 "1 11" when d="1110" else
22 Place & Route 4 w11011007;
P2 Generate Programming File B 55
T2 Corfigurs Target Device b 56 end Behavioral: 2
< | > < | S -
Processes
L | | [l leddod vhd
Total time: 1 secs -~
Process "Generate Post-Place & Route Static Timing"™ completed successfully
. v
=3 =
3 B3 | >
o | L
= Console | oElTors &Wamings @Tcl Shell [Find in Files
CAPS |NUM | SCRL [Ln 1Cel 1 | VHDL

Checking the Implementation

You have your design fitted into the FPGA, but how much of the chip does it use? Which pins
are the inputs and outputs assigned to? You can find answers to these questions by double-
clicking on the Place & Route Report and the Pad Report in the Process pane.

E= XGlinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [Place and Route Report] H=1E3
[W] File Edit View Project Source Process Window Help =& <]
DPEHG L:3REX B Ri:PLPH PR (A% 5 MO : A A2 0 6 [SAODRWDTH v
R EE A A BERLHETLE ey Z 2= 4% W

x

[E==NE] | Reicace 10.1.01 par X.34 (nt) ~
Sources for: | Implementation w Copyright (c) 1995-2008 Xilinx, Inc. All rights reserved.
fﬂdesigm _ ~ ~
= £ e 2s1000-44256 XT:: Fri May 30 21:55:46 2008

f=3 ~ .
ﬁﬁleddCd ZEEATE FEL) par —-w —intstyle ise -ol std -t 1 leddcd map.ncd leddcd.ncd ledded.pct

Constraints file: leddecd.pcf.
Loading device for application Rf Device from file '3=21000.nph' in envire

=g Source | [Files | g Snapshe | [Librarie

I "ledded™ i= an NCD, wersion 3.2, device Xc3s21000, package ft2be, speed
Frocesses for: leddcd - Behavioral & Initializing temperature to 85.000 Celsiu=s. (default - Range: 0.000 to 8!
= LD Place & Route Initializing voltage to 1.140 Volts. (default - Range: 1.140 to 1.260 Vao!

@ Clock Region Report k INFO:Par:282 - No user timing constraints were detected or you have set 1

@ Asynchronous Delay Repor -x"). Place and Route will run in "Performance Ewvaluation Mode"™ to aul

@OPad Report internal clocks in this design. The PAR timing summary will lis=t the }

@ Guide Results Repart the fastest runtime, set the effort level to "std". For best perform

balance between the fastest runtime and best performance, set the eff:
® %% MPPR Resuts Utifiss e ’

(@ Generate Post-Place & Rov

Device =peed data version: "PRODUCTICN 1.35 2008-01-087,
View/Edit Placed Design (F
View/Edit Routed Design (1
m ¥Power Analyzer Device Utilization Summary:
8 Generate Power Data hat
‘ } Mroambhay ~Af Fevtarnal TRz 19 Ant AfF 173 (43 bt
4 ?
Processes
= g ledded vhd [} Place and Route Report
Total time: 1 secs -~
Process "Generate Post-Place & Route Static Timing"™ completed successfully
»

i
5
o]
=
[
=

|§—| Console e Emors A Wamings @Tc:l Shell |94 Find in Files

Ln1Col 1 |Lnyy Col xx

The device utilization of the LED decoder circuit can be found near the top of the place & route
report (or in the Design Summary tab). The circuit only uses four of the 7680 available slices in
the XC3S1000 FPGA. Each slice contains two CLBs and each CLB can compute the logic
function for one LED segment output.

Device utilization summary:

Number of External IOBs 11 out of 173 6%
Number of LOCed External IOBs 0 out of 11 0%
Number of Slices 4 out of 7680 1%
Number of SLICEMs 0 out of 3840 0%

The pad report shows what pins the LED decoder inputs and outputs use to enter and exit the
FPGA. (The pad report was edited to remove unused pins and fields so it would fit into this
document.)

Pin Number|Signal Name |Pin Usage |Direction |IO Standard |

A7 | s<4> | TOB | OUTPUT | LVCMOS25 |
A8 | s<0> | IOB | OUTPUT | LVCMOS25 |
B6 | s<6> | IOB | OUTPUT | LVCMOS25 |
B7 | d<0> | IOB | INPUT | LVCMOS25 |
B8 | s<1> | IOB | OUTPUT | LVCMOS25 |
c6 |d<3> | IOB | INPUT | LVCMOS25 |
c7 |d<2> | IOB | INPUT | LVCMOS25 |
cs8 | s<2> | IOB | OUTPUT | LVCMOS25 |
D7 | s<5> | TOB | OUTPUT | LVCMOS25 [
D8 |d<1> | IOB | INPUT | LVCMOS25 |
E7 | s<3> | IOB | OUTPUT | LVCMOS25 |

Pins with Constraints

The problem now is that the inputs and outputs for the LED decoder were assigned to pins
picked by the implementation process, but these are not the pins you actually want to use on
the FPGA. You want the inputs assigned to pins on the FPGA that you can force high and low
so as to test the LED decoder operation for each possible input pattern. In addition, the
outputs should be attached to a seven-segment LED to make it easy to verify the correct
operation of the design.

The GXSPORT utility lets you set the levels on the eight data outputs of the PC parallel port.
The parallel port data pins attach to a group of eight specific pins on the FPGA of each model
of XSA Board. You should assign the LED decoder inputs to four of these so that you can
control the inputs using GXSPORT. The four pins | selected from the group of eight on each
XSA Board are shown below:

LED Decoder

Input XSA-50 XSA-100 XSA-200 XSA-351000
do P50 P50 E13 N14
d1 P48 P48 C16 P15
dz2 P42 P42 E14 R16
d3 P47 P47 D16 P14

Likewise, each XSA Board has a seven-segment LED attached to the following pins of the
FPGA:

LED Decoder

Output XSA-50 XSA-100 XSA-200 XSA-351000
s0 P67 P67 N14 M6
s1 P39 P39 D14 M11
s2 P62 P62 N16 N6
s3 P60 P60 M16 R7
s4 P46 P46 F15 P10
s5 P57 P57 J16 17
s6 P49 P49 G16 R10

How do you direct the implementation process so it assigns the inputs and outputs to the pins
you want to use? This is done by using constraints. In this case, you are constraining the
implementation process so it assigns the inputs and outputs only to the pins shown in the
previous tables. Start creating these constraints by right-clicking the leddcd object in the Sources
pane and selecting New Source... from the pop-up menu.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd_pad.txt]

[W] File Edit View Project Source Process Window Help =1 =]
DPEHF LA BEX D QiLPLHABR (AT B T :A, K 0 @ SADRWOTH v
(9 iHE Jwtﬁrtﬁtﬂs: V2L ET AR M
| IR16 | IDIFFM |IC_LO1P_3/VRN_3 |UNUSED | .
Sources for: | Implementation IT1 | | | GHD | |
1] design1 IT2 | | | M1 , I I
T3 DIFFS IC LOIN S/RDWR B UNUSED
= Ldxcs100040256 : : :T& : :DIFFS :IO_LJ.ON_S,-"VRP B :U‘N‘USED :
ledded - Behavioral Jeddcd vhghs | TOB 1T0 - - | UNUSED |
M | e | |
Add Source... | DIFF3 |I0 L3IN 5/D4 |UNUSED |
Add Copy of Source... | IOB | IO/ VREF 5 | UNUSED I
5 =, P r = _
=13 Source | [y Files | gy Snapshe E'—'tg p— IDIFFM | I0_L32P_4/GCLKO |UNUSED |
[— SR owSED |
- ST | | VCCARUX | |
Processes for: ledded - Behavioral SmartGuide. .. | IOB | IC | UNUSED I
=- P 2@E Place & Routs - | DIFFM |I0_LO1P_4/VEN 4 | UNUSED |
[E){@ Place & Route Report S — | DIFFS | 10 |UNUSED |
i o CCLK
@ Clock Region Report Partition Force . |] | |
@ Asynchronous Delay Rep | | GHD | |
@O Pad Repart L
@ Guide Results Report Mave to Library...
ae .
5
® @ MPPR Resuts ities Toagle Paths Lt Pullup/Pulldown value can be overridden in Bitgen.
;}OGBHEHE Post-Place & R @ Properties 1 VCCO requirements mayv apply. Please consult the device
Lﬂ View/Edit Placed Design —————| datasheet for specific guideline on VCCO requirements.
@} View/Edit Routed Design (I
@ XPower Analyzer
m Generate Power Data v "
£ | ° >
Processes
E‘_I: ledded vhd [Place and Route Report [ledded_pad bt
Total time: 1 =zecs -~
Process "GFenerate Post-Place & Route 5tatic Timing"™ completed successfully
- w
a
E'Ei ¥
=2 [E] Console @crors | o\ Wamings | Z Tel Shell | [pg Find in Files
Add & new source to the project Ln 1Col 1 |Ln yy Col xx

Select Implementation Constraints File as the type of source file you want to add and type 1eddcd in
the File Name field. Then click on the Next button.

E= New Source Wizard - Select Source Type

BMM File

. |P {CORE Generator & Architecture Wizard)

| Schematic
":] Implementation Constraints File
State Diagram File name:
1| Test Bench Waveform
IUser Document ||Edd':d |
Y| Verlog Module Location:
Werlog Test Fodure
m ‘-IHDI_g Module |C:"-.TEMP"-fpga_designs"-design1 | E]

P VHDL Package
s VHOL Test Bench

Add to project

< Back ’ Mext = M ’ Cancel

You will receive a feedback window that shows the name and type of the file you created and
the file to which the constraints apply (leddcd.vhd). Click on the Finish button to complete the
addition of the leddcd.ucf constraint file to this project.

E= New Source Wizard - Summary

Project Navigator will create a new skeleton source with the following specifications:

Add to Project: Yes

Source Directony: C:ATEMP%pga_designs*design1
Source Type: Implementation Constraints File
Source Name: ledded ucf

Association: leddcd

< Back ” Finish ’}J ’ Cancel
La¥

Now highlight the leddcd object in the Sources pane and double-click the Floorplan 10 — Pre-Synthesis
item in the Process pane to begin adding pin assignment constraints to the design.

S Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd_pad.txt] M=E3
[File Edit View Project Source Process Window Help (=1 =]
DPEHS LidBEX e RiPLPHXH PR (iR B MO iAh? 0@ SADRWDTH (v
QPIFFE S LAy LS AN NH
x

Sources Release 10.1.01 - par K.34 (nt) L)
Sources for: | Implementation Copyright (c) 15855-2008 Xilinx, Inc. All rights reserwved.
design1 4
g 25:14:08 2008
S £ xc3s1000-£256 Fri May 30 23:14:08 2008
=) [l ledded - Behavioral fedded vhd)
Eleddcd.ud (edded ucf) INFO: The IO information is provided in three file formats as part of the
1. The <design name> pad.txt file (this file) designed to provide inform:
~ L 2. The <design namd> pad.csv file for use with spreadsheet programs such
Source | ‘ s
Ehg ouree lu_'-lFlles ||m8napshc"|DL|blane| 3. The <design namer.pad file designed for parsing by customers. It use:
Processes x
- - INPUT FILE: ledded map.ncd
FREEEES BE R OUTPUT FILE: ledded pad.txt
[Add Edsting Source PART TYPE: xc3s1000
[Create New Source SPEED GRADE: -4
E View Design Summary PACEAGE: ft256
‘y Design |Utilties
= *y \User Constraints == Pinout by Pin Number:
Create Timing Constraints .
= k |Pin Number|S5ignal Name|Pin Usage|Pin Name |Direction|IO Stand:
Floorplan Area /10 / Logic - Fo A s |
C}@ Synthesize - XST 1Al | | | GND | |
= {}@ Implement Design 142 | | | TDI | |
P2 Translate |23 I | IOB | I0/VREF 0 |UNUSED |
L4 DIFFM IC LO1P OfVEN O UNUSED
2@ Map w1 | | |I0_LO1P_O/VRN | | | e
< | } ITE 1 1 TAR 1 TiM ITTTTER T 1 —
3 | %)

E‘—t Processes |

Total time: 1 =zecs

| Ieddcd.\rhd ” [Place and Route Report | [ledded_pad bt

| ¥

Process "GFenerate Post-Place & Route 5tatic Timing"™ completed successfully

|

3 &3

| 3
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files

Ln 1Col 1 |Ln yy Col xx

The Xilinx PACE window now appears. Click on the I/O Pins item in the Design Browser pane. A
list of the current inputs and outputs for the LED decoder will appear in the Design Object List - 1/0
Pins pane. You can change your pin assigments here. You start by clicking in the Loc field for
the d<0> input. Then just type in the pin assignment for this input: N14. Do this for all of the
inputs and outputs using the pin assignments from the previous table.

& Xilinx PACE - C:\TEMP\fpga_designs\design1\leddcd. ucf =3
File Edit View ICBs Areas Tools Window Help
b= E | | L N2

Design Browser | Device Architecture fo 000-4-ft256 'x'
| 1/0 Name| I/O Direction| Loc | Bank | 1/0 Std.

<0 Input N14 BANK3

- Input F15 BANK3

<2 Input Ri6 BANK3

3 Input Fl4 BANK3

=<0 Output M& BANKS

W< Output M1 BANK4

| BB Quiput NE BANKS

| =B Qutput R7 BANKS [

s Qutput F10 BANK4 |

| B Output T7 BANKS

<5 Output R10 BANKZ = : =

3 | » Architecture View 4 3

After the pin assignments are entered, save the file. A dialog window will appear requesting
that you select the delimiter for the 1/0 buses. Select <> since the XST synthesizer is being
used for this project, and then click on OK. Then close the Xilinx PACE window.

Bus Delimiter

Select 10 Bus Delimiter

(o #5T Default; < »
" ®ST Optional {}
" Synplify Yerilog Default: []

" Sunplify %HOL / Exemplar Default: []

[Don't show thiz dialog again
[zan be set through preferences dialog)

ak. i | Cancel Help

Now you can re-implement your design by highlighting the leddcd object in the Sources pane and
double-clicking on the Implement Design process. After the implementation process completes,

double-click on Pad Report to view the pin assignments. Now the pad report shows the following
pin assignments:

Pin Number|Signal Name |Pin Usage |Direction |IO Standard |

M6 | s<0> | TOB | OUTPUT | LVCMOS25 |
M11 | s<1> | IOB | OUTPUT | LVCMOS25 |
N6 | s<2> | IOB | OUTPUT | LVCMOS25 |
N14 | d<0> | IOB | INPUT | LVCMOS25 |
P10 | s<4> | IOB | OUTPUT | LVCMOS25 |
P14 | d<3> | I0B | INPUT | LVCMOS25 |
P15 |d<1> | IOB | INPUT | LVCMOS25 |
R7 | s<3> | IOB | OUTPUT | LVCMOS25 |
R10 | s<6> | TOB | OUTPUT | LVCMOS25 [
R16 |d<2> | IOB | INPUT | LVCMOS25 |
T7 | s<5> | IOB | OUTPUT | LVCMOS25 |

The reported pin assignments match the assignments made in the Xilinx Pace window, so it
appears the 1/0 have been constrained to the appropriate pins.

Viewing the Chip

After the implementation process completes, you can get a graphical depiction of how the logic
circuitry and 1/O are assigned to the FPGA CLBs and pins. Just highlight the leddcd object in
the Sources pane and then double-click the View/Edit Placed Design (FloorPlanner) process.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd_pad.txt]

Sources

Sources for: | Implementation

'@ﬂ design

= £ xc3s1000-47256

=) [l ledded - Behavioral fedded vhd)
[eg|ledded ucf ledded ucf)

Eng Source |lh_"| Files | psy Snapshe |D Librarie

Processes x

Processes for: ledded - Behavioral t
Q@ Map
=] C}O Place & Route
[£){@ Place & Route Report
@ Clock Region Report
@ Asynchronous Delay Repor
@O Pad Report
@ Guide Results Report
% MPPR Results Ltities
(D) Generate Post-Place & Ro—
A View/Edit Placed Desian (§
&} View/Edit Routed Desigrlg

[File Edit View Project Source Process Window Help

DPEHI L iiBRX B i)

21 (X
OHA DB [N % 8 DO AP - 0 @ [SADRWDTH]

B
L.

Qi E @ e T RO

4y | D1 =2 4%%%MH

IR1E |d<2> | IOB |I0_LO1P_3/VRN_3 | INFUT | LVCHOS25" |4
IT1 I I | GHD I I

IT2 I I |M1 I I

IT3] | DIFFS |I0_LOIN_5/RDWR_B | UNUSED]

IT4] | DIFFS |I0_L10N_5/VRP_5 | UNUSED]

ITS | | IOB | I0 | UNUSED |

IT6]] | VCCRUX | |

IT7 | s<5> | IOE |I0_L31N_5/D4 | CUTEUT | LVCMOS2 5
IT8 | | IOB | IO/ VREF_5 | UNUSED |

IT9] | DIFFM |I0_L32P_4/GCLEKO | UNUSED]

IT10 | | I0B |IO/VREF_4 | UNUSED |

IT11]] | VCCRUX | |

IT12] | IOB | IC | UNUSED]

IT13 | | DIFFM |I0_LO1P_4/VRN_4 | UNUSED |

IT14] | DIFEFS | IO | UNUSED]

IT15]] | CCLK | |

IT16 | | | GHD | I
e

* Default value.

#*% Thiz default Pullup/Pulldown valus can be overridden in Bitgen.

#uxkEw® Snecial VOCO requirements may apply. Please consult the device
family datasheet for specific guideline on VCOCO requirements.

m XPower Analyzer |1|'iewadit Placed Design [Floorplanner)| 3
4 | y
| >
Processes | ; -
E‘{' ledded vhd [Place and Route Report | [ledded_pad bt
Total time: 1 =zecs »~
Process "GFenerate Post-Place & Route 5tatic Timing"™ completed successfully
v
< | >

Console | @Emors | p\ Wamings

W& Tel Shell | [Find in Files

Ln 1Col 1 |Ln yy Col xx

The FloorPlanner window will appear containing four panes:

1. The Design Hierarchy pane lists the LED decoder inputs, outputs and LUTs
assigned to the various CLBs in the FPGA.

2. The Design Nets pane lists the various signal nets in the LED decoder.
3. The Placement pane shows the array of CLBs in the FPGA. The I/O pins are also

shown around the periphery. (The pins used for Vcc, GND, and programming
are not shown.)

4. The Editable Floorplan pane allows you to change the pin assignments of the I/O
signals by dragging them to different pin locations.

Xilinx Floorplanner - leddcd.fnf

File Edit View Hierarchy Pattern Floorplan Window Help

DeE S AN & HWED o Ef 2 AT QAR A QMY

leddcd “Tedded" [1110Bs. 7 FGs "a | eddcd.fnf Placement for xc3s1000-4-ft256 | %]
Mrom_s61 [FG] O:Mrom_s6 10 d, -
Mrom_s51 [FG] O:Mrom_s5 10d,
Mrom_s41 [FG] O:Mrom_s4 10d,
Mrom_s31 [FG] O:Mrom_s2 10d,
Mrom_s21 [FG] O:Mrom_s2 10d,
Mrom_s111 [FG] O:Mrom_s1 104
Mrom_s11 [FG] O:Mrom_s [0d_:
s [I0B] PAD s<62 O1:Mrom_s
5 [I0B] PAD s<55 O1:Mrom_s
s<d> [I0B] PAD s<4= O1:Mrom_s
5<3> [I0B] PAD s<3= O1:Mrom_s
s<2> [I0B] PAD s<2= O1:Mrom_s
s<1> [I0B] PAD s<1= O1:Mrom_s
=<0 [I0B] PAD s<0= O1:Mrom_:
d<3> [I0B] PAD d=3= 1d_3_IBU
d<2> [I0B] PAD d=2= 1d_2_IBU
d<1> [1OB] PAD d=1= 1d_1_IBU
d<0> [10B] PAD d=0= Id_D_IBLI?

X81Y27 MNUM

The CLBs used by the LED decoder circuit are highlighted in light-green and are clustered near

the lower right-hand edge of the CLB array. To enlarge this region of the array, click on the ==
button and then draw a rectangle around the highlighted CLBs in the Placement pane. The
enlarged view of the CLBs used by the LED decoder appear as shown below.

Xilinx Floorplanner - leddcd.fnf
File Edit View Hierarchy Pattern Floorplan Window Help

D & &8 A R G B 4% Haasnm

ledded “Tedded” [1110Bs, 7FGs "o |
Mrom_s61 [FG] O:Mrom_s& [0d_
Mrom_s51 [FG] O:Mrom_s5 10d_
Mrom_=41 [FG] O:Mrom_s4 [0d_
Mrom_=31 [FG] O:Mrom_s2 10d_
Mrom_s21 [FG] O:Mrom_sZ 10d_
Mrom_s111 [FG] O:Mrom_s1 104
Mrom_s11 [FG] O:Mrom_s [0d_:
5<6> [I0B] PAD 565 O1:Mrom_z
555 [10B] PAD 5«55 O1:Mrom_z
s<4> [10B] PAD s<4> O1:Mrom_z
53> [10B] PAD 5«35 O1:Mrom_z
5<2% [10B] PAD s<2> O1:Mrom_z
s<1> [10B] PAD s<1> O1:Mrom_z
50> [10B] PAD s<0= O1:Mrom_z

d<3> [10B | PAD d<3> 1d_3_IBU

d<2> [10B | PAD d<2> | d_2_IBU
d<1> [10B | PAD d<1> | d_1_IBU
d<0> [10B | PAD d<0> |d_0_IBU +

You can enable the display of the connections between 1/O pins and CLBs by selecting the
Edit=»Preferences menu item and then checking the boxes in the Ratsnest tab of the Edit
Preferences window as shown below.

Edit Preferences X

Hesnun:es] Logic Ratsnest l

Floomlan and Flacement Views
[v Display nets connected to selected logic
Made

|Su:uun::e To Load ﬂ

[+ Direction amows

[+ Rubberbands

[Max Fanout:

Met View

[List onby nets visible
in the Floomplan View

Selected Mets:
Enable Dizable

Close Help

Now clicking on a CLB will highlight the nets connecting the inputs and output to the CLB.

Xilinx Floorplanner - leddcd.fnf
File Edit View Hierarchy Pattern Floorplan Window Help

EEH E LN éT%LCE%%E' : EW R AR QAR AERD

[fedded Tedded™ [1110Bs, TFGs ™
. Mrom_s61 [FG] O:Mrom_s& [0d_
Mrom_s51 [FG] O:Mrom_s5104d_
Mrom_s41 [FG] O:Mrom_s4 104d_
Mrom_s31 [FG] O:Mrom_s2 104d_
Mrom_s21 [FG] O:Mrom_s2 104d_

Mrom_s11 [FG] O:Mrom_s 10d_:
— 5<6> [I0B] PAD 565 O1:Mrom_z
— 555 [10B] PAD 5«55 O1:Mrom_z
— s<4> [10B] PAD s<4> O1:Mrom_s
— 5<3> [10OB] PAD s<3= O1:Mrom_s
— s<2> [10B] PAD s<Z= O1:Mrom_s
— s<1> [10B] PAD s<1= O1:Mrom_s
— s<0> [10B] PAD s<0= O1:Mrom_s
— d<3> [0B] PAD d<3= 1d_3_IBU
— d<2> [0B] PAD d<2= 1d_2_IBU
d<1> [I0B] PAD d<1= 1d_1_IBU
d<0> [0B] PAD d<0> | d_0_IEU +|

=

X66Y0 MNUM

In an analogous manner, you can click on an input pin to highlight which CLBs are dependent
on that input. (For this design, each input affects every CLB.)

Xilinx Floorplanner - leddcd.fnf |._||E|fg|
File Edit View Hierarchy Pattern Floorplan Window Help

DeE S AN HYPYEDF 8 Ef 2 AT QAR A QMY

. [= [B]|[X] (¥ leddcd.fnf Editable Floorplan for xc3s1000-4-ft256 (UCF Flow) ME=ER

[leddcd Tedded” [1110Bs. 7FGs” o il leddcd.fnf Placement for xc3s1000-4-ft256 M=1E3
Mrom_s61 [FG] O:Mrom_s6 10d,
Mrom_s51 [FG] O:Mrom_s5 10d,
Mrom_s41 [FG] O:Mrom_s4 10d,
Mrom_s31 [FG] O:Mrom_s2 10d,
Mrom_s21 [FG] O:Mrom_s2 10d,
Mrom_s111 [FG] O:Mrom_s1 104
Mrom_s11 [FG] O:Mrom_s [0d_:
s [I0B] PAD s<62 O1:Mrom_s
5 [I0B] PAD s<55 O1:Mrom_s
s<d> [I0B] PAD s<4= O1:Mrom_s
5<3> [I0B] PAD s<3= O1:Mrom_s
s<2> [I0B] PAD s<2= O1:Mrom_s
s<1> [I0B] PAD s<1= O1:Mrom_s
=<0 [I0B] PAD s<0= O1:Mrom_:
d«<3> [I0B] PAD d<3> 1d 3 IBU
d<2> [I0B] PAD d=2= 1d_2_IBU
d<1> [1OB] PAD d=1= 1d_1_IBU
d<0> [10B] PAD d=0= Id_D_IBLIT

oy

X81Y11 MNUM

To view all the available FPGA resources (not just those that are used by the design), select
Edit=»Preferences and check all the boxes in the Resources tab as shown below.

Edit Preferences X

Resources | Logic | Ratsnest |

Floomplan and Placement Views

[+ Function generators and RAMs

[+ Flip flops and Latches

v Tristate buffers

[+ /0 pads and Global buffers v Grid

Package Pin View
[Show IO Banks

* Top View

" Bottom View [Wrte BEL location
constraints for
floomlanned logic

Close Help

Now the Placement pane shows all the LUTs, RAMs, buffers, etc. that are available in the FPGA.

& Xilinx Floorplanner - leddcd.fnf
File Edit View Hierarchy Pattern Floorplan Window Help

DeE & L8

|

ledded “Tedded” [1110Bs, 7 FGs a {il ledded. fnf Placement for xc3s1000-4-ft256
Mrom_s61 [FG] O:Mrom_s610d_

Mrom_s51 [FG] O:Mrom_s5 10d_

Mrom_s41 [FG] O:Mrom_s4 0d_
Mrom_s31 [FG] O:Mrom_s3 10 d_
Mrom_s21 [FG] O:Mrom_s2 10d_
Mrom_s111 [FG] O:Mrom_s1 101
Mrom_s11 [FG] O:Mrom_s 10d_:
=<6> [10B]| PAD =<6> O1:Mrom_s
5<5> [10B] PAD s<5= O1:Mrom_s
s<4> [IOB] PAD s<4> 01:Mrom_
s<3> [10B]| PAD =<3 O1:Mrom_s
5<2> [10B] PAD 52> O1:Mrom_s

s<1> [IOB] PAD s<1= 01:Mrom_

\

X55Y8.FFX NUM

Viewing the placement of circuit elements after the place & route process can give you insights
into the resource usage of certain VHDL language constructs. In addition to viewing the
placement of the design, the Floorplanner can be used to re-arrange and optimize the
placement. This is akin to the software technique of hand-optimizing assembly code output by
a compiler. You won’t do this here, but it is an option for designs which push at the limits of the
capabilities of FPGAs.

Generating the Bitstream

Now that you have synthesized our design and mapped it to the FPGA with the correct pin
assignments, you are ready to generate the bitstream that is used to program the actual chip.

When using the XSA-3S1000 Board, you need to set some options before generating the
bitstream. (This is not needed if you are using the XSA-50, XSA-100 or XSA-200 Board, but it
wouldn’t hurt, either.) Right-click on the Generate Programming File process and select Properties...
from the pop-up menu.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd_pad.txt]
[File Edit View Project Source Process Window Help (=]

DRFES LidBREX e QifE

He ®R (%8 0D~ k2 M s SADRWIDTH v
QI @ S E T TLE » | =

=L AR AR DR

[Souces x| T |d<2> |10B |I0_LO1P_3/VRN_3 | INPUT | LVCHMOS25" A
Sources for: | Implementation v IT1 I I | GHD I I
fﬂdesigm 1T2 | | 1M1 | |
S £ xc3s1000-£256 IT3 | |DIFFS | IO_]'.':'J.N_5,-"P;DWR_3 | UNUSED |
iy e | I pIFTs lonioNs/vee S lmwsED |
[ledded ucf Jeddod ucf) \T6 | | |VCCRTXK | |
IT7 |s<5> | IOB |I0_L31N_5/D4 |OUTBUT |LVCMOS25
- T8 I0B IC/VREF 5 UNUSED
(13 Source |7y Fles | g Snapshof [Ty Librare :TQ : :DIFE‘H :IOi]’.SE B_4/GCLEO :U‘NUSED :
[E——— zon I07vRer s ovsED |
1T11 | | | VCCARUX | |
Processes for: ledded - Behavioral t |T12 | | T0B | 1O | UNUSED |
[] Guide Results Repor |T13 I | DIFFM |IC LO1P 4/VRN 4 |UNUSED |
‘y‘ MPPR Resutts Ltilties IT14 | | DIFFS |IO_ - - | UNUSED |
E}OGenem’[e Post-Place & Rou IT15 | | | CCLK | |
5 View/Edit Placed Design (F IT16 I I | GND I I
© View/Edit Routed Design | L
@ XPower Analyzer * Default value.
m Eece i A #*% Thiz default Pullup/Pulldown valus can be overridden in Bitgen.
E} Generate Post-Flacs & Roc #uxkEw® Snecial VOCO requirements may apply. Please consult the device
¥) Generate IBIS Model family datasheet for specific guideline on VCCO requirements.
) Back-annotate Fin Locatior

v Generate Programming File Ert -
P2 Corfigure Target Device 4% Fun

Rerun o’
< >
g{: Rerun All
E‘—I: Processes
E{t Stop ace and Route Report [ledded_pad bt
Open Without Updating
Process "View/Edit PJ Design Goals & Strategies,., Per) " completed successfully
=
= ¥
=2 [E] Console @crors | o\ Wamings | Z Tel Shell | [pg Find in Files
Edit the properties for the highlighted process Ln 1Col 1 |Ln yy Col xx

Now select the Configuration Options tab in the Process Properties window and set all the Pull Up
and Pull Down values to Float to disable the internal resistors of the FPGA. (At the minimum, the
Unused I0OB Pins value must be set to Float, but it is best to set them all to Float.) If they are not

disabled, the strong internal pull-up and pull-down resistors in the Spartan3 FPGA will
overpower the external resistors on the XSA Board.

EE Process Properties -
Category

General Options
Corfiguration Cptions
Startup Options
Readback Options

figuration Options

Property Name

Configuration Rate

Configuration Clic (Configuration Pins)
Corfiguration Pin MO

Configuration Pin M1

Configuration Pin M2

Configuration Pin Program
Configuration Pin Daone

JTAG Pin TCK

JTAG Pin TDI

JTAG Pin TDO

JTAG Pin TMS

Unuged IOB Pins

UserlD Code (B Digit Hexadecimal)
Reset DCM f SHUTDOWN & AGHIGH performed
DCl Update Mode

Walue

Default ()

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Up

Pull Down

RS0 1 (8 8

Pull Down
Pull Up

L —

Property display level: Defautt
0K || Cancel || Aoy || hHep

After setting all the values as shown below, click on OK.

EE Process Properties - Configuration Options
Category

General Options
Configuration Options
Startup Options
Readback Cptions

Property Name

Corfiguration Rate

Configuration Cliz (Corfiguration Pins)
Configuration Pin MO
Conrfiguration Pin M1

Configuration Pin M2
Configuration Pin Program
Corfiguration Pin Done

JTAG Pin TCK

JTAG Pin TDI

JTAG Pin TDO

JTAG Pin TMS

Unused IOB Pins

UserlD Code (8 Digt Hexadecimal)

Reset DCM f SHUTDOWN & AGHIGH performed []

DCl Update Mode

Value
Default (5)
Float

Float

Float

Float

Float

Float

Float

Float

Float

Float

Float
[xFFFFFFFF

R I

I As Required A"

Property display level: | Advanced w Default
| ok C@J’ Cancel || Aok || Hep |

Once you have set the bitstream generation options, highlight the leddcd object in the Sources
pane and double-click on the Generate Programming File process.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design1\design1.ise - [leddcd_pad.txt]
[File Edit View Project Source Process Window Help

DPEHI LidBRX e A

9]

[IF X
PLOHX PR (A% E DD, i0h %[SADRWDTH v
H I WMERALAL I CZET ARRHDN

x

Sources IR1e | | I0B | IO_LC'J.P_3,-"'\"R.N_3 | INPUT | LWCMOS52 5 |
Sources for: | Implementation IT1 | | | GHD | |
degigm T2 | | M1 | |
=
o = e oz me onemn |
o . — — —
= m;;leddcd - Behavioral {eddcd .vhd) ITS | | T0B |10 | UNUSED |
[ledded ucf Jeddod ucf) \T6 | | |VCCRTXK | |
| T7 | s<5> | 0B |10 L31N_5/D4 |OUTPUT | LVCMOS25
— T8 I | IOB | IO/VREF_5 |UNUSED |
B3 Source |IEI Al | S”a“hcum Lrare| IT3 | | DIFEM |IC_L32F_4/GCLKD |UNUSED |
Processes x IT10 | | I0B | I0/VREF_4 | UNUSED |
- IT11 | | | VCCRITX I I
Processes for: ledded - Behavioral A |T12 | | T0B | 1O | UNUSED |
[] Guide Results Repor |T13 I | DIFFM |10 _LO1P_4/VRN 4 |UNUSED |
‘y‘ MPPR Resutts Ltilties IT14 | | DIFFS | IO | UNUSED |
[]@Genem’[e Post-Place & Rou IT15 | | | CCLK | |
5 View/Edit Placed Design (F IT16 I I | GND I I
View/Edit Routed Design (1 L
% é:::;::i?[)ata * Default value.
#*% Thiz default Pullup/Pulldown valus can be overridden in Bitgen.
+| |
E} Generate Post-Flacs & Roc #uxkEw® Snecial VOCO requirements may apply. Please consult the device
¥) Generate IBIS Model family datasheet for specific guideline on VCCO requirements.
) Back-annotate Fin Locatior
] erate Programming File k
P2 Corfigure Target Device v =
< | 3 g | s
Processes | — -
L | ledded vhd ” [Place and Route Report | [ledded_pad bt
rocess iew, it ace esign oorplanner completed successfully
["Wiew/Edit P1 d Desi (F1 1 P 1 d full
< >

|
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files

Ln 1Col 1 |Ln yy Col xx

Within a few seconds, a @ will appear next to the Generate Programming File process and a file
detailing the bitstream generation process will be created. A bitstream file named leddcd.bit can
now be found in the design1 folder.

ES Xilinx - ISE - C:ATEMP\fpga_designsi\design 1\design1.ise - [leddcd_pad.txt] = (B[]
[File Edit View Project Source Process Window Help =1E X}
.%EE DidDREX o QiPLPHAPE | [H:BE MDhi MK w[sa0RwoTH ¥

&M t@gﬁ't@tﬁ'tﬁ’t » [22 EL AR AOW

o

||
]
0 .

Sources IR1& |d<2> | I0B | IO_LOlF_S,-"\"RN_S | INFUT | LVCHMOS2 5 e |
Sources for: | Implementation IT1 | | | GND] |
design |T2 | | | M1 | |
B
- LI e L e B s
E=] : — — —
= ;;mleddcd - Behavioral leddcd.vhd) |TS | |ToB |10 | UNUSED |
[ledded ucf fedded ucf) IT6 | | | VCCRUR | |
|T7 | =<5> | TOB |10 L31N_5/D4 |OUTEUT | LVCMOS25:
N — | T8 I | I0B | I0/VEEF 5 |UNUSED |
Source | =
53 Source [y Fles | g Srpshe [Py L IT9 | IDIFFM |I0_L32P_4/GCLKO |UNUSED |
To | Toz | 10/vREE s ovsED |
- IT11 | | | VCCRUX | |
Processes for: ledded - Behavioral) |T12 | | TOB |10 | UNUSED I
® 3 MPPR Resus Uilties |T13 I | DIFFM |I0_LO1P_4/VRN 4 |UNUSED |
[E=] ca@Geneme Post-Place & Rou |T14 | IDIFFS | IO | UNUSED |
B View/Edi Placed Desian F |T15 | I | CCLE | I
View/Edit Routed Design (1 IT16 I | | GMD | |
@ XPower Analyzer L
m Generate Power Data Defanl N
* Default wvalue.
Generate Post-Place & R
O EnefEie Fo ace u *% This default Pullup/Pulldown value can be overridden in Bitgen.
e
t} Generate 1BIS I'\"I.odel) *&kkd®® Opecjal VOCO requirements may apply. Please consult the device
¥ Back-annotate Fin Locatior family datasheet for specific guideline on VCCO reguirements.
erate Programming File
@@ Programming File Generation R
P2 Corfigure Target Device v 3
< | 4 < | y
Processes | = -
L | ledded.vhd " [Place and Route Report | [ledded_pad bt
case, the option listed last will be used. A
Process "Generate Programming File" completed successfully
v
i < | —

Console | @ Emors " I\, Wamings || W Tel Shel || [Find in Files

Ln 1Cal 1 |Ln yy Col xx

Downloading the Bitstream

Now you have to download the bitstream file into the FPGA on the XSA Board. The XSA Board

is powered with a DC power supply and is attached to the PC parallel port with a standard 25-
wire cable as shown below.

(You can also communicate with the XSA Board through a USB port by attaching an XSUSB

interface as shown below. Downloading the bitstream is done in the same way regardless of
the choice of interface.)

X

T

The XSA Boards are programmed using the gxsload utility. Double click the L&EsE] jcon to
bring up the gxsload window:

¢4 gxsload =13
Board Type [X54-50 ~|
Pt LFT1 -
FPGA/CPLD R4 Flazh/EEPROM
High Address | |
Low Address | |
IJpload Format |HE>< j 3 |HE>< ﬂ |
Download
R Flash v v
Interface

Then click in the Board Type field and select XSA-351000 from the drop-down menu since this is
the board you are going to load with the bitstream.

¢4 gxsload M=

Board Type
e
FPGA/CFL - Flazh/EEFR O
*555-108
®595-108+
HS40-008=L
HSA0-005=L+
=S540-005E

High 2dd #540-005E + Ii
NS 4001 2L

Law Add #540-01 D=L+ Ii
O e 40.010E

XS40-010E+
Upload For reap.010 HE: | 3
Downld=SP-010+
Rk F1| 753450 v
[terfd#45-100

w5300

LA Tomim

Then open a window that shows the contents of the folder where you stored the LED decoder
design (C\TEMP\fpga_designs\design1 in my case). You just drag-and-drop the leddcd.bit file from
the design1 window into the FPGA/CPLD pane of the gxsload window.

& design1

File Edit WView Favorites Tools Help Eemdine]XS.-’-‘-.-ES'IEIEIEI LJ _

Q-0 2 | PE d) Port LPT1 - Esit
Address !-|:I C:\TEMP\fpga_designs'designl ¥ | Go
- — . o
8] leddcd_summary. himl FPGA/LFLD RaM Flash/EEPROM
ﬂdesign 1.ise

designl.ise_ISE_Backup g E

leddcd. fp le

. = ledded.lso e

:illeddcd bid |:II'_iI'|aI'I'|E.|5l:I |E High Address | |
[leddcd.cmd_log &]leddcd.mfp [=e O

Ieddcdjad.csv Ieddcd_map.mrp @|E ik i I |

(=] ledded. drc [=] ledded.ned =p Upload Fomat [HEX «| (7 [HEX ~| (]
=] leddccd. fnf =) leddcd_last_par.ncd .|E B

£ | RéMFlash ¥ v
Interface

Type: BIT File 0y 393 KB -_ﬁ My Computer

Then you click on the Load button to initiate the programming of the FPGA. Downloading the
leddcd.bit file to the XSA Board takes only a few seconds.

¢4 gxsload =13
Board Type Load
Part E it
FPGAACPLD Flazh/EEPROM
High Address | |
Low Address | |
IJpload Format |HE>< j 3 |HE>< ﬂ |
Download
R Flash v v
Interface

Testing the Circuit

Once the FPGA on the XSA Board is programmed, you can begin testing the LED decoder.
The eight data pins of the PC parallel port connect to the FPGA through the downloading cable.
You have assigned the inputs of the LED decoder to pins, which are connected to the parallel
port data pins. The gxsport utility lets you control the logic values on these pins. By placing
different bit patterns on the pins, you can observe the outputs of the LED decoder through the
seven-segment LED on the XSA Board.

£.9
Double-clicking the ILEZ8L30 icon initiates the gxsport utility. The d0, d1, d2, and d3 inputs of the
LED decoder are assigned to the pins controlled by the D0, D1, D2, and D3 buttons of the
gxsport window. To apply a given input bit pattern to the LED decoder, click on the D buttons

to toggle their values. Then click on the Strobe button to send the new bit pattern to the pins of
the parallel port and on to the FPGA. For example, setting (D3,D2,01,D0) = (1,1,1,0) will cause

E to appear on the seven-segment LED of the XSA Board.

|] of of of of[&] 1| e
D7 DE DR D4 D3 D2 D1 DO
Stru:ul:ue[[Count Port Im

If you check the Count box in the gxsport window, then each click on the Strobe button
increments the eight-bit value represented by D7-D0. This makes it easy to check all sixteen
input combinations.

NOTE: Bit D7 of the parallel port controls the /PROGRAM pin of the FPGA. Do not set D7 to 0
or you will erase the configuration of the FPGA. Then you will have to download the bitstream
again to continue testing your design.

Hierarchical Design

A Displayable Counter

You went through a lot of work for your first FPGA design, so you will reuse it in this design: a
four-bit counter whose value is displayed on a seven-segment display. The counter will
increment on the falling edge of the clock. The four-bit output from the counter enters the LED
decoder whereupon the counter value is displayed on the seven-segment LED. A high-level
diagram of the displayable counter looks like this:

4-Bit LED 7-Segment
Counter Decoder LED
R P
count0 do s2
count1 d1 i 55‘ S3 'S4
clk—¢ count? d2 B ﬁ 32'-'81
count3 d3. | s5 | Yemw
JLB

This design is hierarchical in nature. The LED decoder and counter are modules, which are
interconnected within a top-level module.

Starting a New Design

You can start a new project using the File=»New Project... menu item. Name the project design2

and store it in the same folder as the previous design: C:\TEMP\fpga_designs. Then click on the
Next button.

ES New Project Wizard - Create New Project

Enter a name and location for the project

Project name: Project location

design? CHTEM F‘"-fpga_designs"-designZ] E]

Select the type of topdevel source for the project

Topdevel source type:

HDOL

< Back l Mext = ’}J ’ Cancel
LY

You will target the same FPGA on the XSA Board, so the other properties in the New Project
window retain the same values you set in the previous project.

ES New Project Wizard - Device Properties

Select the device and design flow for the project

Property Mame Walue

Product Categony All w
Famiby Spartan3 w
Device AC351000 v
Package FTZ256 w
Speed -4 v
Top-Level Source Type HOL

Synthesis Tool ¥5T (VHDL Verlog) b
Simulator |SE Simulator (VHOLVerlog) b
Prefemed Language WHDL b
Erable Enhanced Design Summary

Enable Message Filtering]

Display Incremental Messages FI

< Back] [MNext Q ’ Cancel

You won’t add any new source files at the moment, so just click on the Next button on the
Create New Source window. This brings up the Add Source window shown below that lets
you add existing source files to your new project. It will save time if you re-use the LED
decoder from the previous design, so click on the Add Source... button.

ES New Project Wizard - Add Existing Sources

Add existing sources

Source File Copy to Project Add Source
1 _%

Remove

Adding existing sources is optional. Additional sources can be added after the project is created using the " Project->Add
Source™ or "Project-=Add Copy of Source” commands.

< Back] [MNext l ’ Cancel

The Add Existing Sources window appears. Move to the C:\TEMP\fpga_designs\design1 folder
and highlight the leddcd.vhd file that contains the VHDL source code for the LED decoder.

Select one or more files to add

Look in: |Bdesign1 j Lol I'fF '

2 I _nao

= [h_xmsgs

My Recent I designi_xdb
Documerts E3)xst

?_[_: ledded.ngc
E] ledded_pad. txt
Desktop ledded.ucf
_ ledded. vhd
3
My Documents
My Computer
My Network File name: |Ieddu:u:|.\.rhd ﬂ Open
Flaces

Files of type: |Sn:|un:e|_‘.bd = whd *vhdl *v *.abl *abv *xco '.sﬂ Cancel

The New Project window now shows that a copy of the leddcd.vhd file will be added to the
project. The Copy to Project box is checked, so the leddcd.vhd file will be copied from the design1
folder to the design2 folder. Unchecking this box will cause the design2 project to link directly to
the leddcd.vhd file in the design1 folder, so any change in this file will affect both projects. For this
example, | have chosen to make a separate copy so the box remains checked. This is the only
existing file you need to add, so click on the Next button to move on to the next window.

ES New Project Wizard - Add Existing Sources

Add existing sources

Source Rle Copy to Project | Add Source
1 [ledded.vhd &1
:

Adding existing sources is optional. Additional sources can be added after the project is created using the "Project-»Add
Source” or " Project->Add Copy of Source™ commands.

< Back] l Mexd > N ’ Cancel

The final screen shows the pertinent information for the new project. Click on the Finish button
to complete the creation of the project.

ES New Project Wizard - Project Summary

Project Mavigator will create a new project with the following specifications:

Project:
Project Name: design2
Project Path: C:\TEMP\fpga_ designs‘design2
Top Level Source Type: HDL

Device:
Device Family: Spartan3
Device: xc3s1000
Package: ft256
Speed: -4

Synthesis Tool: X5T (VHDL/Verilog)
Simulator: ISE Simulator (VHDL/Verilog)
Preferred Language: VHDL

Enhanced Design Summary: enabled
Message Filtering: disabled
Display Incremental Messages: disabled

Existing Sources:
leddcd.vhd copy to Project

< Back ” Finish ’}J ’ Cancel
LY

An Adding Source Files... window will appear that lets you specify the intended use for the
files you are adding. Files can be used during synthesis and implementation of an FPGA
bitstream as we did in the previous design. They can also be used only during simulation, such
as testbench files that specify stimulus patterns that are driven onto the inputs of a design. Or
they can be for both synthesis/implementation and simulation (as most are) because they
describe the function and/or structure of the design in both these domains. There are also files,
such as text files containing design documentation that are added to a project but are not used
in either domain. | selected All for the leddcd.vhd file even though it will only be used for
synthesis and implementation in this example.

EE Adding Source Files...

The following allows you to see the status of the source files being added to the project, and
allows you to specify the Design View association for sources which are successfully added
to the project.

Design Unit Association
(@) ledded vhd

eddcd Bohavor

OK || Cancal C@J’ Help

After you click on Finish in the Adding Source Files... window, the Sources pane contains only
the single leddcd.vhd source file.

EX

ES ilinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [Design Summary] ._

i File Edit View Project Source Process Window Help =1
DPEHS L idBEX B QiPLPHXPR (A% B DO iAR 00 %[SADRWOTH v
I QIFFE B UAALR OO
% FPGA Design Summary L) design2 Project Status)
Sousdfor.: ||2'|1p|en'|entati0n 2 DBSi%gVEWiBW Project File: | designZise Current State: Mesw
esian ummary =
S £ xc2s1000-4256 [} I0B Properties m"'“"“'_e ledded * Emrors:
Pialef: ledded - Behavioral {edded vhd)) Module Level Utilization :
Target 3s51000-4ft 256 + Wamings:
[Timing Constraints Device- b e
BE:”T;BPT Product | ISE10.101- + Routing
-, - D TN Version: WebPACK Results:
Eg Source |lu_“| Files "m Snapshc"@ L|b|ane| - Errors and Warmings L o e + Timing
[Rp— » [Synthesis Messages Tk Constraints-
Processes for: ledded - Behavioral [Translation Messages Design ¥iliree Default + Final Timing
[Add Existing Source [] Map Messages Strategy: {unlocked) Score:
B Create New Source & Plaée and Route Messages
¥ View Design Summary E :mlng :-:Iessages 3 design2 Partition Summary H
ftnen Meseanes
‘ﬁ‘ Design Ltilties : e No partition information was found.
‘ﬁ‘ User Constraints Project Properties
) Enable Enhanced Design Summary B
T2 Synthesize 'XsT [0 Enable Message Fitering Detailed Reports |
T2 Implement Design O Display Incremental Messages Report Status | Generated Emors | Wamings Infos
P2 Generate Programming Fils Enhanced Design Summary Conterts Name
P2 Corfigure Target Device M Show Parttion Data Syrthesis
O Show Emors R
eport
[Show Wamings -
[0 Show Failing Constraints 'gmns:tahon
P 5 O Show Clock Report Epol b
< | »
P
Iﬂt focesses | E Design Summarny
~
Started : "Launching Design Summary™. —
v
ansale s amings cl Shel |4, Find in Files
[E] Consal Emo Wi Tcl Shell Find in Fil
LoC

Adding a Counter

Now you have to add the counter to the design. There is no counter module yet, so you have
to build one. Right-click on the xc3s1000-4ft256 object and select New Source... from the pop-up

menu.

I File Edit View Project Source Process Window Help

VI FE BMEAALLAL:OO

S linx - ISE - CATEMP\fpga_designs\design2\design2.ise - [Design Summary]

DPEHG L:3REX D RiPLPHAXPR (A% B MOh:, N 0 % [SADRWDTH v

B[=1E3

(=10 (<)

L= FPGA Design Summary B

design2 Project Status i+
Sources for: | Implementation vl =] DBSiE 2“9“”9"\' Project File: | designZise Current State: New
= e . Module leddcd + Errors:
g M - Name:
o . . L, T,
ﬁﬁleddcd Behavioral (leddcd Add Source... vel |-_'ll|l_a‘tlcl1 Target o7 000256 « Wamings-
Add Copy of Source... fstraints Device:
nort
Product ISE10.1.01 - + Routing
Toaale Paths bt ;
™ P Version: WebPACK Results:
=18 Source |"LL| Fles | g Snapshe| 1y Properties... = —
- Design Balanced + Timing
L Sy Hessogs o .
Processes for: xc3s1000-4ft 256 [Transiation Messages Design Hiliroe Default + Final Timing
M Add Bdsting Source [} Map Messages Strategy: {unlocked) Score:
[Crezte New Source | P!aée and Route Messages
‘ﬁ‘ Design Ltilties E ;::Inf :Je::fe: 7 design2 Partition Summary H
Project Properties No partition information was found.
Enable Enhanced Design Summarny B
[Enable Message Fitering Detailed Reports |
O Display Incremental Messages Report Status Generated BErrors Wamings Infos
Enhanced Design Summary Contents Name
Show Partition Data ;
O Show Emors Synthesis
Repart
O Show Wamings & :
[0 Show Failing Constraints 'gans:tatlon
[Show Clock Report P v
< > >
= 2
E‘{" rocesses E Design Summary
A~
Started : "Launching Design Summary"™. —
-
H < | -
Console | @ Emors &Wamings @Tcl Shell [Find in Files
Add a new source to the project LoC

As in the previous example, you are prompted for the type of file to add to the project. This
time, choose the IP (Coregen & Architecture Wizard) menu item. This will allow you to select a
counter from a library of pre-built, configurable components. Then type counter into the File
Name field and click on the Next button.

ES New Source Wizard - Select Source Type

BMM File

. |IP {CORE Generator & Architecture Wizard)

State Diagram File name:

||:|:|ur|ter |

Y | Veerlog Module Location:

m VHOL Module |C:"-—.TEM Pfpoa_designs"design? | [:]

|F] VHDL Package
i) VHDL Test Bench

Add to project

< Back Mext = ’\}J ’ Cancel
|

In the next window, expand the library tree until you find the binary counter component. Then
click on Next.

E New Source Wizard - Select [P

(27 Mutomotive & Industrial
= {77 Basic Elements
[Comparators
=23 Counters
% Binary Courter v8.0

[

27 Memary Elemerts
[77] Registers, Shifters & Pipelining
{77 Basic Functions
(27 Communication & Netwarking
[77] Debug & Verffication
[Digital Signal Processing
[C FPGA Features and Design 5
27 Math Functions
27 Memories & Storage Elements

o T s W 1 I L

< Back] [Meat = %J ’ Cancel

A very uninteresting summary of your choice appears. Click Finish to move on to the screens
that will let you configure the counter component for this design.

E= New Source Wizard - Summary

Project Mavigator will create a new skeleton source with the following specifications:

Add to Project: Yes
Source Directory: C:ATEMPfpga_designs*design?
Source Type: IP {CORE Generator & Architecture Wizard)

Source Mame: counter xco
Core Type: Binany Counter; Version: 8.0

< Back ” Finizh N ’ Cancel

The initial configuration window specifies a sixteen-bit counter that increments its value upward
by one on each clock cycle until it reaches 65,535 after which it rolls-over back to 0. You can
change many of the features of this counter on the following screens. (Click on the View Data
Sheet button to see all the details on how this counter can be configured.)

The only change that needs to be made for this design is to increase the counter width to 28
bits. Why build a 28-bit counter when only the upper four bits are used? The counter will be
driven by a clock signal on the XSA Board that has a frequency of 50 MHz. The LED display
would be changing much too quickly to see at this frequency. By connecting the LED decoder
to the upper four bits of the 28-bit counter, the display will only change once in every 2% clock
cycles. So the LED display will change every 22* / (50 x 10°) = 0.336 seconds which is slow
enough to read.

After changing the counter width, click on Next to continue configuring the counter.

M Binary Counter

mgjﬁ.‘ijikf Binary Counter a0

Component Name |courter [
Width Options

Output Width Range: 2..30

Count Restrctions

T idth-
ok Step Value |1 o 1__2{mdth ”{Hex}
i] Restrict Count
Final Count Value |1 | Hmaes 1_-'l_z\-\llidth_z (Hex)
Count Mode
® UP) DOWN) UP/DOWN

~
»

P Symbol |

View Data Sheet Page 1of 3 < Back Next = k] ’ Finish] [Cancel

None of the advanced configuration options for the counter are needed in this design, so click
Next and Finish in the next two windows that appear.

I Binary Counter

logiC P Binary Counter

va.0

Register Options
Asynchronous Settings

|:|Sei [] Clear [] Init
Asynchronous Init Value : I:I Range: n__g“ddth.'] {Hex)

Synchronous Settings

[]Set [Clear [] Init
Synchronous Init Value : l:l Range: 1}__2widm-1 (Hex)

Set/Clear Priority

Clear ovemides Set Set ovemides Clear

Clock Enable

EleE
Sync/CE Prionty

CE ovemides Sync Control Sync Control ovemdes CE

IF Symbol |

Page20f3 [<Back | | Nead>L\\sJ[Fsh | [Cancel |

I Binary Counter

1ogiC Pt Binary Counter o
Load Options
Load/CE Priority
CE ovemides Load Load ovemides CE
olZ7:0]
clk Threshold Options

[Asynchronous Threshald Output [] Synchronous Threshold Output
[] Cycle Eary Threshold Output

Threshold Value |1 | Range: 0.2"*M-1 (Hex)

IP Symbol |

View Data Shest Page 3of 3 Next > Finish L\\sJ [Cancel

After clicking Finish in the final configuration window, the counter module appears in the Sources
pane. The counter is stored as a Xilinx Coregen object (.xco file suffix). If you need to change
the operation of the counter, just double-click the counter module and make your changes in
the Coregen wizard windows that appear.

ES Xilinx - ISE - C:ATEMP\fpga_designsidesign2\design2.ise - [Design Summary] |Z||E|[z|

i File Edit View Project Source Process Window Help =&
DPEHS LidBRX DA NIPLPHAPR (A B MO AN M @ SARWOTH v
Y EE & HEzUHAAL QD
ST romrp— 3 — 5
5 for: | Implementati : S
DUF,I:C%Z or. 2n'|p = = DBS'E 2ver\rlev\ Project Fle: | designZise Current State: MNew
=] design ummary -
S8 #: xc3s1000-4t256 [} 10B Properties Nanel ho dl..l_e ledded * Brrors:
ledded - Beh | leddcd.whd v vel |
;;me od - Behavioral fedded v) 0O [1ou.jlule Level .Jtl|lza’[IDI1 = o DD02R25E « Wamings:
4 counter (counterxco) (O Timing Constraints Device:
gz:m:t:ep”n“ Product ISE101.01- + Routing
o P 0CK hEpo Version: WebPACK Results:
Erg Source |lu_"| Files ||m Snapshc”l@ hbmnel o Errors and Warmings L4 i :
) Deszign Balanced + Timing
) Syriness Hessges e =
Processes for: xc3s1000-4ft256 [Transiation Messages Design Hiliree Default + Final Timing
] Add Bxisting Source [Map Messages Strategy: {unlocked) Score:
[Create New Source D PIa-.:e and Route Messages
y‘ Design Ltilties E ::mng rf\:lessages Z design2 Partition Summary H
Project Properties No partition information was found.
Enable Enhanced Design Summary B
[Enable Message Filtering Detailed Reports |
O Display Incremental Messages Report Status Generated Errors Wamings Infos
Enhanced Design Summary Contents Name
Show Partition Data :
[Show Emors g_.'rﬁhems
eport
O Show Wamings :
O Show Failing Constraints ;mnsil-laﬂon
O Show Clock Report epo 4
< > < s
P
E]_t rocesses | E Design Summary
x Successfully generated counter. ad
- v
7 &8 | >
'S_El Console | @ Erors " M\ Wamings || {0 Tc! Shell || |pg Find in Files
LOC

Tying Them Together

You have the LED decoder and the counter, but now you need to tie them together to build the
displayable counter. You will do this by connecting the counter to the LED decoder in a top-
level schematic. Before you can do this, you have to create a schematic symbol for the LED
decoder module from its VHDL source code. (The counter module already has a schematic
symbol since it was created using Coregen.) To create the LED decoder schematic symbol,
highlight the leddcd object in the Sources pane and then double-click the Create Schematic Symbol
process. A message indicating the schematic symbol has been created will appear in the
Console tab of the Transcript pane.

ES Xilinx - ISE - CATEMP\fpga_designs\design2\design2.ise - [Design Summary]
L File Edit View Project Source Process Window Help

NP EHS LiYRREX D RiPLHHPR (AT E MOh: M N2 @ [SADDRWOTH v
W iFEE WERAALL QOO

I Sources

%, FPGA Design Summary 5 design2 Project Status e’
Sourcesfor.: Implemertation * ||| = Design Overview Project File: | design2se Current State: Mew
'-f"—"jdemgnZ [Z) Summary — =
= £ xc3e 100047256 [0B Praperties ':',“d"'_e maee : -
fn} = S -
leddcd - Beh | {eddcd.vhd Module Level Ltiizatio
m:e c_ ehavioral (leddcd.vhd) | . .u ilization T e DD0AH25E « Wamings-
4§ counter (courterxco) D Timing Col Device-
g f:”':':“;ep':: Product ISE 10.1.01- « Routing
A : S el Version: WebPACK Results:
S
=1 Source | [Files | g5 Snapshe| [y Librarie - Erors and Wamings !)
-) Design Balanced + Timing
(oo —— | IR ERETE o =
Processes for: ledded - Behavioral -~ [Transiation Messages Design Wiliroe Defauk + Final Timing
™ Add Existing Source [Map Messages Strateqgy: junlocked) Score:
O Create New Source & P!a-.:e and Route Messages
View Design Summary D Timing Messages a3 design2 Partition Summary H

M Bitner Mecsanes
Design Lilities

T
=¥

% Create Schematic Symbol
@ View Command Line Log File
@ View HDL Instantiation Templat

Froject Properties No partition information was found.

Enable Enhanced Design Summarny
O Enable Message Fittering
[Digplay Incremental Messages

Detailed Reports

Status Infos

) Report Generated Emors Wamings
% User Constrairts Enhanced Design Summary Corterts Name
P2 Synthesize - ¥ST Show Partition Data "
) Syrthesis
P2 Implement Design O Show Ermors Report
P2 Generste Programming File g g:c'“' E""?l‘_mi”gs) Trariation
Corfigure Tanget Device v ow Failing Constraints
Q - = [Show Clock Report Report %
£ > < s
P
ELI: rocesses T Design Summary
Process "Create Schematic Symbol™ completed successfully ~
v
< ¥
E] Console @ Errors 1\, Wamings @Tcl Shell |8 Find in Files

Loc

Now it is time to create the top-level schematic that will hold the counter and LED decoder

symboils. Right-click on the xc3s1000-4{t256 object and select New Source... from the pop-up menu.

Then highlight the Schematic entry in the New Source window and name the schematic

disp_cnt. Then click on Next.

E= New Source Wizard - Select Source Type

BMM File:

J |IP [CORE Generator & Architecture Wizard)

P VHDL Package
s VHOL Test Bench

File name:

||:|isp_|:nt |

Location:
|C:"‘-.TE|"-"| Pfpga_designs design2 | E]

Add to project

< Back ’ Meaxd = I}J ’ Cancel
If‘-,'

There is very little to do when initializing a schematic, so just click on the Finish button in the

Summary window that appears.

=S New Source Wizard - Summary

Project Mavigator will create a new skeleton source with the following specifications:

Add to Project: Yes

Source Type: Schematic
Source Mame: disp_cnt sch

Source Directory: C:\TEMPfpga_designs‘design2

< Back ” Finish kj ’ Cancel

The disp_cnt schematic object has now been added to the Sources pane. You can double-click it

to begin creating the schematic, but a schematic editor window should open automatically once
the file is created.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [disp_cnt.sch]
[File Edit View Project Source Process Add Tools Window Help

DPEG LIidREX D RiPAXX AR (NiBEDDELR: mm%l
::‘? :ﬁ & @ Iﬂékzﬁ'tﬁ't@tﬁt QO] U=/ 2-8 VO L/ OARID V7V ALtsm
Sources for: | Implementation
design2

= £ xc3=1000-4t256

- [halefts ledded - Behavioral fledded vhd)
ﬁ counter {counterxco)

@ disp_cnt (disp_cnit.sch)

Er3 Sour ||E] HIes"ﬂ; Snap:"@ Librz| 2

[Select Options =

When you click on a branch
(%) Select the entire branch
O Select the line segment

hs]
< | ¥
Processes | T8 Options i
Li E Design Summary | @ disp_cnt.zch
x Started : "Launching Schematic Editor to edit disp cnt.sch”.

[2

<

Ra
Consale | oElTors || JSWEIIT‘III"IQS " ETd Shell || |4 Find in Files

=1
5
[}
=
=
=

[2540,2728]

Click on the Symbols tab at the bottom of the Sources pane. The Symbols tab contains a list of
categories for various logic circuit elements that can be used in a schematic. Below that is the
list of circuit element symbols in the highlighted category. A symbol can be selected from this
list and dropped into the drawing area to the right.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [disp_cnt.sch]
@ File Edit View Project Source Process Add Tools Window Help =1 =]
‘DPHS & 4BREX Be R PARKAE N BB IO FN; mﬁm
Qg @ Ia&g@tﬁ‘tﬁ'tﬁt:@@::lll Yae P p- | 2-8 NO S OA BRI M| P Ale =

[

Categories Category I|St

<C:/TEMP Apga_designs/design2= —

Asithmetic

| Buffer us

Symbuolz

acclb ~

accd =

acch b’

—
Symbal Name Fitter .
symbol list .
y drawing area

Crientation

| Fotate 0 v|

[Symbal Info |
EQSOLII"IE Files Snaps"@ Libre | X

[Select Options 3

‘ When you click on a branch v

< | ®
2 Processes | 8 Options

E Design Summary | @ disp_cnt.zch

x

Started : "Launching Schematic Editor to edit disp cnt.sch”.

[2

< 2
Consale | oElTors || JSWamlngs " ETCﬂ Shell || |4 Find in Files

=1
5
[}
=
=
=

[3552,1316]

To start creating the top-level schematic, highlight the second entry in the category list. The

c:./TEMP/fpga_designs/design2 category contains the schematic symbols for the design2 project’s
counter and LED decoder modules. You can see the names of these modules in the symbol
list.

S Xilinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch] FEX
[File Edit View Project Source Process Add Tools Window Help =1 =]
DPEHS L:i3REX B D:iPLPXX PR (A% B MO i, i 6 [SAODRWDTH v

IV iFRE MEUAALNL QO VxR (28 YO OARI MV ALAm
[Sowces —— — —]

Categories

<=Ml Symbols—= ~
<C:/TEMPApga_designs/design2> =
Asithmetic

- v

Symbuolz

ledded

Symbal Name Fitter

I |
Crientation

| Rotate O v|

Symbal Infa

EgSom"@ Files Snaps"@ Libre | 2> S‘,‘Tﬂb|

Processes x

[Select Options A

‘ When you click on a branch
< | >
2 Processes | 8 Options

| €

E Design Summary | @ disp_cnt.zch

Started : "Launching Schematic Editor to edit disp cnt.sch”.

[2

|

< |
Console | oElTors || A Wamings " ETCI Shell || |4 Find in Files

[3244,-48]

Click on the counter entry in the Symbols list. Then move the mouse cursor into the drawing area
and left-click to place an instance of the counter module into the schematic. Repeat this

process with the ledded module to arrive at the arrangement shown below. (For clarity, | used
the Edit=>»Preferences command to turn off the display of the grid in the schematic drawing area.)

S Xilinx - ISE - C:\TEMP\fpga_designs\designZ\designZ.ise - [disp_ent.sch] 9[i=(E3]
[File Edit View Project Source Process Add Tools Window Help =1 =]
DAEHS LiBEX D NiILPLXXPR (A% B DD i, 0 E[SADRWDTH v
VEFFE MERABLLIQOOIN U - 2-B YO OARBGH P/ ALAR
Categories

<=Ml Symbols—= ~
<C:/TEMP Apga_designs/design2> =
Arithmetic oufter
Buffer hat

Symbols leddcd

counter
leddcd (270} e — X)) S(6:0) —=3

Symbal Name Fitter

| |
Crientation

| Rotate 0 v|

Pl

Symbol Info

E[‘?.Som"luj FiIes"m Snaps"@ Libre |2+ 51_.'111b|

Processes x

L

[Select Options

‘ When you click on a branch
< | > < 5
E‘—t Processes | T Options

|
| £

E Design Summary | @ disp_cnt.sch

| ¥

Started : "Launching Design Summary™.

Started : "Launching Schematic Editor to edit disp cnt.sch”.

|

< >

: |
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files

[2024,1008]

Next, click on the U button to begin adding wires to the schematic.

-\ = —

ES Xilinx - ISE - C:ATEMP\fpga_designs\design\design2.ise - [disp_cnt.sch] =1c3;

[File Edit View Project Source Process Add Tools Window Help =1 X
DPEF LidBEX e QiPLPHEKX PR (AR B Ohi/l R i @E(SADRWDTH v
VIFZE | HERAAALL QOO IR [P - 2B YO OARSGH VP ALmm=
|Sources ____X| W ~
Categories
<Al Symbols—= ~
<C./TEMPApga_designs/design2= =
Arithmetic ounter
Buffer v
Symbels leddcd
counter
ledded ((27:0) = F——di3:0) SI6:0) ——
o—{Clk
Symbal Name Fitter
I |
Crientation
| Fotate 0 v|
Symbal Infa
E?QSOUl"@ Files Snaps"@ Libre | 2> S‘,‘Tﬂb|
[Add Wire Options | 3
When you add & wire =
(3 Use the Autorouter to add hdl | ¥y
Octi
m|m| ' Design Summary | @ disp_cnt.sch
Started : "Launching Design Summary™. -~
Started : "Launching Schematic Editor to edit disp cnt.sch".
v
*

= k3 |
Console | e Emors || A, Wamings " ET&:I Shel || [Find in Files
Change the editor to add wire mode [1024,872]

Left-click the mouse on the ¢(27:0) bus on the right-hand edge of the counter module. Then
left-click on the d(3:0) bus on the left-hand edge of the ledded module. This creates a four-bit
bus between the output of the counter and the input of the LED decoder.

= Xlinx - ISE - C:\TEMP\fpga_designs\design2\designZ.ise - [disp_cnt.sch*] H=1E3
[File Edit View Project Source Process Add Tools Window Help S
NP EHG LI REX e P LPHEKER (AT B OB iR M i [SADDR_WIDTH v
FQEIERE HEUALAL QO ik (Yl - 28 YO S OA RS H PV ALEA =
|Sources ____X| ~
Categores
z--All Symbols—= ~
<./ TEMPApga_designs/designZ= —
GULs eotiter
Buffer v
Symbels leddcd
counter
ledded q(27:0)
—{Clk
Symbal Name Fitter
Orientation
| Fotate 0 v|
Symbal Infa
Eig Sou lu_‘l Files | sy Snape |E Libre | 2> S‘,"I'I'Ib|
[Add Wire Options | E
When you add & wire =
(&) se the Atorouterto add hdl | ¥
P Opi
E{‘ rocesses |w| = Design Summary | @ disp_cnt.sch™
Started : "Launching Design Summary"™. -~
Started : "Launching Schematic Editor to edit disp cnt.sch".
v
7 &3 ! >
Console | 0 Emors | _#\ Wamings @Tcl Shell [Find in Files
[1616,11584]

However, the four-bit bus causes a problem. Click on the v
check. An error is reported in the Console tab:

button to run a design-rule
Error:DesignEntry:20 - disp cnt.sch: Pin 'q(27:0)' is connected to a
bus of a different width.

You can highlight the place in the schematic where the error occurs by clicking on the
disp cnt.sch textin the error message. The error is caused by the mismatch between the
28-bit counter output and the four-bit bus. This problem is fixed as follows:

1. Click on the selection tool button: R .

2. Right-click on the existing bus and select Delete from the pop-up menu to remove this
bus.

Click on the wiring tool, gt , click on the counter output, and draw a small bus stub
outward. Terminate the bus with a double-click. This will create a 28-bit bus connected
to the counter outputs.

Repeat the previous step to attach a four-bit bus to the LED decoder input.

Click on the selection tool, k , and then hover the mouse pointer over the bus
connected to the counter. The name of the bus will be shown. In my project, the bus is
named XLXN_2(27:0).

Right-click on the bus connected to the LED decoder and select Rename Selected Bus... in
the pop-up menu.

Rename the LED decoder input bus from XLXN_3(3:0) to XLXN_2(27:24) as shown
below and click on the Apply button followed by the OK button. This will connect the LED
decoder inputs to the four most-significant bits of the counter output bus.

E Rename Bus

) Rename the branch's bus K
{¥) Rename the branch Help

Cument Base Mame of Branch
| XLXN_3(3:0)

II

Mew MName of Branch
| XLXN_2(27:24) | Apply

3

Related buses and nets

KA _3(3:0) Select Al
Clear All
Highlight
= XN _3(3:0) Center
Fins
Sheets Foom In
Foom Out

At this point, the schematic should appear as shown below. The design-rule checker should no
longer detect any problems.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\designi.ise - [disp_cnt.sch®]

[File Edit View Project Source Process Add Tools Window Help =1 =]
DPEHY LidDEX v QiIPLPXXAER (A% B DO AN 00 % [SADRWOTH v
(i QiFFE MEUAULN QO VP FT2-8 VO OARGH V ALram
e —— % -
oo
<=Ml Symbols—= ~
<C:/TEMPApga_designs/design2> =
Asithmetic
Buffer hat .
Symbols S
caunter leddcd
ledded
Q{270 p——e K| XN_2{27:2400
a—clk
Symbal Name Fitter
Crientation
| Rotate 0 v|
Symbol Info —
E[SSOLM"E Files Snaps"@ Libre |2+ wa|
[Select Options | E
When you click on a branch 2
() Select the entire branch hdl | 2 ¥
O
m|m| E Design Summary | @ disp_cnt.sch™
A
Start DRC ... |
No error or warning is detected
v

< |
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files

Check the active schematic [1788,754]

>

=
5
L]
=
-
=

Now highlight the 10 category and select a single-bit output buffer (obuf) from the list of symbols.
Attach the output buffer to the output of the LED decoder as shown below. Then run the

design-rule checker.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\designi.ise - [disp_cnt.sch®]

T OBX

@ File Edit View Project Source Process Add Tools Window Help
DPEE L %DEX 0e D PPXXAR (N REOD PN mmm
9 dodcglc Iﬁzﬁ'tﬁ‘tﬁ'tﬂt QOik [Pz 2-8 NO/ODARGHE V ALmm
[—1 “\‘? ~
Categories
Flip_Flap A
General =
o]
I0_FlinFlan b
Symbols
obuf A leddcd
obuf16 2 I [
Losa e L-5zur
Symbal Name Fitter
| |
Crientation
[Rotate 0 v|
[Symbol Info | -
E?[‘;'.Som"@ Files | pesy
[Add Wire Options | E
When you add a wire o
®) Use the Autorouterto add had] | ¥
Onti
W|M| % Design Summary | @ disp_cnt.sch™
A~
Start DRC ... 0
No error or warning iz detected
2
| 2
. Console | oElTors || A Wamings " ETCﬂ Shell || |4 Find in Files
[2504,780]

Chedk the active schematic

The design-rule checker will detect a width-mismatch error in the above schematic since a
single output buffer has been attached to the seven-bit LED decoder output bus. This error can
be fixed by right-clicking on the OBUF symbol and selecting Object Properties from the pop-up
menu. Then append (6:0) to the instance name of the output buffer as shown below and
click on Apply followed by OK. This will expand the single buffer into an array of seven buffers
with each one connected to a bit of the LED decoder output bus.

=1 Object Properties - Instance Attributes
Category

= Instances View and edi the attibutes of the selected instances

XLX_3| | Name Value Wigible Mew
m XLXI_36:0] e

Symboifame obut O
DRIVE 2 ¥ Delete
ROSTANDARD DEFALET O
Level MILINX ¥
Libver 200]
SLEW SLow []
lartfods’ OBLUF Ll
bhatblods! O8UF ¥

0K || Concel || Aooy L\\sjl Help

Next, attach a short bus segment to the output of the OBUF. Then click on the = button for
adding I/O markers. Click on the Add an output marker button in the Options tab of the Processes
pane and then click on the free end of the wire segment that you just added.

S Xilinx - ISE - C:\TEMP\fpga_designs\design2\designZ.ise - [disp_cnt.sch*] 9[i=(E3]
[File Edit View Project Source Process Add Tools Window Help =1 =]
D3EA LidDEX o QILPPKXARA (BB MDA K20 sA00RWDTH v
QIFEE HEUAALN QO IR IR (228 YO OA BRI N VP ALA

I Sources x -

Categories

| Flip_Flap =
Symbuols
lobus |

Symbol Name Filter

Crientation
[Rotate 0] leddcd
Symbal Inf [
’ il] lar P
ErgSom"lu':‘ HIes"w Snap:"@ Librz | S*,'Tnb| MNet = ¥LXN_5(5:0)

Branch count = 1 —

1/O Marker count = 0

[Add 10 Marker Options | &=

When you click nearthe end of a —
branch, what do you wart to do

(O Add an automatic marker

O Addan input maner

s
24 | 2 3
Processes | T Options
ﬂt—i E Design Summary | @ disp_cnt.sch™
Start DRC ... o
3 ERRCR:DesignEntry:20 — dis _cnt.sch Pin 'I" is connected to a bus of a different width.
Totally, 1 error(s) and 0 warning(s) are detected
v
&)

< |
Consale | @ Emors || 1 Wamings " &l Tel Shel || [Find in Files

[2644,1184]

Clicking on the end of the wire creates a seven bit-wide set of output pins.

S linx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch*]

[File Edit View Project Source Process Add Tools Window Help =]
DREHD L DBX 9 HLPLXXAR H: BB MO :AR? M @[SAODRWDTH v
QIR E | MERAALL QO R U W (2285 YO OA RIS WV ALA R
|Sources x| ~
Categores
|F|ip_F|op :|
Symbols
lobus |
Symbal Name Fitter
Crientation
[Rotate 0 ~| leddcd
Symbol nfo > O s>
’] Lgaur
E?Lf.Som"@ Files Snaps"@ Libre |2+ wa|
b
[Add I/0 Marker Options | =
When you click nearthe end of a —
branch, what do you wart to do
(O Add an automatic marker
(O Add an input marker
(& Add an output marker o | P . b4
Oni
mh’ﬂﬂ % Design Summary | [] disp_cnt sch
S5tart DRC ... ~
€3 ERRCR:DesignEntry:20 - disp cnt.sch Pin 'I' is connected to a bus of a different width.
Totally, 1 error(s) and 0 warning(s) are detected
v

. | >
. Console | @ Erors || A\ Wamings " (&0 Tl Shel || [Find in Files

[3096,864]

The output pins automatically assume the same name as the bus to which they are attached,
but this name was automatically generated and doesn’t carry a lot of meaning. To change the
name of the outputs (and the associated bus), right-click on the 1/O marker and select Object
Properties... from the pop-up menu.

S Xilinx - ISE - C:\TEMP\fpga_designs\design2\designZ.ise - [disp_cnt.sch*] 9[i=(E3]
[File Edit View Project Source Process Add Tools Window Help =1 =]
D3EA LidDEX od QILPPXKHAA (BB MDA K20 sA00RWDTH v
QIFFE MEAHAN QO] Uk 2-5 VO OARIM V ALrea =

x

e —— -
Categories
| Flip_Flop — |

Symbuols
lobus |

Symbol Name Filter

Crientation
[Rotats 0 v leddcd
[Symbal Info | [~ [FeorTER
Laur cut cirl+x
ErgSom"luj HIes"w Snap:"@ Librz | > S*,'Tnb| Copy Cirl+C
Paste Ctrl+v =
Paste Speci...
[Select Options | &= Delete
Zoom 3
When you click on a branch B Select and Clear »
(3 Select the entire branch Mirrar Crl+E
Rotate Ctrl+R
O Select the line segment o
Rename Port
: : M
When wa move an ohiect o3 < Chbject Properties Alt+Enter

E‘—t Processes

Start DRC ... -~

3 ERRCR:DesignEntry:20 — dis _cnt.sch Pin 'I" is connected to a bus of a different width.
Totally, 1 error(s) and 0 warning(s) are detected

T Options
S E Design Summary | @ disp_cnt.sch™

]
=,

< |
Console | @ Erors || A, Wamings " & Tel Shel || [Find in Files

View and edit the properties of the objects in the selection [2648,1157]

>

The Object Properties window allows you to set the name and direction of the pins.

= Object Properties - Net Attributes

Categaory
= Mets View and edit the attributes of the selected nets
XLXN_5(6:0) Name Value Visible [New]
=~ 10 Markers . LXN_5(6:0) [ndd] . .
XLAN_SE0) Port Polarity |Out|:u.rt v[Add]
Delete
oK | [Cancel] [Apply] [Help

Double-click the existing bus name and replace it with §(6:0). The direction of the bus pins is
already set to Output so you can finish by clicking on the OK button.

= Object Properties - Net Attributes
Categaory

= Mets View and edit the attributes of the selected nets

HLEMN_5i6:0) Mame Value Yisible ’ Mew]
= 140 Markers . S(6:0) I[ndd] S—
KLXMN_B{6:0) PortPolarty |Out|:u_rt a [2dd] Edit Traits

Delete

OK %“ Cancsl | | Aeoy | [Hep

The output pins now appear with their new name.

S linx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch*]

[File Edit View Project Source Process Add Tools Window Help =]
DPFPEHG S RX B PP PHK AR (M B MO i~ R M s [SADDR WIDTH 5
QIFZE Mo HAAN QO U T 28 YO OARIM VP ALam
|Sources x| ~
Categores
|F|ip_F|op :|
Symbols
lobus |
Symbal Name Fitter
Crientation
[Rotate 0 ~| leddcd
Symbol Info [=60
’] Lz
E?Lf.Som"@ Files Snaps"@ Libre |2+ wa|
b
[Select Options | =
When you click on a branch B
() Select the entire branch
O Select the line segment
s
When o move an ohiect \ s >
P T Options
m— % Design Summary | [] disp_crt sch”
S5tart DRC ... ~
€3 ERRCR:DesignEntry:20 - disp cnt.sch Pin 'I' is connected to a bus of a different width.
Totally, 1 error(s) and 0 warning(s) are detected
v

. | >
. Console | @ Erors || A\ Wamings " (&0 Tl Shel || [Find in Files

[3132,758]

Once the outputs from the circuit are in place, you can connect a single input I/0O marker to the
clock input of the counter. (No input buffer is needed because the clock signal will enter the
FPGA through a dedicated global clock input.) Right-click (or double-click) on the I/O marker
and rename it to c1k. After this, perform another schematic check to detect any errors and
save the schematic using the File=»Save command.

E= XGlinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch] H=1E3

[File Edit View Project Source Process Add Tools Window Help (=&]

DPES L:iREX B Q:PLPXXPR (A% 5 MO :,A A2 500 % [SAODRWDTH v

VIF R E S UELA QO VPR8N0 O0A RISV ALAR
x

I Sources

Categores
| Flip_Flop s

£y

Symbols
kot |

Symbal Name Fitter

| |
Crientation

[Rotate 0 v|

[Symbol Info | QfET0) m—e XLXN_2(27:2

cik
E[?.Som"luj Flles"m Snaps"@ Libre =

- s~,rmb|

Processes x

[Select Options | =

When you click on a branch

(® Select the entire branch

O Select the line segment

£

When o move an ohiect A/ < »
2f Processes | 33 Options

' Design Summary | @ disp_cnt.zch

| 3

Start DRC ...
No error or warning is detected

[

] < | *
Console | @ Emors || A\ Wamings " (&0 Tel Shel || [Find in Files

[1732,820]

Once you save the schematic for the top-level module, the hierarchy in the Sources pane gets
updated. Now the counter and leddcd modules are shown as lower-level modules that are
included within the top-level disp_cnt module.

=5 Xilinx - ISE - CATEMPfpga_designsic
[2] File Edit View Project Source Process A
D EHS L:idRBRBX E
PV I E R TS A

x

Sources

Sources for: | Implementation W
design?

= €3 xc3s 10004t 256

=[]y disp_crit (disp_cnt.sch)

’q ¥L¥_1 - courter (counter xco)

- [fua] ¥LX1_2 - ledded - Behavioral (edd

i] >
Snaps" [T Libre

2 symt

|E Files

Constraining the Design

Before synthesizing the displayable counter, you need to assign pins to the inputs and outputs.
Start by right-clicking the disp_cnt object in the Sources pane and selecting New Source... from the
pop-up menu.

S linx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch] |Z||E|r5__(|
[File Edit View Project Source Process Add Tools Window Help (=&]
DFEF L:XBEX e RiLPLXXER (N:i®E DDA A? M E[SAORWTH v
PO IE R @ IR AL QO VP25 N0/ OARIS P AL

Sources x A

Sources for: | Implementation

'EﬂdesignZ
= i xc3s1000-47256

B E E:
T XLXI_1 - counter (county =
Add Source. ..

N
¥LXI_2 - ledded - Behay

Add Copy of Source. ..

[& open ounter

St

Set as Top Module
SmartGuide. ..

F3 Mew Partition N Q27:0) pu— KLKN_Z227 2
clk =

Delete Partition

Sour |[™ Fil Sniaps Libre
E‘I3—|lu_"| o8y = E = Partition Force 3

Processes Remove

[Select Options Maove to Library...

Toggle Paths
When you click on a branch Properties

() Select the entire branch

O Select the line segment

When o move an ohiect \ s >

Ef Processes | 33 Options

' Design Summary | @ disp_cnt.sch

|

Start DRC ...
No error or warning is detected

|

4 | b3
Consale | e Emors _ﬁ‘.“a‘amings @Tc:l Shell |94 Find in Files
Add a new source to the project [1524,1680]

Transcript

Select Implementation Constraints File as the type of source file to add and type disp_ cnt in the File
Name field. Then click on the Next button.

E= New Source Wizard - Select Source Type

BMM File

. |P {CORE Generator & Architecture Wizard)

| Schematic

":] Implementation Constraints File
State Diagram File name:

1| Test Bench Waveform ||:|' = |
User Document 5P_C

Y| Verlog Module Location:
Werlog Test Fodure : : :

m VHDL Module |C:'-.TEMP"-fpga_designs'—-designE | E]

P VHDL Package
s VHOL Test Bench

Add to project

< Back Mext = I}] ’ Cancel
1y

You will receive a feedback window that shows the name and type of the file you created and
the file to which it is associated. The pin assignments will be made for the top-level module in
the design hierarchy, so the constraints file is associated with the disp_cnt module. Click on
the Finish button to complete the addition of the disp_cnt.ucf file to this project.

E= New Source Wizard - Summary

Project Mavigator will create a new skeleton source with the following specifications:

Add to Project: Yes

Source Directany: C:ATEMPYpga_designs‘design?
Source Type: Implementation Constraints File
Source Name: disp_cnt ucf

Association: disp_crt

< Back ” Finish M ’ Cancel

Now highlight the disp_cnt.sch object in the Sources pane and double-click the Floorplan IO — Pre-
Synthesis process to begin adding pin assignment constraints to the design.

S Xilinx - ISE - C:\TEMP\fpga_designs\designZ\designZ.ise - [disp_ent.sch] 9[i=(E3]
File Edit View Project Source Process Add Tools Window Help =1 =]
DPEHS L:idRRX e W:PLPHXMPR (AR B IO AR i @ SAORWITH v
FVIFH M MEULHLALL QO] VP)-TR-8 YO/ OA RIS P ALrAm
-
Sources for: | Implementation
'@ﬂdesignZ
= £ xc3s1000-4256
= @;ﬁ;disp_crd (disp_cnit sch)
{i ¥LXI_1 - counter {counter xco)
¥LX|_2 - ledded - Behavioral Jedd
E disp_cnt.ucf (disp_cnit ucf)

. 5 QET.0) p— XLXN_2(27:2
clk clk
3 Sour | [Files | g5 Snape| [y Libre| - Symk
Processes for: disp_crt e’
‘ﬁ‘ Design |tilties
=] ‘ﬁ‘ User Constraints
Create Timing Constrairts
B Foomlan |0 - Pre-Synthesis .
Floorplan Area /10 / Logic - ¥
P2 Syrthesize - XST 2
oma . P -
< > < 3

'11: Processes | T4 Options

E Design Summary | @ disp_cnt.sch

~
S5tart DRC ...
No error or warning is detected
v
< >
Console | @crors | o\ Wamings | Z Tel Shell | [pg Find in Files
[320,10237]

The appropriate pin assignments for each model of XSA Board are shown below. The clk input
is assigned to a dedicated clock input on each FPGA to which a 50 MHz clock signal is applied.
The seven-segment LED pin assignments are the same as in the previous design.

I/O Signal XSA-50 XSA-100 XSA-200 . XSA-351000
clk P88 P88 B8 P8
sO P67 P67 N14 M6
s1 P39 P39 D14 M11
s2 P62 P62 N16 N6
s3 P60 P60 M16 R7
s4 P46 P46 F15 P10
s5 P57 P57 J16 T7
s6 P49 P49 G16 R10

In the Design Object List — I/O Pins pane of the Xilinx PACE window that appears, set the
pin assignments for the clock input and LED segment drivers as shown below. Then save the
pin assignments and close the PACE window.

Xilinx PACE - C:\TEMP\fpga_designs\design2\disp_cnt.ucf
File Edit View IOBs Areas Tools Window Help

0@ |&[w | w]L0] ||
i B O P& 0 000 6 O
>
i1 Design Ob 0P m|
1O Name| 1/0 Direction Lec Bank 170 Std
clk Input P2 BANKS
5<0> Output ME BANKS
S<1> Output M11 BANKS
S Output NE BANKS
S<3> Output R7 BANKS
Scd> Output P10 BANK4
S<he Output T7 BANKS
S Output R10 BANK4
< i > Package View i Architecture View /4 | Il

R

Synthesizing and Implementing the Design

Now you can synthesize the logic circuit netlist and translate, map and place & route it into the
FPGA by highlighting the top-level disp_cnt module in the Sources pane and double-clicking the
Implement Design process. The software will automatically invoke the synthesizer and then pass
the synthesized netlist to the implementation tools. There should be no problems synthesizing
and implementing the VHDL, Coregen and schematic files in the design. (There will be a few
warnings that you can view in the Warnings tab of the Transcript pane. These warnings are
mostly due to the unconnected wires in the 28-bit bus, but this is not an error.)

E= XGlinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [disp_cnt.sch] H=1E3
File Edit View Project Source Process Add Tools Window Help (=&]
DPEF SR RX Do P PLPHEX PR (AR E DD~ N2 M e [SADDR_WIDTH 5
FQEEE A HEUALL QO N Va2 - | 2-8 YO SOA RBE M PV ALEAm
~
Sources for: | Implementation
f‘ﬂdesignZ
= i xc3s1000-47256
= @ﬁnﬁdisp_cm (disp_cnt.sch)
{; KLXI_1 - counter {counter xco)
¥LX_2 - ledded - Behavioral edd
E disp_cnt .ucf {disp_cnt .ucf)

Q7.0 p—— KLXN_2(27:2

4 » ok ik
En§ Sour |l|l:| Files | ey Snap: E Librz|| 2~ Symt

Processes x

Processes for: disp_cnt ~

) P Ll Sy
‘ﬁ‘ Design Lttilities
ﬁ User Constraints
P2 Syrthesize - ¥ST
% Implement Design
P2 Generate Programming File
P2 Corfigure Target Device v
< > 3

<
E‘—t Processes | T4 Options

' Design Summary | @ disp_cnt.sch

Vhdl netlist file "disp cnt.vhf"™ generated. -~

Started : "Floorplan I0 - Pre-Synthesis™.

= P b3
Consale | e Emors _Q‘Namings @Tc:l Shell |94 Find in Files

[396,680]

Checking the Implementation

After the implementation process is done, you can check the logic utilization by clicking on the
Design Summary tab (or by double-clicking on the Place & Route Report).

S linx - ISE - CATEMP\fpga_designs\design2\design2.ise - [Design Summary]

I File Edit View Project Source Process Window Help
‘DPEHG LILBEX e RQIPPHEPR [N: BB DD AN 0 &R[ORAWDH v
QIFF A HMEHAELALIQO
I i FPGA Design Summary L Device Utilization Summary B =
Sources for: | Implementation |l = Desugn Dverview Logic Available | Utilization | Notels)
eesen2 Uion |
T REElloAls [E] 108 Properties Number of Slice 28 15.360 %
= @mﬁdisp_cnt (disp_cnt sch) [E] Module Level Utiization Flip Flops
{-j ¥LXI_1 - counter {counter xco) @ Timing Constraints Number of 4 input 3 15.360 1%
HL¥I_2 - ledded - Behavioral {edd [E] Pinout Report LUTs
E disp_cnt.ucf (disp_cnt.ucf) @ Clock Report Logic
[=- Emors and Wamings Distribution
[S) Synthesis hessages Number of 18 7.680 %
@ Translation Messages occupied Slices
[£) Map Messages Number of 1 13 100%
b ¥ [2] Place and Route Messagss Slices containing
Eng Sour lll:l Files [l Snap: E Libre || 0 Symk @ Timing Messages ony related logic
[bitgen Messages Number of 0 18 0%
[E—— oL Scecotone
Processes for: disp_cnt 2 Detailed Reports w g
[Add Existing Source Project Properties I{m“di Number 35 15,360 1%
[Create New Source Enable Enhanced Design Summary | | | LUTe
E View Design Summary [Enable Message Fitering
. .) Number used 8
‘ﬁ‘ Design |tilties [Digplay Incremertal Messages as Iogic
g |Jser Conatraints Enhanced Design Summary Contents s - .
w0 umber use: 7
c}L\. Synthesize - X5T Show Partition Data e
C}O Implement Design Ll Show Erors = -
= = = O Show Wamings Mumber of 8 173 4%
G enn?mte rogmmmlng e [Show Failing Constraints bonded |0Bs
Q Configure Target Device O Show Clock Repor Number of 1 8 12%
BUFGMUXs
v
< > < 3
Processes Options .
Iﬂt 37 Opt £ Design Summary @ disp_cnt.zch
; n
."_E [£] Console @ Emors | 1\ Wamings @Tcl Shell | [gq Find in Files
[1324,1700]

The displayable counter consumes 18 of the 7680 slices in the FPGA. Each slice contains two
CLBs, so the displayable counter uses a maximum of 36 CLBs. The 28-bit counter requires at
least 28 CLBs and the LED decoder requires 7 CLBs so this totals to 35 CLBs. So the device
utilization statistics make sense.

As a precaution, you should also click on the Pinout Report in the Design Summary pane and check
that the pin assignments for the clock input and LED decoder outputs match the assignments
made with PACE. (You can make the comparison easier by clicking on the Signal Name column
header to bring all the signal-pin assignments to the top.)

ES Xilinx - ISE - C:ATEMP\fpga_designsidesign2\design2.ise - [Design Summary]

i File Edit View Project Source Process Window Help =&
DPEHS LB X D Wi PLPHASA (A BE MD: AN M R[SADRWITH v
19 iF & HMEzUHAAL:0O ¢
T FPGA Design Summary 4| | Fin Signal PFin Pin Directi 10 -
i 1 rection —
Sources for: | Implementation = Design Overview MNumber Name % Usage = MName Stand:
5] design2 2 Summary P8 ck SIOB | 10_L32N_5/GCLK3 INPUT | LVCM(
B £ xc3s1000-44256 [Z] 10B Properties R10 S«<6> |I0B 10_L30P_4/D3 OUTPUT | LVCM
= @n%diw_mf (disp_cnt sch) [E) Module Leve! Utiization T7 S<5: |I0B |I0_L3TN_5/D4 QUTPUT | LVCM:
 XLXI_T- counter {eounterxco) [E) Timing Carsiraints P10 Sc4> 0B | 10_L30N_4/D2 OUTPUT | LVCM:
:LXI_it 'e;dzd ; Ber:a";}m' ledd ”""“'p"“ R7 s3> |I0B |I0_L31P 5/D5 OUTPUT | LVCHME
isp_cnt.uct (disp_crt.u rt
P sp- S NG 52 |IDB |I0_L28N_5/D6 OUTPUT | LVCHME
(=) Ermors and Wamings S
[2) Syrthesis Messagss M1 S<1> |I0B |I0_L27N_4/DIN/D0 | OUTPUT |LVCM
@ Translation Messages ME S<0> |IDB | I0_L28P_5/D7 OUTPUT | LVCM
[£] Map Messages — | |A9 10B 10 UNUSED
< > [£] Place and Route Messages A0 DIFFS | 10_L31N_1/VREF_1 UNUSED
Erd Sour |lu_'-| Flles”m Snaps E Librz | 2+ Symtl [} Timing Messages Al WVCCALK
[Bitgen Messages Al2 0B 10 UNUSED
B
. A3 DIFFS | 10_L10N_1/WREF_1 UNUSED
Processes for: disp_crt - Detailed Reports v
M Add Existing Source e Al4 DIFFS [10_LOTN_1/VRP_1 UMNUSED
inout Repol A
[Create New Source = Show Columns ml 713 LY,
E View Design Summary Fin Number AlG GND
y Design Ltilities Signal Name B1 DIFFM | 10_LO1P_7AVRN_T UMUSED
y‘ User Constraints Fin Usage B2 GND
) i
E]Jl Synthesize - X5T Elil:ez?on;e B3 PROG_B
22 mplemert Design e —| |pa DIFFS | I0_LOTN_0/VRP_O UNUSED
Eg Ser“:'a‘e Pngzm[;”'“? £ I0 Bank Number B5 DIFFM |10_L25P_0 UNUSED
E orfigure Tal evice e
gure e gl"“e é‘“"} B8 DIFFM | I0_L28F_0 UNUSED
at
. | . o e nate ¥ [g7 DIFFM | 10_L30F D UNUSED v
< | < | >
Processes Cptions
L | ST Opt T Design Summary | [disp_crit.sch
b I WARNING:Xst:2211 - "C:/TEMP/fpoga designs/design?/disp cnt.vhf" line &0: Instantiating black box moduls
T, WARNING:X=rC:646 - Signal <XLXN 2<23:0>> iz assigned but never usged. Thisz unconnected signal will be t
7 &3 | >
.i_Ei Console || @ Erors | A\ Wamings | {0 Tc! Shell || |4 Find in Files
[1324,1700]

Checking the Timing

You have the displayable counter synthesized and implemented in the FPGA with the correct
pin assignments. But how fast can the counter run? To find out, double-click on the Generate
Post-Place & Route Static Timing process. This will determine the maximum delays between logic
elements in the design taking into account logic and wiring delays for the routed circuit. (If a @
is already visible, then the static timing analysis has already been done.)

ES XGlinx - ISE - CATEMP\fpga_designs\design2\design?.ise - [Design Summary]

i File Edit View Project Source Process Window Help =& X
iDPEHS LidRRX e MiPLPHEMAR [Hi® B MOhiA kM @[SADDRWOTH »
eI Y= = P = - 1
VP IFRE SEUALAL:OO ¢
[EE==NE] | - G Deson Summay ~ 2
Sources for: | Implamentation L =)- Emors and Wamings
'-'_"-“_']design2 [E] Syrthesis Messages Data Sheet report:
= £ xc3s 1000-4t 256 [2) Translation Messages coTTTTTmTmTmT T .
oo e A1l wvalues displayed in nanoseconds (ns)
= @nﬁdlsp_cnt (disp_cnt sch) [2) Map Messages
£ ¥LXI_1 - courter (courterxca) [£) Place and Route Messages L
[ha] XLXI_2 - ledded - Behavioral Jedd & Timing Messages | | ____________ P N rl
@disp_cnt.ud (disp_cnt ucf) DEZ_:-E" Messages | elk (edge) | |
[2 Al Curent Messagss Destination | to BAD |Internal Clock(s) |
= Detailed Repots | | ———————————— s +-———— +
@ Synthesis Report S5<0> | 11.238 (R) |clk _EUFGP |
2 Translation Report S<1> | 11.802(R) |clk BUFGE |
< Es 2 Mep Repor S<2> | 11.453(R)|clk BUFGE I
N) S<3> | 10.795(R) |clk_BUEGE I
B Sour | [Fies | pgy Snape | [Libre|| D Symt @ face S Fins Fpost Secdx | 10.886(R) |clk _BUFGP |
— B3] Static Timing Report S¢5> | 11.027(R) |clk BUFGP I
Ere—— -
tgen Report S<E> | 11.269(R}|clk BUFGP I
Processes for: disp_cnit 5 Show or Hide Reports... s o e, +
= CJOPECE&RD“E Static Timing Report
@OPlace&Route Report Top of Report Clock to Setup on destination clock clk
[E] Clock Region Report Data Sheet Repot | ~—TTTmTTToooooooo - - Fomm
[E] Asmchronous Delay Repor Timing Summary | Src:Rise| SrciFall| Src:Rise
@OPad Report Source Clock |Dest:Rise|Dest:Rise|Dest:Fall
——————————————— B
@ Guide Results Report -
clk I 4,820 I
+ % MPPRResuts Uites -V | PR R |
% # 2@ Generate Post-Place & Rou
@ Wiew./Edit Placed Design (F
View/Edit Routed Design (| « Analysis completed Sat May 31 09:15:22 2008
= - e ey T a3
;—I: 2 < >
Processes Options .
T Opt E, Design Summary @ disp_cnit.sch
I WARNING:Xst:2211 - "C:/TEMP/fpga designs/designd/disp cnt.vhf" line 60: Instantiating black box moduls
L MABNING:X=c:646 — Signal «XLXN 2<23:0>> iz assigned but never used. This unconnected signal will be €
= < 2
= .
E El Console @ Emors s Wamings @ Tel Shell o Find in Files
Ln 43 Col 11

After the static timing delays are calculated, click on the Static Timing Report item in the Design
Summary pane to view the results of the analysis. From the information shown at the bottom of
the timing report, the minimum clock period for this design is 4.820 ns which means the
maximum clock frequency is 207.5 MHz. The clock frequency on the XSA Board is 50 MHz
which is well below the maximum allowable frequency for this design.

Generating the Bitstream

Now that you have synthesized our design and mapped it to the FPGA with the correct pin
assignments, you are ready to generate the bitstream that is used to program the actual chip.

In this example, rather than use the gxsload utility you will employ the downloading utilities built
into ISE. The iIMPACT programming tool downloads the bitstream through the JTAG interface
of the FPGA, so you need to adjust the way the bitstream is generated to account for this.
Right click on the Generate Programming File process and select the Properties... entry from the pop-

up menu.

S linx - ISE - C:\TEMP\fpga_designsidesign2\design2.ise - [Design Summary]

i File Edit View Project Source Process Window Help =& <]

DPEHG L:REX B R:PLPH PR (A% 5 MO i, A2 0 6 [SAODRWDTH v

CVEE & EUALTL:00 ¢
Sources Ll | & FPGA Design Summary £ ~
Sources for: | Implementation = Emors and Wamings
'@jdesignZ [2) Syrthesis Messages Data Sheet report:
= £ xc3e1000-4ft 256 [2] Translation Messages Tttt .
g @ o disp_crt (disp_crt sch) @ Map Messages 211 walues displayed in nanoseconds (ns)
taf=] - e
Q K¥L¥I_1 - counter {counter xco) [2) Place and Route Messages Clock clk to Pad
KLXI_2 - leddcd - Behavioral {edd [2) Timing Messages | ____________ P P ol
Edisp_cnt.ucf (disp_cnt ucf) [Bitgen Messages | clk (edge) | |
[E] All Cumrertt Messages Destination | to PAD |Internal Clock(s) |
- Detailed Repots | ———————————— oo o +
@ Syrthesis Report 5<0> | 11.238 (R) |clk_BUFGP |
=) Translation Report S<i> | 11.802(R) |clk BUFGE |
¢ | >) Map Report 5<2> l 11.453(R) |clk BUFGP I
= . 5<3> | 10.735(R) |clk_BUFGP |
=18 Sour |1L'] Files|| g3 Snape | [T Libre | - Symt S;:f_e :Pd_ RD::DH:DDH S<4> | 10.888(R) |clk_BUFGE |
[Bitgen Report | s<e» | 11.262(R) |clk BUFGE |
Processes for: disp_cnt Show or Hide Reports... o] o o +
0O Add Busting Source Static Timing Report
[Create New Source Top of Report Clock to Setup on destimation clock clk
T View Design Summary Data Sheet Repot | TTTTTTooTooooo- e - -
y Design Utiltiss Timing Summary | Src:iRisge| Src:Fall| Src:iRise
ﬁ User Constraints Source Clock |IDest:Rise|Dest:Rise|Dest:Fall
——————————————— T et L e
+ j7E - L
- B 1\ Syrthesize - XST - | 4.820 |
0@ mplement Desin | T AR S EE—
Generate Programming File ET Run
AL
P2 Corfigure Target Device -
Analysis completed Sat May 31 05:15:22 2008
P | gﬁ RergmAl 0\ v
ﬂ Stop < | Rd
EI: fiucesses | 3 Optionis Open Without Updating

@ disp_cnt sch

) . uRRNING:Xst:2211 - v DesanGoabStateges. ..o 5o cnr,vnf" line 60: Instantiating black box modul

I HARNTHG:X=stC:646 — Sifrrt assigned but never used. This unconnected signal will be t:

| R4
Conszale 0 Emors | A\ Wamings | ETtﬂ Shel || [pg Find in Files
Edit the properties for the highlighted process Ln 43 Col 11

Select the Startup Options tab of the Process Properties window. Change the FPGA Start-Up Clock
property to JTAG Clock so the FPGA will react to the clock pulses put out by the iIMPACT tool
during the final phase of the downloading process. If this option is not selected, the FPGA will
not finish its configuration process and it will fail to operate after the downloading completes.
Note that the startup clock is only used to complete the configuration process; it has no affect
on the clock that is used to drive the actual circuit after the FPGA is configured.

ES Process Properties - Startup Options

Categary
General Options
g::unfigulgtiun Options Property Name Value
tartup Options
Readback Options FPGA Start-Up Clock CCLK W
Enable Intemal Done Fipe CCLK
Done (Output Events) LIserClu:u:k
- JTAG Clock
Enable Outputs (Output Events) i
Release Write Enable {Output Events) | Default (8) w
Release DLL {Output Everts) Default (MoWait) W
Match Cycle Auto w
Drive Done Fin High O

Property display level: Default

oK || Cance || Aemy || Hep

Next, click on the Configuration Options tab and disable all the internal pull-up and pull-down
resistors in the FPGA as we did in the previous design. Then click OK.

ES Process Properties - Configuration Options

Categaory

General Options

Configuration Options Property Name Value

;t::;tl?ag? g;tsicuns Corfiguration Rate Defautt () w
Configuration Clk {Configuration Fins) Float W
Corfiguration Pin MO Float w
Configuration Fin M1 Float W
Corfiguration Pin MZ Float w
Configuration Fin Program Float W
Corfiguration Pin Done Float w
JTAG Pin TCK Float L
JTAG Pin TDI Float v
JTAG Fin TDO Float L
JTAG Pin TM5 Float v
Unused IOB Fins | »
UserlD Code {8 Digit Hexadecimal) MFFFFFFFF
Reset DCM f SHUTDOWMN & AGHIGH performed]
DCI Update Mode | As Required v |

Property display level: |;'5'-J:I~.-'an|:e-:| W Default

[OKL\\\J’ Cancsl | [Aoy || Hep |

Now that the bitstream generation options are set, highlight the disp_cnt object in the Sources
pane and double-click on the Generate Programming File process to create the bitstream file.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [Design Summary] Z E|E|
i File Edit View Project Source Process Window Help (=1 =]
DAEHS LiBEX D RILPLPH PR (AR B DD i, 0 E[SADRWDTH v
QIFH A BEUAAALL QO ¢

£ FPGA Design Summary ~ <
Sources for: | Implementation [=- Ermors and Wamings
designZ [E] Synthesis Messages Data Sheet report:
2 £3 xc3s1000-4t 256 [E) Translation Messages | .. _ T .
g @;ﬁ;disp_cﬂ (disp_cnt.sch) @ Map Messages 211 walues displaved in nanoseconds (ns)
4 XLXI_1 - counter (courterxco) [2] Place and Route Messages Clock clk to Pad
¥13I_2 - ledded - Behavioral Jedd [E) Timing Messages | ____________ e e +
Edisp_cnt.ud (disp_cnt ucf) [Bitgen Messages | clk (edge) | |
@ All Current Messages Destination | to BAD |Internal Clock(s) |
- Detailed Repots | -———————————— Fo——— o +
[2) Syrthesis Report S<o> | 11.238 (R) |clk BUFGF I
[2) Translation Report S<1> | 11.802(R) |clk BUFGP |
¢ S @ Map Report S5<2> | 11. §53 (R) |clk_§UFGP |
E§ Sour |[u_'-| FiIes"m Snaps"lD Librz| - Symt| Ei P|aC.'3 and. Route Report ;:ii : ig 3:: EE: :ziﬁ_égggi :
m— - [2) Skafic Timing Report S<5> | 11.027(R) |clk_BUFGP |
[Bitgen Report | s<E> | 11.269(R)|clk BUFGE I
Processes for: disp_crt Show or Hide Reports. .. Ml P o +
01 Add Bdsting Source Static Timing Report
[Create New Source Top of Report Clock to Setup on destination clock clk
L View Design Summary Data Sheet Repot | TToTTTommo—oo—- L Fommm Fommm s
% Design Ltities Timing Summary | Sxrc: RJ:-SE | SIC=F§11 | Src:Rise
\y User Constraints Source Clock lDest:RlselDest:RlselDest:Fall
P21\ Syrthesizs - X5T o1k | — | —
2@ mplement Design [} | T A R P
X Generate Programming File
P2 Corfigure Target Device
Analyesis completed Sat May 31 09:19:22 2008
v
< J 2 < | 3
24 Processes | 1 Options | | T, Design Summary | [5) disp_cnt sch
b g I HARNING:X=c:2211 - "C:/TEMP/fpga designs/designs/disp cnt.vhf" line 60: Instantiating black box moduls

L WABNING:¥=t:646 — Signal <XLXN 2<23:0>> iz assigned but never used. This unconnected signal will be t

>

=1
B
]
=
[
=

< |
Console " @ Erors | M\ Wamings | (&0 Tl Shel || [Find in Files
Ln 43 Col 11

Within a few seconds, a @ will appear next to the Generate Programming File process and a file
detailing the bitstream generation process will be created. A bitstream file named disp_cnt.bit is
placed in the design2 folder.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [Design Summary] Z E|E|

i File Edit View Project Source Process Window Help (=1 =]

DAEHS LiBEX D RILPLPH PR (AR B DD i, 0 E[SADRWDTH v

i 9 @FE BEHAKLL 00 ¢
x

. FPGA Desgn Sy A z
Sources for: | Implementation [=- Ermors and Wamings
=] design2 [E] Syrthesis Messages Data Sheet report:
= £ xc3s1000-41 256 [E] Translation Messages cTTTTTTTTTmtTT .
g @ “ disp_cnt disp_crt sch) @ Map Messages 211 walues displaved in nanoseconds (ns)
1 ISP _ _cnt.
4 XLXI_1 - counter (courterxco) [2] Place and Route Messages Clock clk to Pad
¥13I_2 - ledded - Behavioral Jedd [E) Timing Messages | ____________ e e +
Edisp_cnt.ud (disp_cnt ucf) [Z) Bitgen Messages | clk (edge) | |
@ All Current Messages Destination | to BAD |Internal Clock(s) |
- Detailed Repots | -———————————— Fo——— o +
[Synthesis Report 5<0> I 11.238 (R) [clk BUFGE I
[2) Translation Report S<1> | 11.802(R) |clk BUFGP |
¢ S @ Map Report S5<2> | 11.453 (R) |clk BUFGP |
- S<3> | 10.795(R) |clk BUFGE I
. ¢ ibrz Pl d Route Report =
E§ Sour |lu_'-| HIes"m Snap."lD Librz| - Symt| E St:e:ln . oRe :Do S<dn I 10.886 (R) |clk_BUFGP |
—— 5 Sl Ll 5<5> | 11.027(R) |clk BUFGP |
[1 Bitgen Report | s<E> | 11.263(R) |clk BUFGP I
Processes for: disp_crt Show or Hide Reports. .. Ml P o +
01 Add Bdsting Source Static Timing Report
[Create New Source Top of Report Clock to Setup on destination clock clk
L View Design Summary Data Sheet Repot | TToTTTommo—oo—- L Fommm Fommm s
y Design Liities Timing Summary | S5rc:Rise| Src:Fall| Src:Rise
\y User Constraints Source Clock |Dest:Rise|Dest:Rise|Dest:Fall
I e o oo o
P21\ Syrthesizs - X5T o1k | — | —
2@ mplement Design [} | T A R P
{Generate Programming File
P2 Corfigure Target Device
Analyesis completed Sat May 31 09:19:22 2008
v
< Bl @000 aEmmmmm —
' < I >

E‘—t Processes | T4 Options

T Design Summarny | [disp_cnt.sch

>

=1
B
]
=
[
=

< |
[£] Conscle " @ Erors | M\ Wamings | (&0 Tl Shel || [Find in Files

Ln 43 Col 11

Downloading the Bitstream

Before downloading the disp_cnt.bit file, you must configure the interface CPLD on the

XSA-3S51000 board so it will work with the IMPACT programming tool. Double click the L
icon and then drag & drop the p3jtag.svf file from the C:\Program Files\XSTOOLS\XSA\3S1000 folder
into the FPGA/CPLD pane of the gxsload window. Then click on the Load button and the CPLD
will be reprogrammed in less than a minute.

File Edit View Favorites Tools Help
Board Type [¥54351000 |

Q- C - d _-J Part LPT1 = Esit
Address ||[J) C:\Program FilesiSTOOLsWSAN3S W | ﬂ G0
@ﬁnﬁ it ' — = ' FPGA/CPLD R Flazh/EEFPROM
ramintﬁ:.bit
:@l test_board.bit

@ dwnldpar.svf

erase,svf
=) fenfg.suf High Address | |
p3itag.svf

!ﬁl péitag.svf

Low Address | |

LIplaad Format |HE>< ﬂ |'_“| |HE>< ﬂ |

[rowwnload
Résbd Flash W v

Interface

Type: SVF File D 88.0 KB _é My Computer

After the p3jtag.svf file is loaded into the XSA Board, move the shunt on jumper J9 from the xs to
the xi position. The XSA Board is now setup so the FPGA can be configured through its JTAG
boundary-scan pins with the iIMPACT programming tool. Note that this process only needs to
be done once because the CPLD on the XSA Board will retain its configuration even when
power is removed from the board. (If you want to go back to using the gxsload programming
utility, you must move the shunt on J9 back to the xs position and download the dwnldpar.svf file
into the CPLD.)

Now double-click on the Manage Configuration Project (iIMPACT) process.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [Design Summary]

i File Edit View Project Source Process Window Help =1
DPEG LidBEX e i PLPHAMRE BB MOh:A kM R[SADDRWDTH »
QIFH A BEUAAALL QO ¢
S rr— : a
Sources for: | Implementation [=- Ermors and Wamings
=] design2 [E] Syrthesis Messages Data Sheet report:
= £ xc3s1000-41 256 [E] Translation Messages cTTTTTTTTTmtTT .
g @ “ disp_cnt disp_crt sch) @ Map Messages 211 walues displaved in nanoseconds (ns)
1 ISP _ _cnt.
4 XLXI_1 - counter (courterxco) [2] Place and Route Messages Clock clk to Pad
¥13I_2 - ledded - Behavioral Jedd [E) Timing Messages | ____________ e e +
Edisp_cnt.ud (disp_cnt ucf) [Z) Bitgen Messages | clk (edge) | |
@AII Cumrent Messages Destination | to BAD |Internal Clock(s) |
- Detailed Repots | -———————————— Fo——— o +
[2) Syrthesis Report S<o> | 11.238 (R) |clk BUFGF I
) Translation Report S<i> | 11.802(R) |clk BUFGP |
¢ S @ Map Report S5<2> | 11.453 (R) |clk BUFGP |
) S<3> | 10.795(R) |clk BUFGP I
=23 Sour | [y Fes g Srap Py L 2 Sy e S<a> | 10.886(R) |clk BUFGP |
= - (=) Static Timing Repot 5<5> | 11.027(R) |clk SUFGE |
s [1 Bitgen Report | s<E> | 11.269(R) |clk BUFGE I
Processes for: disp_crt Show or Hide Reports. .. Ml P o +
[Create New Source Static Timing Report
T View Design Summary Top of Report Clock to Setup on destination clock clk
‘3‘ Design Utilties Data Sheet Repot | ~77TTTTTTTTTTTT +______T__+ _________ +______T__
‘ﬁ' User Constraints Timing Summary | S5rc:Rise| Src:Fall| Src:Rise
ca_f_\.Synth) ¥5T Source Clock |Dest:Rise|Dest:Rise|Dest:Fall
esize -
——————————————— T S
2@ mplement Design clk l 4.820] | b
0@ Generate Pogramming R} | P S, o
=2 Corfigure Target Device
P2 Generate Target PROM/ACE F
£ Manage Configuration F‘rojectlﬁ Analysis completed Sat May 31 09:19:22 2008 =
g 5 < | 3
E“—t Processes | I Options |Manage Configuration Project (iMPACT) — —
| [disp_cnt.sch |
j B | 5
Console " @ Erors | M\ Wamings | (&0 Tl Shel || [Find in Files
Ln 43 Col 11

The iMPACT — Welcome to iMPACT window now appears. Make sure the Configure Devices
using Boundary-Scan (JTAG) radio button is selected. Boundary-scan mode allows the
configuration of multiple FPGAs connected together in a chain. To accomplish this, the
iIMPACT software needs to know the types of the FPGAs in the chain. There is just a single
FPGA on the XSA Board and you could easily describe this to iIMPACT. But iMPACT can also
probe the boundary-scan chain and automatically identify the types of the FPGAs. This is even
easier, so select the Automatically connect to a cable and identify Boundary-Scan chain option and click on
the Next button.

= iMPACT - Welcome to iMPACT MIsIE

Please select an action from the list below

(*) Configure devices using Boundary-5can (JTAG)

| Automatically connect to a cable and identify Boundary-Scan chain V|

) Prepare a PROM File
) Prepare a System ACE File
) Prepare a Boundary-Scan File

) Configure devices

| using Slave Seral mode

< Back . Finish ,}‘ [Cancel
L

The Assign New Configuration File window now appears. You need to tell IMPACT what
bitstream file to download into the FPGA. Go to the folder where your design2 project is stored
and highlight the disp_cnt.bit file. Then click on the Open button.

= Assign New Configuration File

Look in: |a C:/TEMP Apga_designs/design2/ V| 4= 5 =
= st

£_ngo

I _xmegs

IChdesign?_xdb

IChtemplates

Catmp

IChsdre_auto 0 xdb

File name: ||:|i5|:|_|:r|t.b'rt |
File type: | All Desian Files (*bit *rbt * nky ~isc * bsd) |

Cancel Al | | Bypass |

{(®) Mone
"y Enable Programming of SPI Flash Device Attached to this FPGA

"y Enable Programming of BF Flash Device Attached to this FPGA

The Device Programming Properties appears next. You can check the Verify box if you want
to make iIMPACT readback the bitstream from the FPGA after the download to make sure it
was sent correctly. Then click on the OK button.

ES Device Programming Properties - Device 1 Programming Properties
Categorny

[=)- Boundany-Scan
Device 1 FPGA, xc3s1000)

Property Mame Yalue
Werify

FPGA Device Specific Programming Properties

Fulze PROG]

| ok RJ[Cancsl | | Aol | [Heb

The IMPACT software will probe the boundary-scan chain and the main iMPACT window will
appear showing a boundary-scan chain consisting of a single XC3S1000 FPGA.

ES Xilinx - ISE - C:\TEMP\fpga_designs\design2\design.ise - [Boundary Scan] : E E|
File Edit Wiew Project Source Process Operations Output Debug Window Help (=[5 [X]

DFEF LiXDEX Do RQIiPLPHM MR (HiBmE DD:,FN

00 | PV QOO0 PLIEF E @ LW AHN

‘e K anam fF: 22 S50 N

[

% Boundary Scan Available Operations are:
o SlaveSerial = Program
o SelectMAR =9 Get Device ID
28 Desktop Corfiguration =P Get Device Signature/Usercode Dl
B9 Direct SPI Corfiguration = Check ldcode
@ SystemACE = Read Status Register B
[£] PROM File Formatter disp,_cnt bit
DO

v

Er[gSa” Ty F||:| Sr"IE Lit |Cnrrfigur: Ef Processes Configuration Opera Wihat's New in IS|| 5= Design Sum |@ Boundary So
-
7 (& | >

.*_'I':E Console | a Errors " LWamings " ET::I Shell " (a4 Find in Files |

Configuration | Parallel III | 200 KHz | LPT1

Now right-click on the xc3s1000 icon and select the Program... item on the pop-up menu. This will
initiate the download of the bitstream to the FPGA.

ES Xitinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [Boundary Scan] ._ E &|
File Edit View Project Source Process Operations Output Debug Window Help _

DPHG Li¥DEX D QiPLPHEMAR A:RE DDA

00 2 | i QOO PLPRLIFFE W EHALA

e X o i @ S0 oW

‘58 Boundary Scan Available Operations are:
ol SlaveSeral =P Program
ol SelectMAP =P Get Device 1D
‘2ol Desktop Corfiguration =P Get Device Signature/Usercode ol
B8 Direct SPI Corfiguration =p Check ldcode m
[Z] SystemACE = Read Status Register 4o5s| GetDevice ID
@ PROM File Formatter dizp_t Get Device Signature Usercode

Assign New Configuration File...
Set Programming Properties. ..
Set Erase Properties...

Set Target Device

=g So” Iy Hlt"m_Sr” [y ut |Configum Bf Processes | Configuration Opera

What's New in ISE De” ¥ Design Summarny |@ Boundary Scan

x

€|

£

| *
Console ‘ @) Emors ” 1\, Wamings " i Tel Shell || [pq Find in Files |

Transchpt

Configuration | Parallel IIT | 200 KHz | LFT1

The progress of the bitstream download will be displayed. The download operation should take
less than a minute.

S Progress Dialog [26%]

BExecuting command. ..
TTTITTT 26% |

After the download operation completes, you can check the status messages in the bottom
pane of the iMPACT window to see if the FPGA was configured successfully.

ES Xitinx - ISE - C:\TEMP\fpga_designs\design2\design2.ise - [Boundary Scan]

File Edit View Project Source Process Operations Output Debug Window Help (=]
DPHF LidEX e NiLPLHHAPRE AiBmEDTH:AN
00 2 | viQ:QOQIQORNPLIFFE MEHAAA
= - o R B A R
—

O Boundary Scan Available Operations are: gh e fo seie o

ol SlaveSeral —

B9 SelectMAF F

‘2ol Desktop Corfiguration L _Ezmm

“Gal Direct SPI Configuration e —

[=] SystemACE Xc3s1000

[=] PROM File Formatter disp_cnt bit

TDO

F it | Corfigure Configuration Opera
=18 So| {3 Fik gy S |D - g E‘_t Processes g ? What's New in ISE De| 55 Design Summary ':f@ Boundary Scan

Match ecycle: NoWait

A
INFO:iMPACT - '1': Checking done pin....done. |
'1': Programmed successfully.

PROGRESS END - End Operation. 3
Elapsed time = 21 sec.

< |
Console @ Ermors LWamings @Tcl Shell |8 Findin Files

Transchpt

Configuration | Parallel IIT | 200 KHz | LPT1

Testing the Circuit

Once the FPGA on the XSA Board is programmed, the circuit will begin operating without any

further action from you. The LED display should repeatedly count through the sequence
r

O, 4 2,3, 4 5 6 1, 8 8 A b c, d E, Fwithacomplete cycle taking 5.4
seconds.

State Machine Design

Finite State Machines

A simple finite state machine (FSM) uses one or more flip-flops to store its internal state. The
pattern of ones and zeroes on the flip-flop outputs are the current state. In a synchronous
FSM, the current state is replaced with the next state on the rising edge of a clock signal. The
next state is computed by a combinational logic circuit that accepts the current state and
possibly some external signals as inputs. So a synchronous FSM is composed basically of a
set of flip-flops fed by a combinatorial circuit that accepts feedback from the flip-flops on every
clock cycle.

In this chapter we will build an FSM that acts like a combination lock. The requirements for this
digital combination lock are:

1. The user enters a combination as a sequence of n key presses on a keyboard.
2. The combination lock stores a particular combination as a sequence of n key presses.

3. The combination lock will open if the user enters an n-key sequence that matches the
combination. Otherwise, the lock stays locked.

4. The user must enter an entire n-key sequence before the lock either accepts or rejects
the sequence.

5. Once the combination lock is unlocked, the user can relock it or enter a new
combination as a sequence of key presses.

6. The lock will require the user to verify any new combination that is entered before it
replaces the previous combination.

A hierarchical view of the combination lock and its lower-level modules is shown below. The
combination lock consists of:

Keyboard interface: This module accepts a serial data stream and clock signal from a
standard PS/2 PC keyboard and converts it into a parallel scancode with an associated ready
signal that indicates the presence of the scancode.

Lock&key mechanism: This module accepts scancodes from the keyboard interface and
determines whether or not the correct combination has been entered and manages the entry of
new combinations.

The combination lock accepts the keyboard serial data and clock as inputs along with a main
clock that synchronizes the operations of both modules. There is also a reset input to initialize

the entire FSM upon startup. The combination lock visually indicates its current status on a
seven-segment LED.

7—SI(_a rSent
JULTLIT > Combination | s0 . s
Lock | s1 'S-'
5 4
RESET — P / \ | s2 52' 5-3' s1
34 = S S
P s5
Kybd Clock Keyboard Lock & Key <6 <0
<vbd Dat Interface Mechanism
y ata q

Figure 1: Design hierarchy for a combination lock.

XESS Corporation - www.xess.com ©2008 by XESS Corp.

Starting the Combination Lock Project

We will begin the design of the combination lock by creating an HDL-based project for the
Spartan3 FPGA as we did before. We will describe the lower-level keyboard interface and the
lock&key modules using the HDL Editor, and then tie these modules together with a top-level
schematic.

—

&5 Xilinx - ISE - C:\TEMP\fpga_designs\design3\design3.ise

File Edit View Project Source Process Window Help

FNAPEHS LidREX D DiLPPHHEAR (N:iB B MD i/l 0 @[SADDRWDTH v

EY I HE | E TS
x

Sources for: | Implementation ~

oc 32 1000-4t 256

Eg Source |® Files "ﬁ Snapshc"@ Liblarie|

Processes for: xc3s1000-4ft 256
[Add Busting Source
M Create New Source

Eﬁ‘ Design |Utilties

i | 1 l|

]
Console | (@) Emors || 1 Wamings " &l Tel Shel || [Find in Files

Transcript

CAPS | NUM SCR.L_.

Creating the Keyboard Interface Module

A PS/2 keyboard connects to an XSA Board through two signals:

psData: This signal carries the serial data stream as each key is pressed and released. Each
key is assigned an eight-bit scancode that is transmitted least-significant bit to most-significant
bit with a preceding start bit and a terminating parity bit and stop bit.

psCIlk: The falling edge of this signal indicates when the psData signal is valid.

106
Xilinx ISE 10 Tutorial

The keyboard interface will accept the serial data stream and will output the eight-bit scancode
in parallel along with an rdy pulse that indicates a valid scancode is available. The rdy pulse

will be generated when the psClk signal goes high and stays there. The timing of the psData,
psClk, and rdy signals is shown in Figure 2.

ST AVAVAVAVAVAVAVAVAVAVAVAEEEE
psData Q00 X D1 X D2 X D3 X4 XD5)XD6 XD7 X _P)

o

Figure 2: PS/2 keyboard waveforms.

A single scancode is transmitted when a key is pressed. But two scancodes are transmitted
when the key is released: an initial scancode of 11110000 to indicate the key release, and then
the scancode for the key is sent again. The keyboard interface will be designed such that the
rdy signal pulses only after the key has been released.

To begin the keyboard interface, add a VHDL module as shown below.

E= New Source Wizard - Select Source Type

4, IP {CORE Generator & Architecture Wizard)
©] Schematic

Verilog Module File name:

"] VHDL Module scancodereg

ot Location:

n WHOL Package _. _. .

g VHDL Test Bench CATEMPfpga_designs'design3 E]

Add to project
< Back Mext = l ’ Cancel

The VHDL code for the keyboard interface is shown in Listing 1. The functions of the code for
the scancodeReg module are as follows:

Lines 36—41: The module receives the psData and psClk inputs from the keyboard and
outputs the eight-bit scancode and the rdy signals that were described above. A master clock

is also provided which synchronizes the operations of this module with the lock&key module. A
reset signal initializes the module when it first powers up.

Line 46: This line declares a 10-bit shift-register that holds the scancode value as it arrives
from the keyboard. The start bit, eight scancode bits, parity bit, and stop bit will enter the most-
significant bit of the sc_r register and shift towards the least-significant bit. By the end of a
scancode transmission the start bit will have shifted completely out of the register and be lost
while the scancode will end up in the lower eight bits of sc_r. The stop and parity bits will be in
the uppermost two bits.

Lines 47—-48: These lines define a counter that is used to determine when the psClk signal is
no longer pulsing. The timeout value (line 47) is determined by dividing the main clock
frequency (defined in the GENERIC section on line 32) by the frequency of the psClk (line 33).
If the main clock is 50 MHz and the keyboard clock is 10 KHz, then the timeout value is 5000
which means it will take 5000 pulses of the main clock to determine if the psClk signal is static.
The timeout counter register is defined on line 48 as a natural that can hold a value as large as
the timeout value. By defining the counter register in this way, we can change the frequency of
the main clock or the keyboard clock and the timeout counter will be automatically resized by
the synthesizer with exactly the number of bits needed to store the timeout value.

Lines 56—66: This process parallelizes the serial keyboard data. If the reset input is active, the
scancode shift register is cleared to all zeroes. Otherwise, on falling edges of the keyboard
clock the value on the keyboard data signal is placed into the most-significant bit of the shift
register and the upper nine bits of the register are shifted one bit position downward. By the
end of a scancode transmission, the start bit will have shifted completely out of the register and
be lost while the scancode will end up in the lower eight bits of sc_r. The stop and parity bits
will be in the uppermost two bits.

Line 69: The eight lower bits of the sc_r register are output as the scancode output of the
module.

Lines 73-94: This process detects when the psClk signal has stopped pulsing and indicates
that a scancode is available. The timeout counter and scancode ready flag are cleared when
the module is reset. Then the counter is incremented as long as the psClk is at logic 1 and the
counter has not reached its timeout value yet. The counter is reset to zero if psClk is ever low
because that indicates the keyboard clock is still pulsing so the scancode cannot be complete.
But if the counter ever reaches the value TIMEOUT-1, then the scancode ready flag is pulsed
high for a single clock cycle.

Lines 98-114: This process checks the scRdy_r flag and looks for the scancode that matches
the KEYRELEASE scancode defined on line 52. After seeing the key release scancode, this
process looks for the next following scancode. Then it sets the flag that indicates the scancode
received after the KEYRELEASE code is ready for output.

Line 116: The ready flag from the previous process is output from the module.

Listing 1: VHDL code for the keyboard interface.

O©CoO~NOOOAPRWN -

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

-— Company: XESS Corp.
-- Engineer: Dave Vanden Bout

-- Create Date: 10:39:20 05/21/2006

-- Design Name: design3

-— Module Name: scancodereg - Behavioral
-- Project Name: design3

-- Target Devices:
-- Tool versions:
-- Description:

-- Dependencies:

-—- Revision:
-— Revision 0.01 - File Created
-— Additional Comments:

library IEEE;

use IEEE.STD LOGIC 1164.all;

use IEEE.STD LOGIC ARITH.all;
use IEEE.STD LOGIC UNSIGNED.all;

-—--- Uncomment the following library declaration if instantiating
--—— any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity scancodereg is

generic (
CLKFREQ : natural := 50 000; -- main clock freq (KHz)
PSCLKFREQ : natural := 10 -—- keyboard clock freqg (KHz)
) ;
port (
clk : in std logic; -- main clock
rst : in std logic; -- reset
psClk : in std logic; -- keyboard clock
psData : in std logic; -- keyboard data
scancode : out std logic vector (7 downto 0); -- key scancode
rd : out std logic -- true when scancode is ready

);
end scancodereg;

architecture Behavioral of scancodereg is

signal sc r : std logic vector (9 downto 0); -- scancode shift reg
constant TIMEOUT : natural := CLKFREQ/PSCLKFREQ; -- psClk quiet timeout
signal cnt r : natural range 0 to TIMEOUT; -- timeout counter
signal scRdy r : std logic; -- scan code is ready flag
signal rdy r : std logic; -- output scan code is ready flag
signal keyrel r : std logic; -- key has been released flag
constant KEYRELEASE : std logic vector (7 downto 0) := "11110000";

begin

-- this process gathers the keybrd scancode into the shift register
process (psClk, rst)

begin
-- async. reset of scancode ready flag
if rst = '1' then
sc_r <= (others => '0'");

-—- accept keyboard data on falling edge of keyboard clock
elsif falling edge(psClk) then
-- key data arrives LSB first so right-shift it into MSB of register

sc_r <= psData & sc_r(sc_r'high downto 1);
end if;
end process;

-- key scancode is in the lower 8-bits of the shift register
scancode <= sc_r(scancode'range); -- output scancode

-- this process detects the end of the scancode by looking
-—- for the absence of keyboard clock pulses
process (clk, rst)

begin
if rst = '1l' then
cnt r <= 0; -- clear the timeout counter
scRdy r <= '0'; -- clear the scancode ready flag
elsif rising edge(clk) then
scRdy r <= '0'; -- by default, no key scancode is ready for output
if psClk = '0' then

-- reset the timeout register whenever the keyboard clock pulses low
cnt r <= 0;
elsif cnt r /= TIMEOUT then
-- increment the timeout counter if the keyvoard clock is high
-- and the counter hasn't reached the timeout value yet
cnt r <= cnt r + 1;
if cnt r = TIMEOUT-1 then
-- signal that a key scancode is ready when the counter is
-- equal to one less than the timeout value
scRdy r <= 'l'; -- rdy signal pulses for one clock period
end 1if;
end if;
end 1if;
end process;

-- this process detects when the keyboard key is released and
-- signals when the scancode for the released key is ready
process (clk)

begin
if rising edge(clk) then
rdy r <= '0'; -- by default, no key scancode is ready for output
if scRdy r = 'l' then
-- check the scancode register when a code is ready
if sc _r(7 downto 0) = KEYRELEASE then
-- set flag if the key release prefix is detected
keyrel r <= '1';
elsif keyrel r = 'l' then
-- end up here on next scancode received after key release prefix
rdy r <= 'l'; -- released key scancode is in the scancode register
keyrel r <= '0'; -- reset the key release flag
end 1if;
end if;
end 1if;

end process;
rdy <= rdy r; -- signal that a key scancode is ready

end Behavioral;

Once the VHDL code is entered and saved in the scancodereg.vhd file, you should check it for
syntax errors.

S linx - ISE - C:ATEMP\fpga_designs\design3\design3.ise - [scancodereg.vhd]

i File Edit View Project Source Process Window Help =& <]
DPEG S REX D A:PLPHEPR (A% B MO~k ;M @[SAORWDTH v
P QEEFF A MEUALAOD €= 2L 43R DN
e a
Sources for: | Implementation 2 —- Company: XESS Corp.]
design3 3 —- Engineer: Dave Vanden Bout
= £3 %35 1000-41:256 I -
‘- [l scancodereg - Behavioral (scanco 5 -- Create Date: 10:39:20 05/21/2008&
[—— Design Name: design3
T —— Module Name: scancodereq - Behawvioral
< | >] —— Project Name: de=ign3
EQSOUH::E“E Files |Snap5hc||® Liblarie| 89 —- Target Devices: B
— 10 —— Tool wversions:
Processes X 11 -- Description:
Processes for: scancodereg - Behavioral 1z
. [Add Existing Source 13 —— Dependencies:
] Create New Source 12 o
K 15 —— Rewvision:
I View Design Summary 16 -- Revision 0.01 - File Created
@ Design Ltilties 17 —- Additional Comments:
‘ﬁ‘ User Constraints 18 -
-0 Syrthesize - XST 19
@ View Synthesis Report 20
View RTL Schematic 21
[H] View Technology Schematic 22 H.all:
23 UNSIGNED.all;
a ' 24 -
t} Sere HRE el 25 ———— Uncomment the following library declaration if instantiating
E T3 Implement Design 26 ———— any Xilinx primitives in this code.
-2 Generate Programming File 27 -—-library UNISIM:
®- P Corfigure Target Device 28 ——use UNISIM.VComponents.all:
29
30 entity =scancodereg is=s a3
. e | >
7% Frocesses | E Design Summary | scancodereg vhd
>

1< |
Consale | @ Emors || 1 Wamings " &l Tel Shel || [Find in Files

CAPS |NUM | SCRL |Ln 1Col 1 | VHDL

Once any syntax errors are corrected, create a schematic symbol for the keyboard interface.
You will use that later in the top-level schematic for this project.

S Xilinx - ISE - C:\TEMP\fpga_designs\design3\design3.ise - [scancodereg.vhd] 9[i=(E3]
i File Edit View Project Source Process Window Help (=1 =]
DPEHS LiXREX B RiPLPH X PR (A% B MO i, N2 0 %[SAODRWDITH |+
P iFF A BEUHAALQOIEY TEL AR OR

I Sources 1 .
Sources for: | Implementation w 2 —— Company: XES5 Corp.
fﬂdesign3 3 —- Engineer: Dave Vanden EBout
= £ xc3s1000-41256 4 -
nﬁmSCancodereg-Behavioml (scancoc 5 —- Create Date: 10:38:20 05/21/2008
& —— Deszign Name: de=ign3
T —— Module NHame: scancodereg - Behawvioral
< b4 8 —— Project Name: de=sign3
B8 Source [u"_tlﬁles {5 Snapshe E“b’a“ 9 —- Target Devices:
10 —— Tool wversions:
I 11 —— Description:
Processes for: scancodereg - Behavioral ~ 12 -
M Add Existing Source 13 —— Dependencies:
1 Create New Source S
K 15 —— Revision:
L R 16 —— Rewvision 0.01 - File Created

T
= ‘ﬁ‘ Design Lttilities 17
v, Create Schematic Symbol
@ View Command Line Log File
@ View HDL Instantiation Templat 20

—— Additional Comments:

‘ﬁ‘ User Constraints 21
=P Synthesize - XST =
@ View Synthesis Report fz
. 2
|5_-g B S chanat s _ 25 ———— Uncomment the following library declaration if instantiating
[E View Technology Schematic 26 ———— any Xilinm primitives in thi=z code.
2@ Check Syntax 27 —-library UNISIM;
) Generate Post-Syrthesis Simulz 28 —-use UNISIM.VComponents.all:
P2 Implement Design 29
P) Generate Programmina File v 30 entity scancodereg is F
< < >
Processes
E_t ' Design Summary scancodereg.vhd
Architecture behavioral of Entity scancodereg is up to date. -~
Process "Check Syntax" completed successfully
»

i
5
o]
=
[
=

E| Console e Emors A Wamings @Tc:l Shell |94 Find in Files

CAPS |NUM | SCRL |Ln 1Cel 1 [VHDL

Creating the Lock&Key Module

Now we can design the lock&key VHDL module. Add a new VHDL source module called lock
and add the code shown in Listing 1.

The lock module follows the basic structure of almost all FSM’s | create. There is a
combinatorial process (lines 106-247) that computes the FSM’s next state given the current
state and inputs, and there is an update process (lines 251-277) that loads the computed
values into the registers on the next clock edge.

| also follow a register naming convention that appends _r to a signal or variable name if it
stores the current state, and _x is appended to the name if it stores the computed value that
will be loaded into the register on the next clock edge. This naming convention also allows me
to visually check my VHDL for errors because | know that only state registers ending with _x

should be on the left-hand side of the assignment operator (<=) in the combinatorial process
and registers with the _r register should only appear on the right-hand side because this
process computes the next state values using the current state values as operands. The
situation is reversed in the update process with the _r signals appearing on the left-hand side
of the assignment and _x signals on the right.

The lock&key FSM has 5 states (declared on lines 47-51) with the operations in each state
handled in a separate section of a case statement in the combinatorial process:

enterComb (lines 127-150): Upon entering this state, an L is displayed on the LED to indicate
the lock is locked. The value on the LED is incremented as each keypress is received from the
user (indicated by the rdy signal going high), and the scancode received from the
scancodereg module is compared against the next scancode of the active lock combination
stored in the activeComb array. If any key fails to match the corresponding entry in the
combination, then the match flag is cleared. Once the last key in the combination is checked
(as indicated by the index register that steps through the activeComb array), the FSM
transitions to the checkComb state.

checkComb (lines 154-164): The match flag is checked in this state. If the flag is set, then
the combination was entered correctly and the FSM moves to the unlocked state. Otherwise,
it returns to the enterComb state and waits for the user to enter another key sequence.

unlocked (lines 167-180): The LED displays a i in this state to indicate the lock is unlocked.
If the user presses a backspace key, the FSM transitions to the enterNewComb state so a
new combination can be entered. (Thus, the user must know the current combination before
he can enter a new combination.) Any other keypress relocks the lock and returns the FSM to
the enterComb state.

enterNewComb (lines 185-204): The LED displays an = upon entering this state to indicate
the combination is being replaced. Each keypress entered in this state is stored in the
newComb array and the value on the LED is incremented. After all the keys for a complete
combination are entered, the FSM goes to the verifyNewComb state.

verifyNewComb (lines 209-237): In this state, the user must re-type the new combination so it
can be compared against the contents of the newComb array. If any mismatch occurs, the
FSM immediately goes to the enterComb state and relocks the lock without changing the
combination. If the new combination is repeated correctly, the contents of the newComb array
are transferred to the activeComb array and the lock is relocked with the new combination.

The reset of the FSM and the actual state transitions is handled by the update process on
each rising edge of the master clock:

Lines 255-265: The FSM is synchronously reset if the reset input (rst) is high or if the power-
on reset flag (rst_i) is set. The power-on reset flag is initially set on line 67 so the FSM is
guaranteed to be reset whenever power is first applied to the FPGA. The FSM always resets to
the enterComb state and the lock is locked. If a power-on reset has occurred, then the active
combination is not defined so it must be loaded with a default combination (defined as the key
sequence “123456789” on lines 61-63). A reset caused by the reset input, however, will not
reload the reload the active combination so it will remain at whatever key sequence was set by
the user.

Lines 267-276: When the FSM is not being reset, then all the state registers are loaded with
their next values here.

There are a few other points to note about the lock module:

e The FSM requires a single clock cycle duration for the scancode ready signal. If the rdy
output from the keyboard interface module stayed high for more than a single clock
cycle on each key press, this would cause a transition between multiple states of the
FSM.

e The COMB_LENGTH generic parameter on line 32 can be set to any value between 1
and 9 to change the number of keys in the combination. The use of an array to store
the combination (lines 56-58) allows the module to resize itself automatically if you
decide to change the length of the combination.

o The VHDL synthesizer automatically generates the bit encodings for the FSM states on
lines 47-51. If you want to explicitly code the states, you can place lines such as the
following below the state register declaration on line 53:

attribute ENUM ENCODI NG STRI NG
attri bute ENUM ENCODI NG of | ockStateType:type is
" 00001 00010 00100 01000 10000";

Next, highlight the scancodereg module in the Sources pane (since this was the first
module added to the project, it is the top-level module by default), and then right-click
on the Synthesize process and select Properties from the pop-up menu:

=)
E-a—— . -
Processes for: lock - Behavioral » 54
] Add Bdsting Source 55 .
] Create New Source EE EE
E View Design Summany . ai
= ‘ﬁ' Design Liilities 5g e
3 Create Schematic Symbol 60 .
@ View Command Line Log File 61 Ty
@ View HDL Instantiation Templat 62 ca
‘ﬁ' User Constraints 63
BN . Synthesize - XST Al _
@ View Synthesis Iirt Run l
@] ViewRTLSchy _ Fern)
@ View Technolof € Rerun Al
P 2@ Check Syntax g, Stop
) Generate Post- Open Without Updating
€2 Implement Design Design Goals & Strategies...
P) Generste Programm %rtm -
4
|
@I: Frocesses))
i Design Sumn

-
COWONOOPRWN -

A A A
AR WN =

Then select User in the FSM Encoding Algorithm field:

ES Process Properties - HDL Options

Categary
Symthesis Options
}HQPLDSW“?FS e Property Name Value o
inx Specilic Uptions F5M Encoding Algorithm Auto w
Safe Implementation futo
Case Implementation Style One-Het B
Compact
FSM Style Sequertial
RAM Extraction Gray
RAM Style Johnson
ROM Extraction W
Speedl
ROM Style None | |
Property display level: Default
oK || Cance || Ao || Hep

Now your explicit state encodings will be used. You can check this by looking in the

synthesis report to see:

Optimizing FSM <XLXI 2/lockState r> on signal <lockState r[1l:5]>

with one-hot encoding.

State | Encoding
entercomb | 00001
checkcomb | 00010
unlocked | 00100
enternewcomb | 01000
verifynewcomb | 10000

-— Company:

-- Engineer:

-- Create Date: 09:36:57 06/03/2006
-- Design Name:

-- Module Name:

-- Project Name:
-- Target Devices:
-- Tool versions:
-- Description:

lock - Behavioral

-- Dependencies:

-— Revision:

-- Revision 0.01 - File Created
-— Additional Comments:

library IEEE;

use IEEE.STD LOGIC 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL;
use IEEE.STD LOGIC UNSIGNED.ALL;

-—--- Uncomment the following library declaration if instantiating
---- any Xilinx primitives in this code.

--library UNISIM;

--use UNISIM.VComponents.all;

entity lock is

Generic (
COMB_LENGTH : natural := 2 -- number of scancodes in a combination
):

Port (
rst : in STD LOGIC; -—- reset
clk : in STD LOGIC; -- master clock
rdy : in STD LOGIC; -- true when a new keystroke is available
sc : in STD LOGIC VECTOR (7 downto 0); —-— scancode for keystroke
led : out STD LOGIC VECTOR (6 downto 0) -- LED status indicators
)

end lock;

architecture Behavioral of lock is

-- State definitions for the FSM.
type lockStateType is (

enterComb, -- user enters keystrokes which are checked against stored comb.
checkComb, —-- check the entered keystrokes to see if they match the comb.
unlocked, -- user's keystrokes match combination, so unlock the lock
enterNewComb, —-— user enters a new combination
verifyNewComb -- user re-types the new combination to verify it
)

signal lockState r, lockState x: lockStateType; -- current and next FSM state

—-—- The key scancodes composing a combination are stored in an array.
type combinationType is ARRAY (0 to COMB LENGTH-1) of std logic vector (sc'range);

signal activeComb r, activeComb x : combinationType; -- active combination
signal newComb r, newComb x : combinationType; -- new combination

—-- The default combination is an array the size of the longest allowable

-- combination filled with the scancodes for the keys "1","2",...,"9".

type defaultCombinationType is ARRAY (0 to 8) of std logic vector(sc'range);
constant defaultComb : defaultCombinationType :=
(X"l6",X"le",X"26",X"25",X"2e",X"36",X"3d",X"3e",X"46") ,.

signal index r, index x : natural range COMB LENGTH-1 downto 0; -- comb. array index
signal match r, match x : std logic; -- true when user keystrokes = active comb.
signal rst i : std logic := '"l'; -- power-on reset flag

-- Scancode for the key that initiates the entry of a new combination.
constant NEW COMB KEY: std logic vector(sc'range) := "01100110"; -- backspace

-- Function that displays a hex digit on the 7-segment LED.
subtype ledOutputType is std logic vector (6 downto 0);
function ledDecoder (digit: natural) return ledOutputType is

begin
case digit is
when 0 => return "1110111"; -- 0
when 1 => return "0010010"; -—- 1
when 2 => return "1011101"; -— 2
when 3 => return "1011011"; -- 3
when 4 => return "0111010"; -- 4
when 5 => return "1101011"; -- 5
when 6 => return "1101111"; -- 06
when 7 => return "1010010"; -— 7
when 8 => return "1111111"; -- 8
when 9 => return "1111011"; -- 9

87

88

89

90

91

92

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157

when 10 => return "1111110"; -
when 11 => return "0101111"; -=
when 12 => return "0001101"; -
when 13 => return "0011111"; -=
when 14 => return "1101101"; -
when 15 => return "1101100"; -=
when others => return "1101101";

M EQ Q0

end case;
end ledDecoder;
-- 7-segment LED output for various conditions
constant LED LOCKED : ledOutputType := "0100101"; -- "L" - locked
constant LED UNLOCKED : ledOutputType := "0110111"; -- "U" - unlocked
constant LED ENTERNEWCOMB : ledOutputType := "0001100"; -- "r" - replace comb
constant LED VERIFYNEWCOMB : ledOutputType := "1100101"; -- "C" - check comb
begin
-- this process determines the next state given the current state and inputs
combinatorial: process(rdy,sc,lockState r,index r,match r,activeComb r,newComb r)
begin
-- set default values for outputs and the next states of the registers
led <= (others=>'0'); -- turn off all LEDs
match x <= match r; -- keep current value
index x <= index r; -- keep current value
lockState x <= lockState r; -- keep in current state
for i in 0 to COMB LENGTH-1 loop
—-- keep combinations unchanged
activeComb x (i) <= activeComb r(i);
newComb x (i) <= newComb_r(i);
end loop;

-- determine the next state and the outputs

case

wh

wh

lockState r is

FSM is in this state when the user is entering the combination

to unlock the lock. The index r register points to the location

of the scancode in the combination that is being compared to the

current scancode entered by the user.
en enterComb =>

-— Show an "L" on the 7-segment LED before the user has pressed any keys.
-- After that, indicate the number of keypresses received from the user.
if index r = 0 then

led <= LED LOCKED; -- show "L" on LED to indicate lock is locked
else
led <= ledDecoder (index r); -- index into comb. array = # of user keypresses
end if;
-- Wait until a new key scancode arrives.
if rdy = '1l' then

-- Clear the match flag if the current scancode fails to match the
-- current scancode in the combination.
if sc /= activeComb r(index r) then
match x <= '0"';
end if;
-- Increment the index if the complete combination hasn't been entered yet.
if index r /= COMB_LENGTH-1 then
index x <= index r + 1;
-- Otherwise, enough keys for a complete combination have been entered,
-- so see if it matches the active combination.
else
lockState x <= checkComb;
end if;
end if;

FSM checks the match flag in this state to see if the user entered the
correct combination.

en checkComb =>

-- Reset the index and match flag.

index x <= 0;

match x <= '1"';

158 -- If the match flag is still set, then all the user-entered scancodes

159 -- matched the active combination, so transition to the unlocked state.

160 if match r = '1' then

161 lockState x <= unlocked; -- keys match combination, so unlock the lock

162 else

163 lockState x <= enterComb; -- otherwise, wait for another attempt

164 end 1if;

165

166 -- The lock is unlocked when the FSM is in this state.

167 when unlocked =>

168 led <= LED UNLOCKED; -- show "U" on LED to indicate lock is unlocked

169 -— Wait until a new key scancode arrives.

170 if rdy = '1' then

171 -- After the active combination is entered, the user can hit the

172 -- backspace key to move to the state that allow entry of a new comb.

173 if sc = NEW COMB KEY then

174 lockState x <= enterNewComb;

175 -- Otherwise, any other key will re-lock the lock and return to the state
176 -- that checks for the active combination to be entered.

177 else

178 lockState x <= enterComb;

179 end 1if;

180 end if;

181

182 -- FSM is in this state when the user is entering a new combination

183 -- to replace the current active combination. The index r register points to
184 -- the location where the next scancode will be stored in the new combination.
185 when enterNewComb =>

186 -- Show an "r" on the 7-segment LED before the user has pressed any keys.
187 -- After that, indicate the number of keypresses received from the user.

188 if index r = 0 then

189 led <= LED_ENTERNEWCOMB; -- show "r" on LED to indicate comb. replacement
190 else

191 led <= ledDecoder (index r); -- index into comb. array = # of user keypresses
192 end 1if;

193 -— Wait until a new key scancode arrives.

194 if rdy = '1' then

195 newComb x(index r) <= sc; -- store current scancode into new combination array
196 -- Increment the index if the new combination isn't complete yet.

197 if index r /= COMB_LENGTH-1 then

198 index x <= index r + 1;

199 -— Otherwise, reset the index and get ready to verify the combination.

200 else

201 index x <= 0;

202 lockState x <= verifyNewComb;

203 end if;

204 end 1if;

205

206 -- FSM is in this state when the user is re-entering the new combination

207 -- to verify it against what was stored. The index r register points to

208 -— the location of the next scancode that will be compared in the new comb.
209 when verifyNewComb =>

210 -- Show a "C" on the 7-segment LED before the user has pressed any keys.

211 -- After that, indicate the number of keypresses received from the user.

212 if index r = 0 then

213 led <= LED VERIFYNEWCOMB; -- show "C" on LED to indicate check of new comb.
214 else

215 led <= ledDecoder (index r); -- index into comb. array = # of user keypresses
216 end 1if;

217 -— Wait until a new key scancode arrives.

218 if rdy = '1' then

219 -- Abort the operation as soon as a scancode does not match the new comb.
220 if sc /= newComb r(index r) then

221 index x <= 0; -- reset the index

222 lockState x <= enterComb; -- go wait for the user to enter the active comb.
223 else

224 -- Increment the index if the new comb. verification isn't complete yet.
225 if index r /= COMB_LENGTH-1 then

226 index x <= index r + 1;

227 -- Otherwise, the user has correctly re-entered the new comb. so overwrite

228 -- the active comb. with the new comb. and return to the locked state.

229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

else

for i in 0 to COMB LENGTH-1 loop
activeComb x (i) <= newComb r(i);

end loop;
index x <= 0;
lockState x <= enterComb;

end if;

end if;
end 1if;

-- Something wrong has happened if the FSM ever gets into this state, so
-- reset into the locked state.
when others =>

index x <= 0;
match x <= '1"';
lockstate x <= enterComb;

end case;
end process;

-- This process just updates the various state registers with their next values
-- as computed by the previous process. It also handles the reset of the FSM.
update: process(rst,clk)

begin

if rising edge(clk) then
-- Handle the reset input or the power-on reset.

if rst='1l' or rst i='l' then

rst i <= '0'; -- clear power-on reset
index r <= 0;
match_r <= '1"';
lockState r <= enterComb;
-- On power-on, initialize the active combination from the default value.
if rst i = '1l' then

for i in 0 to COMB LENGTH-1 loop

activeComb r (i) <= defaultComb (1)

end loop;

end 1f;

-- Otherwise, update all registers with their next values.
else

index r <= index x;

match r <= match x;

lockState r <= lockState x;

for i in 0 to COMB LENGTH-1 loop
activeComb r (i) <= activeComb x(i);
newComb r (i) <= newComb_ x(i);

end loop;

end if;
end if;
end process;

end Behavioral;

Once the VHDL for the lock module is entered, run a syntax check and generate a schematic
symbol as you did for the scancodereg module.

The VHDL description of the FSM can be useful for two reasons:

1.

The editing area of the State Editor window gets very cluttered for complicated FSMs.
You can use the State Editor to draw an initial, simplified version of your FSM and then
add the rest of your description directly to the VHDL file. You cannot automatically
back-annotate the additions to the VHDL file back into the State Editor, so the VHDL file
must be used as the master design file for the FSM after you do this.

If you are unsure how to write FSM descriptions using VHDL, you can create simple
FSMs in the State Editor and export them as VHDL to view the basic language
constructs that are used.

Creating the Top-Level Module

The top-level module of the combination lock is built by connecting the keyboard interface and
the lock&key modules together in a schematic. Right-click on the Sources pane and select New
Source... from the pop-up menu. Then create a new schematic named combLock as shown

below:

E= New Source Wizard - Select Source Type

BMM File

P VHDL Package
s VHOL Test Bench

. |P {CORE Generator & Architecture Wizard)

File name:

comblock]

Location:

CHATEMPYfpga_designs“design3

Add to project

< Back I Meaxd = ’}J ’ Cancel
LaX

Enter the following components and connections into the schematic editor window:

[y
(R o 50
scancodereg
[A
CLK %FG 3 rdy
rst
[~ [~ ;
[PEOLK o Lo psCik

[FSDATA ™

p=0ata scancodey 17

—

—

—

IBUF

HLXI

0(E:0)
UF

Note the following:

1. The main clock (CLK) enters the FPGA on a dedicated clock pin (because that is the
way it is connected on the XSA Board) so the input pad can connect directly to a
general clock buffer (BUFG). Using the BUFG ensures that the clock signal reaches all
the flip-flops in the design with minimal skew so they all change state at the same time.

2. The clock from the PS/2 keyboard (PSCLK) enters on a generic /O pin so it must go
through an input buffer (IBUF) before going through a BUFG.

3. The keyboard serial data signal (PSDATA) and the reset signal are standard, non-clock
inputs so they just connect to IBUFs.

4. The reset signal (RST_N) is sourced by an active-low DIP-switch button on the XSA
Board, so it passes through an inverter before going to the active-high reset inputs of
the scancodereg and lock modules.

5. An array of seven output buffers (OBUF) as was created as in the design example of
the previous chapter. The seven-bit led bus of the lock module connects to the inputs of
the output buffers, and the buffer outputs connect to the output pads.

Once the components are connected to each other and the I/O, run a design-rule check to
make sure there are no errors and then save the schematic. Then, make the schematic the
top-level module of the design by right-clicking it in the Sources pane and selecting Set as Top
Module from the pop-up menu.

[——
Sources for: | Implementation

'fj design3
- £ xc3s1000-4f 256

=8 By comblock (¢

. XX D Mew Source, .
pufa]
Add Source..

['ha] XLXI_2 -
Add Copy u:uf SOUrce. ..
@U‘ Open FET_ I~

Set as Top Module k
SmartGuide. ..

3 Mew Partition

=g Sour ([Files 5 Jete Paren Ly

B L) Partition Force]

I Processes Remave EOATA —

Processes for: comblLoc

[Add BEsting

[Create New 2 Toggle Paths
‘$‘ Design Lkiitie| [#] Properties...

Anwe oy | ikrary

Constraining the Design

Now you need to assign pins to the inputs and outputs, either by using PACE or by entering the
pin assignments directly into the combLock.ucf constraints file. The appropriate pin assignments
for each model of XSA Board are shown below. The rst_n input is driven by DIP-switch SW1-1
on the XSA Board. The clk input is assigned to a dedicated clock input on each FPGA to
which a 50 MHz clock signal is applied. The psclk and psdata inputs are attached to the
equivalent pins on the PS/2 port. The seven-segment LED pin assignments are the same as in
the previous designs.

I/O Signal XSA-50 XSA-100 XSA-200 . XSA-351000
rst n P54 P54 P11 K4
clk P88 P88 B8 P8
psclk P94 P94 F4 B16
psdata P93 P93 E1 E13
sO P67 P67 N14 M6
s1 P39 P39 D14 M11
s2 P62 P62 N16 N6
s3 P60 P60 M16 R7
s4 P46 P46 F15 P10
s5 P57 P57 J16 T7
s6 P49 P49 G16 R10

Implementing the Design and Generating the Bitstream

Once you have specified the correct pin assignments, just double-click the Generate Programming
File in the Process pane. Unfortunately, instead of a bitstream, you’ll probably get an error like
this:

ERROR: Pl ace: 1018 - A cl ock | 0B/ cl ock conmponent pair have been found
that are not placed at an optimal clock |10B/clock site pair. The clock
conponent <XLXI 5> is placed at site <BUFGVUX5>. The | O conponent
<PSCLK> is placed at site <B16>. This will not allow the use of the
fast path between the 10 and the Cock buffer. If this sub optinal
condition is acceptable for this design, you may use the

CLOCK _DEDI CATED ROUTE constraint in the .ucf file to denote this
nmessage to a WARNI NG and al | ow your design to continue. However, the
use of this override is highly discouraged as it may | ead to very poor
timng results. It is reconmended that this error condition be
corrected in the design. Alist of all the COW.PINs used in this
clock placenment rule is listed bel ow. These exanples can be used
directly in the .ucf file to override this clock rule.

< NET "PSCLK"' CLOCK_DEDI CATED_ROUTE = FALSE, >

The Xilinx software tends to balk at using general-purpose inputs as clock sources for registers,
and that’s exactly what is being done with the clock from the PS/2 keyboard. The PS/2 clock
has a very low frequency and it runs asynchronously with respect to the main logic clock, so it
doesn’t really matter that the PS/2 clock routing is sub-optimal. You can get around this error
by placing the constraint listed above (strip off the ‘<’ and ‘>’ delimiters) into the comblock.ucf

file. Then you can re-run the synthesis and implementation processes to get an FPGA
bitstream in the comblock.bit file.

Testing the Combination Lock

Attach a PS/2 keyboard to the six-pin mini-DIN socket at the bottom of the XSA Board. Then
use GXSLOAD to download the bitstream to the XSA Board. Make sure DIP-switch SW1-1 is
in the OFF position so the rst_n input is high. Now the combination lock should be ready to
respond to key presses. A sequence of key presses and the results are shown below:

LED

New State... This means...

displays...
The combination lock is locked and is
None enterComb waiting for the default combination to be
entered from the keyboard.
The first key of the default combination
1 enterComb
was entered.
° checkComb=>» | The second key of the default combination
unlocked was entered. The lock is now unlocked
backspace enterNewComb The backspace |r_1|t|af[es th_e replacement of
the current combination with a new one.
q E enterNewComb | The first key of the new was entered.
The second key of the new combination
w verifyNewComb | was entered. Now the combination must
be re-typed to check it.
q verifyNewComb The first key of the combination was re-
typed correctly.
The second key of the combination was
entered correctly and the lock is now
w enterComb o L
waiting for the new combination to be
entered.
y enterComb The first key of the previous combination
was entered.

The second key of the previous
combination was entered and the lock

enterComb remains locked because this combination
is no longer active.
The first key of the new combination was
enterComb
entered.
checkComb=>» | The second key of the new combination

unlocked

was entered. The lock is now unlocked.

Going Further...

OK! You made it to the end! You have scratched the surface of programmable logic design,
but how do you learn even more? Here are a few easy things to do:

= Select Help=>» Software Manuals. You will be presented with an Adobe Acrobat document that
lists all the manuals for the ISE software. This includes a 300-page set of guidelines on
synthesis and simulation techniques for FPGA designs.

= Select Help=>Xilinx on the Web=>Xilinx Application Notes. This will take you to a large set of
interesting designs that have been done using Xilinx FPGAs.

» Get Essential VHDL (ISBN:0-9669590-0-0) or The Designer's Guide to VHDL (ISBN:1-
55860-270-4) to learn more about VHDL for logic design.

» Read the comp.arch.fpga newsgroup for helpful questions and answers about
programmable logic design.

	What This Is and Is Not
	FPGA Programming
	Installing ISE
	Getting ISE
	Installing ISE
	Getting XSTOOLs
	Installing XSTOOLs
	Getting the Design Examples

	Our First Design
	An LED Decoder
	Starting ISE Project Navigator
	Describing Your Design With VHDL
	Checking the VHDL Syntax
	Fixing VHDL Errors
	Synthesizing the Logic circuitry for Your Design
	Implementing the Logic Circuitry in the FPGA
	Checking the Implementation
	Assigning Pins with Constraints
	Viewing the Chip
	Generating the Bitstream
	Downloading the Bitstream
	Testing the Circuit

	Hierarchical Design
	A Displayable Counter
	Starting a New Design
	Adding a Counter
	Tying Them Together
	Constraining the Design
	Synthesizing and Implementing the Design
	Checking the Implementation
	Checking the Timing
	Generating the Bitstream
	Downloading the Bitstream
	Testing the Circuit

	State Machine Design
	Finite State Machines
	Starting the Combination Lock Project
	Creating the Keyboard Interface Module
	Creating the Lock&Key Module
	Creating the Top-Level Module
	Constraining the Design
	Implementing the Design and Generating the Bitstream
	Testing the Combination Lock

	Going Further…

