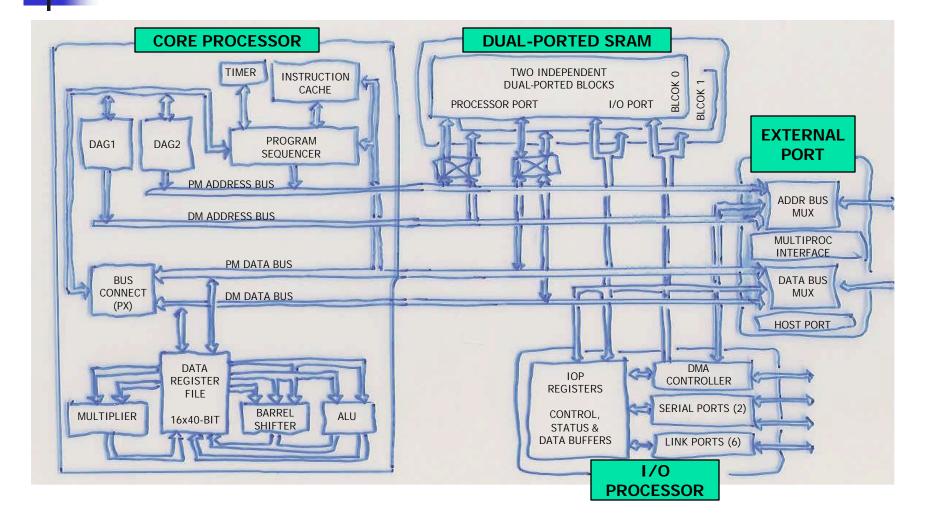
Analog Devices SHARC

by Russell GreenspanCS433 Spring 2005

Overview

- Processor History
- Physical packaging
- Data paths, register files, computational units
- Pipelining, timing information
- Memory
- Instruction Set Architecture (ISA)
- Applications targeted
- Systems employing the SHARC

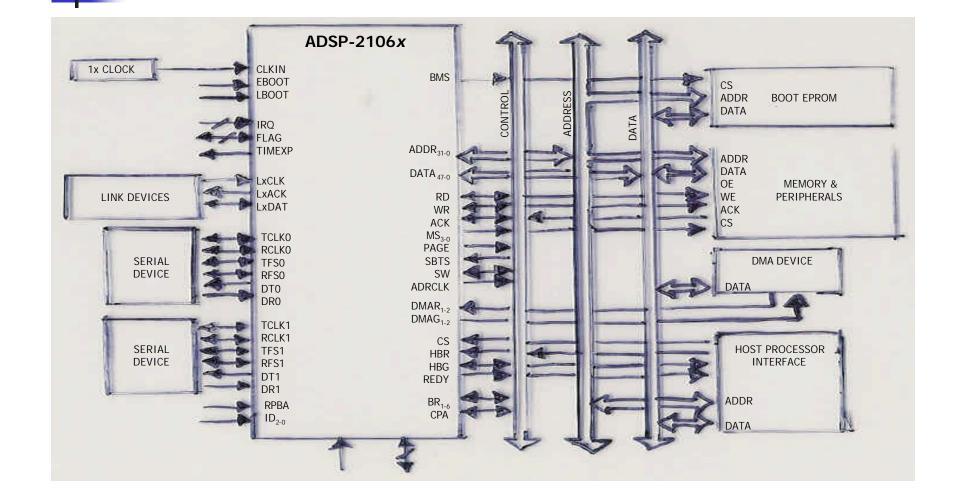
SHARC Features


• Super Harvard ARChitecture

- Unique CISC architecture allows simultaneous fetch of two operands and an instruction in one cycle
- Combines high performance DSP core with integrated, on-chip system features
 - Dual-ported (processor and I/O) SRAM
 - DMA Controller
- Selective Instruction Cache
 - Cache only those instructions whose fetches conflict with program memory data accesses

SHARC Processor History

- ADSP-2106*x* (2000)
 - Single computational units based on predecessor ADSP-2100 Family
 - 40 MHz core
- ADSP-2116*x* (2001)
 - SIMD (Single-Issue Multiple-Data) dual computational unit architecture added
 - 150-200 MHz core, 1-2 MB RAM
- ADSP-2126x, ADSP-2136x (2003 Future)
 - Integrated audio-centric peripherals (128-140db Sample Rate Conversion) added
 - 333-400 MHz core, 2-3 MB RAM


ADSP-2106x Overview

ADSP-2106x Core

- Computational Units
 - ALU, Multiplier, and Shifter can all perform independent operations in a single cycle
- Register File
 - Two sets (primary and alternate) of 16 registers, each 40-bits wide
- Program Sequencer and Data Address Generators
 - Allows computational units to operate independent of instruction fetch and program counter increment

ADSP-2106x Packaging

ADSP-2106x Key Pins

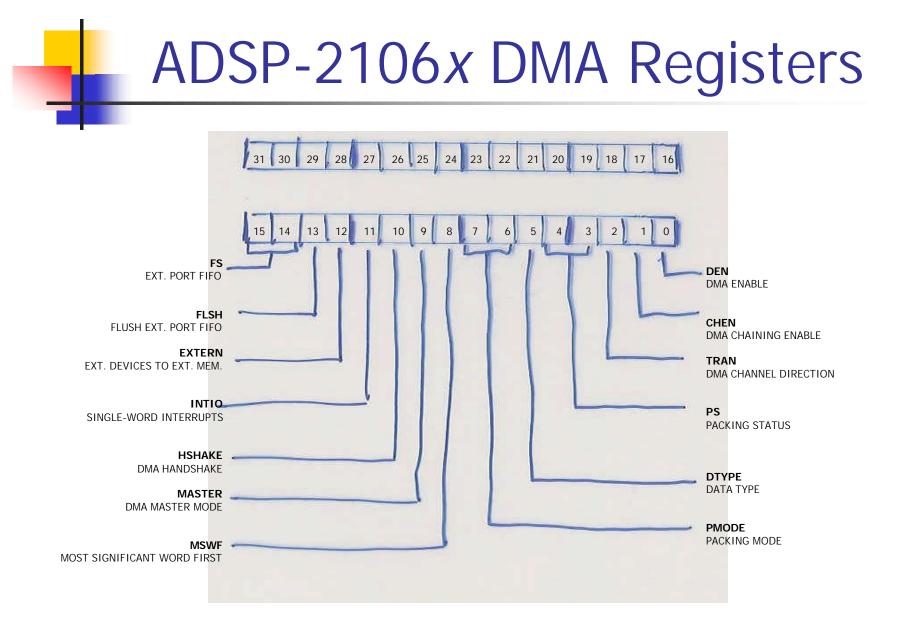
PIN	FUNCTION	NOTE
ADDR ₃₁₋₀	External Bus Address	
DATA ₄₇₋₀	External Bus Data	
MS ₃₋₀	Memory Select Lines	Asserted (low) as chip selects memory bank
PAGE	DRAM Page Boundary	Asserted if a page boundary is crossed
DMAR(1-2)	DMA Request 1 and 2	
IRQ ₂₋₀	Interrupt Request Lines	Edge-triggered or level-sensitive

ADSP-2106x Registers

- Data Registers
 - R15 R0 (fixed-point), F15 F0 (floating-point)
- Program Sequencer
 - PC (program counter), PCSTKP (PC stack pointer), FADDR (fetch address), etc.
- Data Address Generator
 - I7 I0 (DAG1 index), M7 M0 (DAG1 modify)
 - L7 L0 (DAG1 length), B7 B0 (DAG1 base)

Bus Exchange, Timer, and System Registers

ADSP-2106x Buses


- Address
 - Program Memory Address 24 bits wide
 - Data Memory Address 32 bits wide
- Data
 - Program Memory Data 48 bits wide
 - Stores instructions and data for dual-fetches
 - Data Memory Data 40 bits wide
 - Stores data operands
- One PM Data bus and/or one DM Data bus register file access per cycle

ADSP-2106x I/O

- Serial Ports
 - Operate at clock rate of processor
- DMA
 - Port data can be automatically transferred to and from on-chip memory

ADSP-2106x DMA

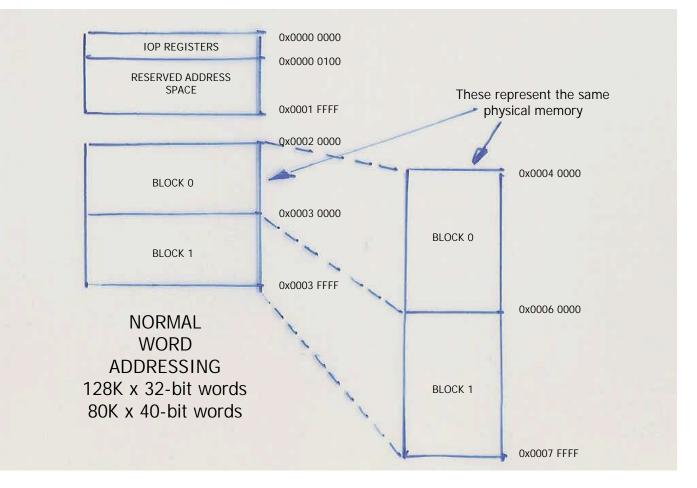
- I/O port block transfers (link/serial)
- External memory block transfers
- DMA Channel setup by writing memory buffer parameters to DMA parameter registers
 - Starting Address for Buffer
 - Address Modifier
 - Word Count
- Interrupt generated when transfer completes (i.e. Word Count = 0)

ADSP-2106x Pipelining

- Three phases
 - Fetch
 - Read from cache or program memory
 - Decode
 - Generate conditions for instruction
 - Execute
 - Operations specified by instruction completed

ADSP-2106*x* Branching and Pipelining

- Branches
 - Delayed
 - Two instructions after branch are executed
 - Non-delayed
 - Program sequencer suppresses instruction execution for next two instructions


n + 2 n + 1	j n + 2	<i>j</i> + 1 <i>j</i>	j + 2 j + 1						
<i>n</i> + 1	n + 2	j	<i>j</i> + 1						
		-	-						
n	<i>no-op n</i> + 1	<i>no-op n</i> + 2	j						

ADSP-2106x Memory

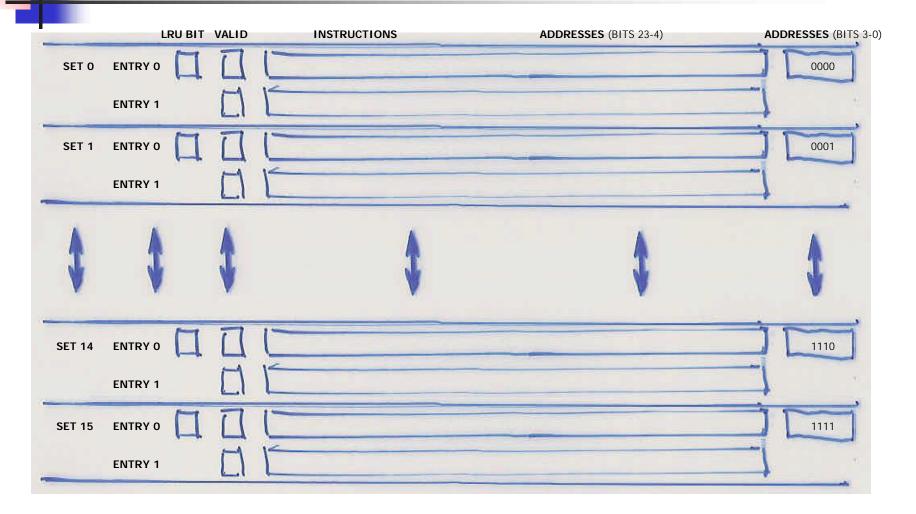
On-Chip SRAM	ADSP-21060	ADSP-21062	ADSP-21061
Total Size	500KB	250KB	125KB

- On-chip support for:
 - 48-bit instructions (and 40-bit extended precision floating-point data)
 - 32-bit floating-point data
 - 16-bit short word data
- Off-chip memory up to 4 GB

ADSP-2106x Memory (2)

ADSP-2106x Memory (3)

- Memory divided into blocks
- Dual-ported (PM and DM bus share one port, I/O bus uses the other)
 - Allows independent access by processor core and I/O processor
 - Each block can be accessed by both in every cycle
- Typical DSP applications (digital filters, FFTs, etc.) access two operands at once, such as a filter coefficient and a data sample, so allowing single-cycle execution is a must


ADSP-2106x Shadow Write

- Due to need for high-speed operations, memory writes to a two-deep FIFO
- On write, data in FIFO from previous write is loaded to memory and new data enters FIFO
- Reads of last two written locations are intercepted and re-routed to the FIFO

ADSP-2106x Instruction Cache

- Sequencer checks instruction cache on every program memory data access
- Allows PM bus to be used for data fetches instead of being tied up with an instruction fetch
- When fetch conflict first occurs, instruction is cached to prevent the same delay from happening again

ADSP-2106x Instruction Cache (2)

ADSP-2106x ISA Overview

- 24 operations, although some have more than one syntactical form
- Instruction Types
 - Compute and Move
 - Compute operation in parallel with data moves or index register modify
 - Program Flow Control
 - Branch, Call, Return, Loop
 - Immediate Data Move
 - Operand or addressing immediate fields
 - Miscellaneous
 - Bit Modify and Test, No-op, etc.

ADSP-2106*x* ISA Compute and Move

Instructions follow the format *IF condition op1, op2;*

IF and condition are optional

op1 is an optional compute instruction

op2 is an optional data move instruction

ADSP-2106*x* ISA Compute Examples

- Single function
 - -F6 = (F2 + F3);
- Multi-function
 - Distinct parallel operations supported
 - Parallel computations and data transfers

■ R1 = R2 * R6, M4 = R0;

Simultaneous multiplier and ALU operations

■ R1 = R2 * R6, F6 = F2 + F3;

ADSP-2106*x* ISA Single function Compute

22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
0	С	U	OPCODE							R	N		RX				RY					

- CU specifies
 - 00 ALU
 - 01 Multiplier
 - 02 Shifter
- OPCODE indicates operation type (add, subtract, etc.)
- RN specifies result register
- RX and RY specify operand registers

ADSP-2106*x* ISA Multi-function Compute

Parallel ALU and Multiplier operations

22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	б	5	4	3	2	1	0
1		(OPC	ODE	1			RM			RA				RXM		RYM		RXA		RYA	

- Registers restricted to particular sets
 - Multiplier X: R3 R0, Y: R7 R4
 - ALU X: R11 R8, Y: R15 R12
- OPCODE specifies ALU op, for example:
 - 000100: Rm = R3-0 * R7-4, Ra = R11-8 + R15-12;
 - 0111111: Rm = R3-0 * R7-4, Ra = MIN(R11-8, R15-12);

ADSP-2106*x* ISA Program Flow Control

Instructions follow the format

IF condition JUMP/CALL, ELSE op2;

- IF, condition, ELSE are optional
- JUMP/CALL is a JUMP or CALL instruction
- op2 is an optional compute instruction

ADSP-2106*x* ISA Program Flow Control (2)

Instructions follow the format

DO <addr24> UNTIL termination;

- No optional fields
- <addr24> is the loop start address

termination is the loop ending condition to check after each iteration ADSP-2106*x* ISA Program Flow Examples

Conditional Execution

IF GT R1 = R2 * R6;
IF NE JUMP label2;

Also used for Call/Return

main: CALL routine;
routine: ...

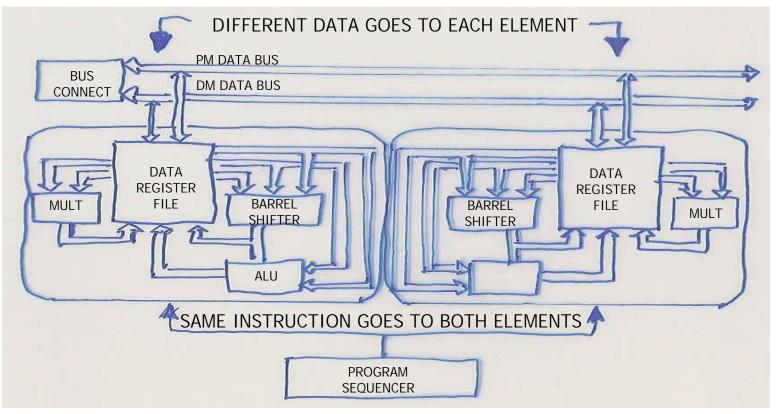
RTS; /*return to main*/

ADSP-2106*x* ISA Immediate Data Move

Instructions follow the format

ureg = <data32>; DM(<data32>, Ia) = ureg; PM(<data24>, Ia) = ureg;

Ia is an optional indirect addressor


- DM is a 32-bit data memory address
- PM is a 24-bit program memory address

ADSP-2106*x* ISA Addressing Examples

- Direct
 - JUMP <data24>;
- Relative to Program Counter
 - JUMP (PC, <data24>);
- Register Indirect (using DAG registers)
 - Pre-Modify (modification pre-address calculation)
 JUMP (M0, I0);
 - Post-Modify (modification post-address calculation)
 - JUMP (I0, M0);

ADSP-2116x Overview

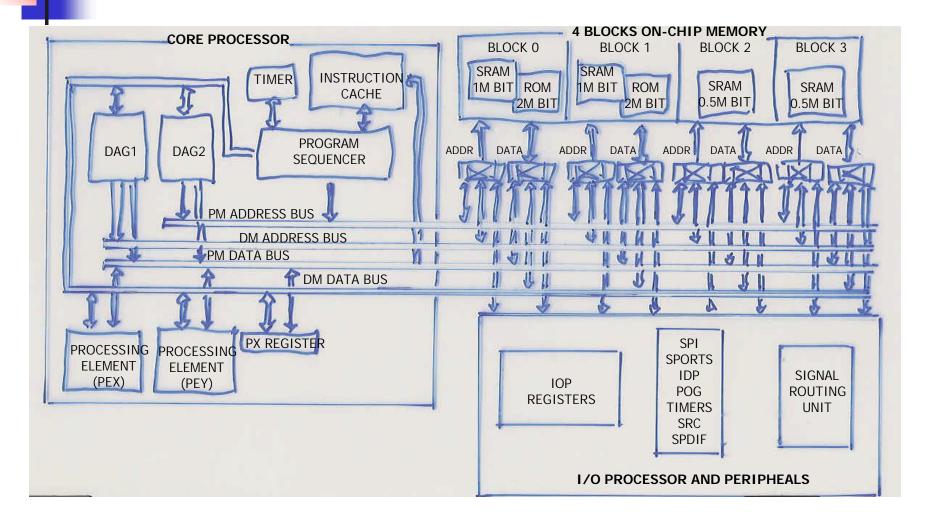
 Extension of 2106x, adding 150Mhz core and SIMD (Single-Issue Multiple-Data) support via dual hardware

ADSP-2116x SIMD Engine

- Dual hardware allows same instruction to be executed across different data
 - 2 ALUs, multipliers, shifters, register files
 - Two data values transferred with each memory or register file access
 - Very effective for stereo channel processing
- Can effectively double performance over similar algorithms running on ADSP-2106x processors

ADSP-2116x SIMD Engine (2)

- Enabled/disabled via MODE1 bit
 - When disabled, processor simply acts in SISD mode
- Program sequencer must be aware of status flags set by each set of hardware elements
- Conditional compute operations can be specified on both, either, or neither hardware set
- Conditional branches and loops executed by AND'ing the condition tests on both hardware sets


ADSP-2116x SIMD Engine (3)

Instruction	Mode	Transfer 1	Transfer 2
Rx = Ry;	SISD	Rx loaded from Ry	n/a
	SIMD	Rx loaded from Ry	Sx loaded from Sy
Sx = Sy;	SISD	Sx loaded from Sy	n/a
	SIMD	Sx loaded from Sy	Rx loaded from Ry
Rx = Sy;	SISD	Rx loaded from Sy	n/a
	SIMD	Rx loaded from Sy	Sx loaded from Ry
Sx = Ry;	SISD	Sx loaded from Ry	n/a
	SIMD	Sx loaded from Ry	Rx loaded from Sy

ADSP-2126x Overview

- Direct extension of 2116x, instructions are fully backward compatible
- Core increased to 150-200 MHz w/ 1MB SRAM
- Data buses increased from 32 to 64 bits
- Synchronous, independent serial ports increased from 2 to 6
- ROM-based security
 - Prevents piracy of code and algorithms
 - Prevents peripheral devices from reading on-chip memory

ADSP-2136x Overview

ADSP-2136x Overview (2)

- Direct extension of 2126x, instructions are fully backward compatible
- On-chip memory expanded from 2 to 4 blocks
- Digital Audio Interface (DAI) set of audio peripherals
 - Interrupt controller, interface data port, signal routing unit, clock generators, and timers
 - Different units contain S/PDIF receiver/transmitter, sample rate converters, or DTCP encrypting engine

SHARC Benchmarks

Algorithm benchmarks supplied by manufacturer:

	2106 <i>x</i>	2116 <i>x</i>	2126 <i>x</i>	2136 <i>x</i>
Clock Cycle	66 MHz	100 MHz	200 MHz	333 MHz
Instruction Cycle Time	15 ns	10 ns	6.67 ns	3 ns
MFLOPS Sustained	132 MFLOPS	400 MFLOPS	600 MFLOPS	1332 MFLOPS
MFLOPS Peak	198 MFLOPS	600 MFLOPS	900 MFLOPS	1998 MFLOPS
FIR Filter (per tap)	15 ns	5 ns	2.5 ns	1.5 ns
IIR Filter (per biquad)	61 ns	20 ns	10 ns	6 ns
Divide (y/x)	91 ns	30 ns	20 ns	9 ns

Applications Targeted

- SHARC designed to
 - Simplify Development
 - Speed time to Market
 - Reduce Product Costs
- Product targeted
 - A/V Receivers
 - 7.1 Surround Sound Decoding
 - Mixing Consoles
 - Digital Synthesizers
 - Automobiles

Systems Employing the SHARC

- SRS Circle Surround II
- Melody (w/ Auto Room Tuner)
- Metric Halo's Portable Pro Audio Hub
- Alacron FT-P5

SHARC in SRS Circle Surround II

- Full multi-channel surround sound from simple right/left stereo sound
- Encoding can be transmitted over standard stereo medium (broadcast television, radio, etc.) and maintains full backward compatibility

SHARC in SRS Circle Surround II (2)

- Output from each source is combined in constant phase filter banks and encoded in quadrature to prevent signal cancellation
- "Positional bias generator" analyzes ratios between left and right surround signals which multipliers then apply to the opposing left or right output
- Decoder uses this level imbalance to direct the surround information to the correct output

SHARC Melody

- "Optimized Surround Sound for the Mass Market"
- Core of high-fidelity audio decoders in Denon, Bose, and Kenwood products
- Auto Room Tuner (ART) integrated software simplifies setup of complex audio systems

SHARC Melody ART

- Automatically measures and corrects multi-channel sound system for room's acoustics
- Corrects system deficiencies
- For each speaker, ART calculates:
 - Sound pressure level (SPL)
 - Distance of each speaker from listener
 - Frequency response

SHARC in Metric Halo's Portable Pro Audio Hub

- Portable FireWire-based recording device, used in live recordings applications by motion pictures and major recording artists like "No Doubt" and "Dave Mathews Band"
- Serial ports used to interface to digital and mixed-signal peripheral devices
- Initially implemented on SHARC ADSP-2106x, later upgraded to ADSP-2126x
- Future hybrid implementation will use a ADSP-2106x for FireWire processing coupled with a ADSP-2126x for audio processing

SHARC in Alacron FT-P5

- COTS (Commercial Off-The-Shelf) system for use in "distributed, compute intensive, high data rate applications" in commercial and military industries
- Supports 1 to 96 ADSP-2106x processors
- Makes extensive use of SHARC's DMA through external PMC interface, supporting full-duplex communication in excess of 1 GB/sec
 - In-cabinet SAN clusters
 - Compute nodes in distributed systems

SHARC vs. RISC Processors

- RISC is...
 - Less costly to design, test, and manufacture, since processors are less specialized
- But...
 - Parallel (stereo) computation requires two or more interconnected processors accessing shared memory
 - Less performance

Conclusion

- SHARC offers great deal of computational power, with on-chip SRAM and SIMD architecture
- Variety of applications (especially audio processing) exploit it

Citations

Processor details taken from product manuals and descriptions at http://www.analog.com