ADSP-2106x SHARC® Processor
User’s Manual

Revision 2.1, March 2004

Part Number
82-000795-03

Analog Devices, Inc.

One Technology Way ANALOG
Norwood, Mass. 02062-9106 DEVICES

Copyright Information

© 2004 Analog Devices, Inc., ALL RIGHTS RESERVED. This
document may not be reproduced in any form without prior, express
written consent from Analog Devices, Inc.

Printed in the USA.
Disclaimer

Analog Devices, Inc. reserves the right to change this product without
prior notice. Information furnished by Analog Devices is believed to be
accurate and reliable. However, no responsibility is assumed by Analog
Devices for its use; nor for any infringement of patents or other rights of
third parties which may result from its use. No license is granted by
implication or otherwise under the patent rights of Analog Devices, Inc.

Trademark and Service Mark Notice

The Analog Devices logo, EZ-ICE, EZ-LAB, SHARC, and the SHARC

logo are registered trademarks of Analog Devices, Inc.

All other brand and product names are trademarks or service marks of
their respective owners.

Errata Correction Notice

This revision is published to incorporate corrections to errata in the
Second Edition (May 1997). Please refer to Appendix H for more
information.

Contents

[CHAPTER 1 INTRODUCTION|

L1 OVERVIEW wooiiiiii i 1-1
12 ADSP-21000 FAMILY FEATURES & BENEFITScccccoviiiriiireireinireneseneiens 1-5
121 System-Level Enhancements

122 Why Floating-Point DSP?ccoveriininiienieneeenes

1.3 ADSP-2106X ARCHITECTURE

131 COME PIOCESSO ...vvveiiiiieiet sttt

1311 COMPULRLION UNIES ..o

1312 Data REQISIEr File ... -
1313 Program Sequencer & Data Address GENeratorsooeveeeneeneneenineenss 19
13.14 Instruction Cache 1-10
1315 Interrupts............... 1-10
1316 THME 1o ...1-10
1317 COrE PrOCESSON BUSES ...ttt 1-10
13.1.8 Internal Data TraNSTErSc.ceviirrieiririeireeeee s 1-11
13.19 Context Switching

1.3.1.10 INSEIUCHION SEL ..ot s
132 Dual-Ported Internal MEMOIYcvuieiriirieneieeine e 1-12
133 External Memory & Peripherals INterface ..., 1-13
134 HOSt Processor INTErfacecoeveeieeriirineirience s 1-13
135 MUILIPIOCESSING ..t 1-14
136 /0 Processor

136.1 Serial Ports

13.6.2 LINK POIS ..t
1.3.6.3 DMA CONIOIET ..o
1364 BOOING ..ttt

1.4 DEVELOPMENT TOOLSc.ccvivriririrerrieneisiessissiseisnis

15 MESH MULTIPROCESSING

1.6 ADDITIONAL LITERATURE

CHAPTER 2 COMPUTATION UNITS

2.1 OVERVIEW ..o -
2.2 IEEE FLOATING-POINT OPERATIONS

22.1 Extended Floating-Point PreCisionccoererienieninnesieseeeiee e -
222 Short Word Floating-Point FOrMALcoceerinnirreneeeeeseeseeseens -
223 Floating-Point EXCEPHIONSccuevrieiiieeieirieireireis st -
2.3 FIXED-POINT OPERATIONS -
24 ROUNDING ...coootiititet ettt -

2.5
251
252
2521
2522
2523
253
2531
2532
2533
2534
2535
25.3.6
25.3.7
25338
2539
254
2.6
26.1
2.6.2
2621
2.6.3
2631
2.6.3.2
2633
2.6.4
2641
2.6.4.2
265
2651
2.6.5.2
2653
2654
2.6.6
2.7
271
272
213
21731
2132
2.7.3.3
274

ALU -

ALU Operationc.ccoeeeveenineerreenenenns
ALU Operating Modescccoeverreenernennes
Saturation Mode ..o
Floating-Point Rounding Modes
Floating-Point Rounding Boundary
ALU Status Flagscccoeveninrreneeineenins -
ALU ZEI0 FIAG (AZ) 1.ttt -
ALU Underflow Flag (AZ, AUS) ..o -
ALU Negative Flag (AN)cccoveererineene
ALU Overflow Flag (AV, AOS, AVS)
ALU Fixed-Point Carry Flag (AC) -
ALU SigN FIag (AS)ceeeeeeieerieireeee st eeees -
ALU INVALI FIAG (AD) it -
ALU Floating-Point Flag (AF)
Compare ACCUMUIALION ..o
ALU Instruction SUMMaryccccoevevreens

MULTIPLIER ..ooii s -

MUItIPlIEr OPEIALIONcvvvrircircee e -
Fixed-Point RESUIScoveeviiiiriiniriinn,
MR REJISEIScvvvrvririeieeiciicis
Fixed-Point Operations
Clear MR REGISIETc..cvrieriireiieeieieei st -
ROUNA MR REJISET ... -
Saturate MR Register On Overflow
Floating-Point Operating Modes
Floating-Point Rounding Modes
Floating-Point Rounding Boundary
MUItIplier SEALUS FIAGS ... -
Multiplier Underflow Flag (MU)
Multiplier Negative Flag (MN)ccc.....
Multiplier Overflow Flag (MV)ccccovvvinnn.
Multiplier INValid FIag (M)c.eviviiesssssesessenen s -
Multiplier INSErUCHON SUMMAIYcuieiiierieiiesisseeene -

SHIFTER ..ot

Shifter Operationcccoevevererrerieierierenne,

Bit Field Deposit & Extract Instructions

Shifter SEAtUS FIAGSvvvvviereereeciciei e -
Shifter Zero FIAg (SZ)c.vveeerinirinsisissssseee e -
Shifter Overflow Flag (SV)
Shifter Sign Flag (SS)cvvvvvrvinininiennn,

Shifter INSrUCHON SUMMAYc..cvucveiiireieieeresesese s -

2.8 MULTIFUNCTION COMPUTATIONS ..ot 2-26
2.9 REGISTER FILE ...ttt 2-27
29.1 Alternate (Secondary) REGISIErS ..o 2-28
[CHAPTER 3 PROGRAM SEQUENCING |

31 OVERVIEW ..ot -
311 INSErUCtION CYCIE ...oveeccc s

312 Program Sequencer Architecture

3121 Program Sequencer Registers & System Registers

32 PROGRAM SEQUENCER OPERATIONSccccovriiiiiiiieneinsiseinsiees

321 Sequential INSrUCHION FIOW ... -
3.22 Program Memory Data ACCESSEScccveurererereerenen.

323 BIanChescoceveveriiciceessessinis

3.24 LOOPS ..o

3.3 CONDITIONAL INSTRUCTION EXECUTION

34 BRANCHES (CALL, JUMP, RTS, RTI) oo

34.1 Delayed & Nondelayed Branchesc.ccccocvneuninee.

342 PC SEACKvvvvevevcrcrce s

35 LOOPS (DO UNTIL) ot -
35.1 ReSHrCtions & SNOI LOOPSvverrriiieiiirieirieseie e -
3511 General RESHICHONS ..o -
35.1.2 CouNter-Based LOOPScueuereriieiieinieereieeeiseee st

35.13 Non-Counter-Based Loops

35.2 Loop Address Stackccccuerrenieenes

353 Loop Counters AN SEACKouvevieerieiriecreese e -
3531 CURLCNTR

3532 LONTR ot
3.6 INTERRUPTS ..ot -
3.6.1 INEErTUPE LAENCY ...

3.6.2 Interrupt Vector Table

3.6.3 Interrupt Latch Register (IRPTL)c.ovcrireresceeie e -
3.6.4 INEEITUPE PHIOITEY ... -
3.6.5 Interrupt Masking & Controlc.cccevenriencnneininnes

3.6.5.1 Interrupt Mask Register (IMASK)

3.6.5.2 Interrupt Nesting & IMASKPc.oiirirneres e -
3.6.6 Status Stack Save & RESIONE ... -
3.6.7 SOFWAIE INEEITUPLScvveiiee et -
3.6.8 Clearing The Current Interrupt FOr REUSEcveuverienierineerieeeeeeeseiens -
3.6.9 External Interrupt TIming & SENSIIVILYcvvevrierrerienereeeseeeeeeens -

Vi

3.6.9.1 Asynchronous External INterruptSccoeeveecereeenesneeeeesersseeseens 3-32
3.6.10 Multiprocessor Vector Interrupts (VIRPT) ... 3-32
BT TIMER ottt -
371 Timer Enable/Disable

3.7.2 TImer INterruptS ..o

3.73 TIMET REQISIEIScvv vttt -
3.8 STACK FLAGS ..ottt -
39 IDLE & IDLEL6eroveeiriieiieeieieenns

3.10 INSTRUCTION CACHE

3.10.1 Cache ArChIECIUIEceieeieececeeeese e -
3.10.2 CaChe EffiCIBNCY ..vveevrieeercirireirciniiei et -
3.10.3 Cache Disable & CaChe FrEEzZe..........cooveuiirneerieirieneeeeeeese e 3-41
[CHAPTER 4 DATA ADDRESSING |

A1 OVERVIEW ..ottt bbbt -
4.2 DAG REGISTERS ...ttt -
42.1 Alternate DAG REQISIEIScceviieieirerireiseesceisie et -
4.3 DAG OPERATIONoevuieieriieeeiineisesneiesseierssseeenns

43.1 Address Output & Modification
43.1.1 DAG MOdify INSEUCHONSvcviciiciceieieisee e -
43.1.2 Immediate MOGIfIEFScuovueereeieierieire s -
4.3.2 Circular Buffer AdAreSSiNgcevveerirereinieirinineiniesceeseseeesessessse e -
4321 Circular BUffer OPerationcccereeririeniieiniieineeene e -
4322 Circular BUffer REQISLEISc.rueireeririereiniieirieineeie e -
43.2.3 Circular Buffer OVerflow INEITUPLSc.cueveereeireirieseeree s -
433 BIt-REVEISAL ...t -
433.1 Bit-REVEISE MOUEecviceiciee e

4332 Bit-ReVErse INSTUCHIONc.c.curiueeiieieirieeseiseie e

44 DAG REGISTER TRANSFERScccosiimiintinineiinineissie e,

441 DAG Register Transfer RESCONS........ccccceeiieisicce e -
[CHAPTER 5 MEMORY |

5.1 OVERVIEW ..ottt bbb -
511 DUBI DAtA ACCESSES -...vuvuierrciircieeiseseiseist et

512 Instruction Cache & PM Bus Data Accesses
513 On-Chip Memory Buses & Address GENErationoeveveeerereneenieeninens 5-5
514 Bus Exchange (PX Registers)

515 Memory Block Accesses & Conflicts

5.2

ADSP-2106X MEMORY MAPcoiiiiiiiniinieesnes e -

521 ADSP-21060 Internal MEMOrY SPACEc.ccevrrerrreerierieerireineieeeieeeeseeseseeseaes -
5.2.2 ADSP-21062 Internal MEMOrY SPACEc.ccvvrrerrreereirieerireeseieeeieseeseeseseesenes -
523 ADSP-21061 Internal MEMOrY SPACEc.cvevrrrererireirereireieeeineeeseeenes
5.2.4 Porting Code from ADSP-21060 to ADSP-21062 or ADSP-21061

525 Multiprocessor MEMOIY SPACEc.vvrererirrerireieieeeiresseeis e -
5.2.6 External Memory SPaceccvererencenrieencrseneenenns

5.2.7 Memory Space ACCESS RESHICHONScoeuriueeriieiirreireeseeeeesce s -
53 INTERNAL MEMORY ORGANIZATION & WORD SIZEcoovvivriviiininiinn, -
531 32-Bit WOrds & 48-Bit WOIASco.cvivieieieriiniisiseiseseisssessesesenenenenns -
5.3.2 Mixing 32-Bit & 48-Bit Words In One Memory BIOCKcccveviniineininne
533 Basic Examples Of Mixed 32-Bit & 48-Bit WOIASccoceuvirereerieenienicenns
534 16-Bit SNOI WOITS
535 Mixing 32-Bit & 48-Bit Words With Finer Granularity

5.35.1 Low-Level Physical Mapping Of Memory BIOCKSccvevviiininincninins
5352 Placement Restrictions For Mixed 32-Bit & 48-Bit Words

5353 Shadow WIItE FIFOc..civiviriieieeee s
5.3.6 Configuring Memory For 32-Bit 0r 40-Bit Data............cccvevrveininrniniereinnn,

54 EXTERNAL MEMORY INTERFACINGcccooviiiiiniiiirieien s -
541 External Memory Banks

542 Unbanked MEmOTY ..o
543 Boot Memory SelEct (BMS)c.ccvercreicieieieiseseise e -
54.4 Wait States & ACKNOWIEAGEvevvirieiiiiiee s -
5441 WAIT Register
5442 Multiprocessor Memory Space Wait States & Acknowledge ..o -
545 DRAM Page Boundary DEIECHONcocveveviereireineireiseseisesessseses e -
5451 Suspend Bus THState (SBTS) ... -
5452 Normal SBTS Operation: HBR NOt ASSEIed ... -
55 EXTERNAL MEMORY ACCESS TIMINGcoooniiniinininininssesee e -
551 EXErNal MEMOIYc..cviiviirieieicie e -
5511 External Memory Read — BUS MASEET ..o -
55.1.2 External Memory Write — BUS MaSLET ..o -
55.2 MUIEIPIOCESSOr MEIMOTY ..o -
[CHAPTER 6 DMA |

6.1 OVERVIEW ..o 6-1
6.1.1 DMA CONLrOllEr FEAIUTES ... 6-5
6.1.2 Setting Up DMA Transfers ..o 6-6
6.2 DMA CONTROL REGISTERScovviiiieiieieineieieieeseiseisese e 6-7

vii

viii

6.2.1 External Port DMA Control REQISIENScvvivriieririiniriieerieeeeseseseinieins -
6.2.2 Sefrial POrt DMA CONMIOL........coeviviiiiiiieieieisesesesesese s -
6.2.3 LiNK POrt DMA CONTOL ..o -
6.2.4 Port Selection For Shared DMA Channels

6.2.5 DMA Channel Status Register (DMASTAT) -
6.3 DMA CONTROLLER OPERATION ...c..cviiiiirireiereieeeseieiseiseiseseie s -
6.3.1 DMA Channel Parameter Registers

6.3.2 Internal Request & Grant

6.3.3 DMA Channel PriOFtZatIONceuevrivrierieiieiesiessississississssssssssesss s -
6.3.3.1 Rotating Priority For Ext. Port Channels..........ccccvevennnincninnenn, -
6.34 DMA ChaININGcveeercieeieseisceei ettt -
6.3.4.1 Transfer Control Blocks & Chain Loading

6.3.4.2 Setting Up & Starting The Chain ..o -
6.3.4.3 Chain INSEITION ..o s -
6.3.5 DMA INEITUPES ..ottt

6.3.6 Starting & Stopping DMA Sequences -
6.4 EXTERNAL PORT DMA ..ot -
6.4.1 External Port FIFO BUFFErS (EPBX)cuuevrivrierieiiiesieiesiiseisiesessessisssssisnnens -
6.4.1.1 External Port DMA Data Packing ...

6.4.1.2 Packing Status

6.4.2 Internal & External Address GENEration ... -
6.4.3 External POrt DMA MOGEScveieiiiininisissiesss s -
6.43.1 Master Mode ...,

6.4.3.2 Paced Master Modecccouenee.

6.4.3.3 Slave Mode........ccovvererineiniineinen.

6.4.3.4 HaNAShaKe MOGE ..o -
6.4.35 External Handshake MO ... -
6.4.4 System Configurations For ADSP-2106x Interprocessor DMA...........cc..c..... 6-47
6.4.5 DMA Hardware INterfacingcoevreerreenreinerineinieisieeseeese s -
6.5 DMA THROUGHPUT ..ottt -
6.6 TWO-DIMENSIONAL DMAcocoiiiiiiiiirieieieieseiseseiseiseiss s -
6.6.1 2-D DMA Channel Organization

6.6.2 2-D DMA OPEIALION ...t -
[CHAPTER 7 MULTIPROCESSING |

7.1 OVERVIEW w..oioiiii s 7-1
7.2 MULTIPROCESSING SYSTEM ARCHITECTUREScccooiniriniririnisiiiens 7-4
721 Data FIOW MUItIPrOCESSINGevveeeeeeieecieieieie e 7-4
7.2.2 Cluster MUILIPrOCESSINGvvuvreeereirereineirireiee et 7-5

7221 Link Port Data Transfers In A CIUSEETccccvvveeeeeeieceeee e 7-7

7.2.3 SIMD MUItIPrOCESSING ..euvveeeieeieeeieeeieeeieeeeseees

73 MULTIPROCESSOR BUS ARBITRATION -
731 BUS ATDItration ProtoCOccevcvivieiieireiscisesesesese e -
7.3.2 Bus Arbitration Priority (RPBA)c.ceeuriirinieiereneseneiseeseseessseseesseeees -
733 BUS MaStership TIMEOULcuvvuveeereereeereeeesce e -
734 COre PrIOMLY ACCESS ..uvuvreireeirneeineeisesiseis et -
7.35 Bus Synchronization After RESELcveverirrienresece s

7.4 SLAVE DIRECT READS & WRITES

741 DIFECE WHIEES ..ottt -
7411 DireCt WIILe LAENCYvvceceeeiieesieicie et -
742 DIreCt REAASv.cvvvvcvcecrceec s

743 Broadcast WHLESoceveveveverrcieesesssseiis

744 Shadow WIILE FIFO ..o -
75 DATA TRANSFERS THROUGH THE EPBX BUFFERScccocovivinininiinn. 7-26
751 SINGle-WOrd TranSfErs ..o -
7511 Interrupts For Single-Word Transfers .
752 DMA Transfers ..o

7521 DMA Transfers To Internal Memoryc.cocee.

75.2.2 DMA Transfers To External Memory

7.6 BUS LOCK & SEMAPHORESccoouviiriiniiniinirniiniiens

7.6.1 Example: Sharing A DMA Channel With Reflective Semaphores 7-31
7.7 INTERPROCESSOR MESSAGES & VECTOR INTERRUPTS
7.7.1 Message Passing (MSGRX)coeveverereiiieiieerneeeseessissississississins
7.7.2 Vector INErrUPtS (VIRPT) .o -
7.8 SYSTAT REGISTER STATUS BITS ..o
[CHAPTER 8 HOST INTERFACE]|

8.1 OVERVIEW ..ottt -
8.2 HOST PROCESSOR CONTROL OF THE ADSP-2106Xccvvevverrnrerereineene. -
8.2.1 ACQUIMING THE BUS ..o -
8.2.2 ASYNChronOUS TIANSTEISc..cvuivreiieieieeeses e

8.2.21 Asynchronous Transfer TIMING ..o
823 SYNCHIONOUS TIANSTENS ..o -
8.2.4 Host Interface Deadlock Resolution With SBTS ..., -
8.3 SLAVE DIRECT READS & WRITESccooiiiiiiiiiriiiieeeississississsssessscsens -
8.3.1 DIr€Ct WHIES ...vvvvcvcrcrcecceee s

8.3.1.1 Direct Write LatenCy ..o,

8.3.2 DIFECE REAGAS ...t -
8.3.3 BroadCast WIS ..o -

834 Shadow WIILE FIFO ... 8-17
84 DATA TRANSFERS THROUGH THE EPBX BUFFERSccoovivininininnn, 8-18
8.4.1 SiNGlE-WOrd TraNSTErSc.cueeeieirierce e 8-18
8.4.1.1 Interrupts For Single-Word Transfers ..., 8-19
8.4.2 DIMA TRANSTEIS ... -
8.4.2.1 DMA Transfers To Internal Memory

8.4.2.2 DMA Transfers To External Memory

8.5 DATA PACKINGcovvirieieiei et -
85.1 Packing Control Bits IN SYSCONc.ceuiniinieresreiseeseeeieee e -
8.5.2 Data Bus Lines Used For Different Packing Modes...........cccocveerinininieenen. -
8.5.3 32-Bit Data PaCKINGcvvireiirireiieisieieeie e -
8.5.4 48-Bit INStruction PaCKINGcoeurveurieeeriereesee e

8.6 SYSTAT REGISTER STATUS BITScocvivirirerieineeeeseiseiseiseisnisnis

8.7 INTERPROCESSOR MESSAGES & VECTOR INTERRUPTS

8.7.1 Message Passing (MSGRX) ...

8.7.2 Host Vector INterrupts (VIRPT) ...

8.8 SYSTEM BUS INTERFACINGc.coivivriririreiseiseiseseissiseississi s -
8.8.1 Access To The ADSP-2106x Bus—Slave ADSP-2106X...........ccouvvrvrrirnnnns -
8.8.2 Access To The System Bus—Master ADSP-2106x

8.8.2.1 Core Processor Access To System BUS.........ccccve.ee

8.8.2.2 Deadlock RESOIULIONcc.eviveieieiesesisseset s -
8.8.2.3 ADSP-2106x DMA Access TO SyStem BUSccoerrincrnneeeeins -
8.8.3 Multiprocessing With Local MEMOTYcceverinerireniereeeseeeseei e -
8.8.4 ADSP-2106x To Microprocessor INtErfacecccoeveeenensenenincniieineeenns -
[CHAPTER 9 LINK PORTS |

9.1 OVERVIEW ..ottt -
9.1.1 Link Port To Link Buffer Assignment -
912 Link Port DMA ChanNElS.........c..cuiviviiieinineiseiseisississssss s -
9.13 LINK POIt INEEITUPES ...t -
9.14 LINK POIt BOOHING -....ecvuvececeiciieteeiiseis e -
9.2 LINK PORT CONTROL REGISTERScocviiiiiiieeeeseseiseiseissisissens -
9.2.1 Link Buffer Control REGISIEr (LCTL) ..c.veuireeereeirersireirseesceene e -
9.2.2 Link Common Control Register (LCOM) ..o -
9.2.3 Link Assignment RegiSter (LAR)c.ceveureriireerieerieereeee s -
9.3 HANDSHAKE CONTROL SIGNALSooiiiiiirtirtinisesesesssssissss e -
9.4 LINKBUFFERS.cocoiiitiitiiieeesese s

94.1 Core Processor Access To Link BUFFENS ...,

9.4.2 Host Processor Access To Link BUFfErs ...,

9.5 LINK PORT DMA CHANNELS

95.1 DMA Chaining FOr LINK POIS ..o -
9.6 LINK PORT INTERRUPTS ...t -
9.6.1 Link Port Interrupts With DMA Disabledcccoeririininnenienceeeeens -
9.6.2 Link Port Interrupts With DMA Enabled ...,
9.6.3 Link Port Service Request Interrupts (LSRQ)cvveevreererrenerrinirieinien.

9.7 TRANSMISSION ERROR DETECTIONocmeuiereirirneesrineiessseesnnies

9.8 TOKEN PASSINGcoeviieiriieieiineensisse sttt

9.9 LINK TRANSMISSION LINESoovoiiniieriineiniineiesineesiese s

9.10 SYSTEM DESIGN EXAMPLE: LOCAL DRAM INTERFACE -
9.11 PROGRAMMING EXAMPLESooitimiieriineieineisisseessseiessssssssssesesseees -
9.11.1 Core-Driven Single-Word Transfers ... -
9.11.2 DMATIANSIEIS ..ot -

[CHAPTER 10 SERIAL PORTS|

10.1 OVERVIEW w.ooiiiie e
10.1.1 SPORT Interrupts

10.2 SPORT RESET ...ooviiiieieiciet et
10.3 SPORT CONTROL REGISTERS & DATA BUFFERS
10.3.1 Register WriteS & EffeCt LAtBNCYc.vvveeererrereiriieerieireereeeesee s 10-6
10.3.2 Transmit & Receive Data Buffers (TX, RX).....cccoerrieriennnnnienceeneeeens 10-7
10.3.2.1 Reading & WItING RX, TX co.viiieierceeeeseeis s 10-8
10.3.3 Transmit & Receive Control Registers (STCTL, SRCTL) ...c.ovvvvevrenrrienreenns 10-8
10.3.4 Clock & Frame Sync Frequencies (TDIV, RDIV)cccovnrnrninncnreenen. 10-13
10.34.1 Maximum Clock Rate Restrictions

104 DATA WORD FORMATSc.cviiiririririeriereiei st
1041 Word Lengthcocveevenevenininiiiins

10.4.2 Endian FOrmatoocvvevirienieniininnis

1043 Data Packing & UNPackingcccoeeveveveveveeereieeeseseesessissississis
1044 DAA TYPE ooeieiiieeriis e
1045 COMPANGING ...cvuivriiieiriireieieeise et

10.5 CLOCK SIGNAL OPTIONScoocviiiriiiiereietseiei st
10.5.1 Internal vs. EXIEMNAl CIOCKSc.ovvviviiiiriinisisiseeiee e

10.6 FRAME SYNC OPTIONScocviiiiiiereieietiei et
10.6.1 Framed vS. UNframedccovieininininisssse e
10.6.2 Internal vs. EXternal Frame SYNCScoocvevevevireinernieniseiseiseiseissississienins
10.6.3 Active Low vs. Active High Frame SYNCS ... 10-22
10.6.4 Sampling Edge For Data & Frame SYNCSccvvivinininenennnrinreieinenn, 10-22
10.6.5 Early vs. Late Frame SYNCSc.ocverieriiniiniiniininsssssssesss e 10-23
10.6.6 Data-Independent Transmit Frame SYNCcoovvrvnrinrniniinnineenenen, 10-24
10.7 MULTICHANNEL OPERATIONooiiviiniiniinininiieieteie et 10-25

Xi

xii

10.7.1 Frame Syncs In Multichannel Modecooeirrieniincniienesceceeees 10-26
10.7.2 Multichannel Control Bits In STCTL, SRCTLocvcviiieeiceeeeecse e 10-27
10.7.2.1 Multichannel Enable

10.7.2.2 Number Of Channels

10.7.2.3 Current Channel INAICALON ..o,
10.7.24 Multichannel Frame Delay ..o
10.7.3 Channel Selection RegISters.......cccoererreererieneerien.

10.7.4 SPORT Receive Comparison Registers

10.8 TRANSFERRING DATA BETWEEN SPORTS AND MEMORYc.cccnevunen. 10-31
10.8.1 DMA BIOCK TranSerSccvvievievreeierercrereieieee s

10.8.1.1 SPORT DMA Channel Setup
10.8.1.2 SPORT DMA Parameter Registers
10.8.1.3 SPORT DMA ChaiNiNGcoeveeireieeiiieieineeineisieeseeeseses s
10.8.2 Single-Word Transferscccocvernneeeneneneneen.

10.9 SPORT LOOPBACKcccovvrviriiriinnens

10.10 SPORT PIN DRIVER CONCERNS
10.11 SPORT PROGRAMMING EXAMPLESc.ociivivriririrneineieissessssssissisnins
10.11.1 Single-Word Transfers Without Interrupts
10.11.2 Single-Word Transfers With Interruptsc..coceeee.

10.11.3 DMA Transfers With INterruptSccooveenerrneinieneeee e

[CHAPTER 11 SYSTEM DESIGN|

11.1 OVERVIEW.................
11.2 ADSP-2106X PINS
11.2.1 Pin Definitionscccoevvvvveeeeiiceen,
11.2.2 Pin States At Reset

1123 RESET & CLKIN ...ttt
11.2.3.1 Input Synchronization DElAYccoceveeieeeieieieineissssesessssissienienins 11-11
1124 Interrupt & TIMET PINS ...t 11-11
1125 FIAG PINS ottt
11.2.5.1 FlAG INPULS ©.vvierieiieeeseses s
11.2.5.2 Flag OULPULScvuiveececieieiseisesse s
11.2.6 JTAG Interface Pins

113 EZ-ICE EMULATOR ...ttt

11.3.1 Target Board Connector For EZ-ICE Probe........ccoovvninininininininen, 11-14
114 INPUT SIGNAL CONDITIONING

1141 Glitch Rejection Circuits

11.4.2 Link Port Input Filter Circuits

1143 RESET INPUL HYSEIESISvovvvrrrcircieiceieieeeese s

115 HIGH FREQUENCY DESIGN CONSIDERATIONS........ccovvvivinrnieininininn, 11-18

1151 Clock SPecifications & JIEc..cuevreeriireeerieiriieeee e

115.2 ClOCK DISIDULION ...ttt s
115.3 Point-T0-Point CONNECLIONScvviieeiiee et
1154 SIgNAl INTEGIILY ..vveveereeeiieesere e

1155 Other Recommendations & Suggestions
1156 Decoupling Capacitors & Ground Planes

11.5.7 OsCilloSCOpE ProbESc.vevveercerieirieineeiicneeseienes

11.5.8 Recommended REAINGccocurvruririreieieineeineisreesee e
116 BOOTING ..cocviiiiiiireieieie ettt
11.6.1 Selecting The Booting Mode

11.6.2 EPROM BOONG . .evieeiiireirineiniiiseiee ettt
11.6.2.1 Bootstrapping (256 INSLUCHONS)crvrerrreerirrineirieerireireeeeeseeisees s
11.6.2.2 Loading The Remaining EPROM Dataccvurrienrreinirnereinieinesseeeneeens
11.6.2.3 Writing to BMS MEMOIY SPACEccovvvevrevierreeereieieieieie i
11.6.3 HOSEBOONG ..cvuvieeieirciieiseieiei ettt
11.6.4 LINK POt BOOUNGcvuevueieiseieiseiseiseisess s
11.6.5 MUItProCeSSOr BOONGcvuvvvivivierieriereret e
11.6.5.1 Multiprocessor HOSt BOOLINGc..ccevrevrermirrerireieieiseiseiseiseeseiseississienienins

11.6.5.2 Multiprocessor EPROM Booting
11.6.5.3 Multiprocessor Link Port Booting

11.6.5.4 Multiprocessor Booting From External MEMOTYc.ccveeveeneeneiniinieniiniennen.
11.6.6 “NOBOOL MOUEcoovirieirireeeteeee s
11.6.7 Interrupt Vector Table LOCALIONccovrvinieiieiieieieee e,
11.7 IMPORTANT PROGRAMMING REMINDERS..........cc.cocoue.

1171 EXtra Cycle CONAILIONSc..cvvevrevrerrcircieieieieiseii i
11.7.1.1 Nondelayed BranChes............ovniniininininiinisseeseneee e
11.7.1.2 Program Memory Data Access With Cache Miss

11.7.1.3 Program Memory Data ACCESS IN LOOPSccvveerriiniriiriiiiiinieieenesees
11.7.1.4 One- & TWO-INSLIUCHION LOOPSv.cvvvrevrevreerereeeieiei e
11.7.1.5 DAG REFISIEr WHIESvvvvcvicvreicicii i
11716 WAL SEAES ..o
11.7.2 Delayed Branch RESHICHONSc..cvvevrevreririieiiiiseseisssesessissisninins
11.7.3 Circular Buffer INIAZALONocvvevirereeecccee s
11.74 Disallowed DAG RegiSter Transfers ...
11.75 Two Writes To Register File.................

11.7.6 Computation UNitscccvevrivreeriinienes

11.7.7 Memory Space Access Restrictions

11.7.8 Mixing 32-Bit & 48-Bit Words In A Memory Block
11.7.9 16-Bit ShOrtWOTAS......coocveeieiieeeeees

11.7.10 DUEI DA ACCESSESoueiuriiiiiiiasiesiesiesiesseses ettt
11.8 DATA DELAYS, LATENCIES, & THROUGHPUTcccovirrirenieinieeeenns
11,9 EXECUTION STALLS ..ottt

Xiii

Xiv

[APPENDIX A INSTRUCTION SET REFERENCE |

OVERVIEW ..ottt -
INSTRUCTION SET SUMMARY -
OPCODE NOTATIONcoocviiiirerereret et -
UNIVERSAL REGISTER CODEScooeviivireriieiiiseiseiseississessi s A-12
GROUP |. COMPUTE AND MOVE INSTRUCTIONS.........c.coivvriverrererrerenns A-15

Compute / dreg=DM / dreg+PM

COMPULR <.t -

Compute / ureg=DM|PM , register Modifyccocevrnernrninncecseeeenn, A-18

Compute / dreg=DM|PM , immediate MOdifyccorerririnineniienieneenes A-20

COMPUEE / UFEGFUIBY .vvvvvrvrreeseeee et -

Immediate shift / dreg+~DM|PM

COMPULE / MOTIFY .. -
GROUP Il. PROGRAM FLOW CONTROL ..o -

DiIreCt JUMP|CAILceeceei et -

Indirect jump|call / COMPULEceevirerieicie e -

Indirect jump or compute / dreg=DMcccoerirrreriinernins

Return from subroutine|interrupt / compute

DO until COUNtEr EXPITEcveveeeeei e -

DO UN oo -
GROUP Il IMMEDIATE MOVE ..ot -

ureg=DM|PM (direct addressing)

ureg+DM|PM (indirect addressing)

Immediate data’ DM|PM ..ot -
IMMediate data " UrBJoveveeerieerereieisieesce et -
GROUP IV. MISCELLANEQUS ..ot A-45
System register bit Manipulationcccccveirinre e, A-46
I register modify / DIt-TEVEISEc..cvieeriireriereee s A-48
Push|Pop stacks /flush CAChEccoeiiriirii e A-50

|APPENDIX B COMPUTE OPERATION REFERENCE |

Bl OVERVIEW .ot B-1
B.2 SINGLE-FUNCTION OPERATIONS......c.cocreiuiereernireeieneisssneisesssesssssieesesenes B-1
B.2.1 ALU Operations

RN = RX 4+ RY s

RN=RX+Ry+Cl .o
RN=RX-=Ry+Cl=1 ..
Rn = (Rx + Ry)/2
COMPURX, RY) oottt
RN ZRX A Cloicie s

Rn=Rx AND Ry
Rn=RxOR Ry.......
Rn =Rx XOR Ry
RN ZINOT RX oot s
RN = MIN(RX, RY) ot
RN = MAX(RX, RY) oo
RN = CLIP RXBY RY wociciiiciccce s
FNZ FX A FY s
Fn=Fx-Fy
FN = ABS (FX + FY) oo
FN = ABS (FX = FY) ottt
Fn = (Fx + Fy)/2
COMP(Fx, Fy)
Fn=—FX

FN = ABS FX oo
FN = PASS FX oo
FN=RND FX o
FN = SCALB FX BY RY ..o
RN = MANT FX oottt
RN =LOGB FX..ooovvvvrieiiciiiccin,

Rn = FIX Fx BY Ry / Rn = FIX Fx

Rn=TRUNC Fx BY Ry /RN = TRUNC FX...ocoovurinirriineierniereiseineeeeenes B-37
Fn = FLOAT RX BY Ry / FN = FLOAT RX..cvuiiivineieiiieiseieeesieiseieenns B-38
FN = RECIPS Xttt B-39
FN = RSQRTS FX ottt B-40
FN = FX COPYSIGN FY oot B-41
Fn = MIN(Fx, Fy)
FN = MAX(FX, FY) ot
FN = CLIP FXBY FY it
B.2.2 MUItiplier OPEFAtIONScveeereerieerieereieee e
RNIMR = RX, RY ettt
RNIMR = MR + RX, RY ..ot
RNIMR =MR = RX, RY .o
RNIMR = SAT MRovinineieineinns
RNIMR =RND MRcooviireriirerene

Fn=Fx,Fy .oeee.
B.2.3 Shifter Operations
Rn = LSHIFT Rx BY Ry|<data8>
Rn =Rn OR LSHIFT Rx BY Ry|<data8>
RN = ASHIFT RX BY Ry|<AAta8>covuverieerieiniereeeseescs s
Rn =Rn OR ASHIFT Rx BY Ry|<data8>c.cccoomnirrreninncnieniens B-58
Rn =ROT Rx BY RY|<data8>
RN =BCLR RX BY RY|<AAIA8>coieereirerireirieiseceesesei s
RN =BSET RXBY Ry|<data8>........ccccoerieeinieirienin e
Rn =BTGL Rx BY Ry|<data8>...........
BTST Rx BY Ry|<data8>
Rn = FDEP Rx BY Ry|<bit6>:<len6>
Rn = Rn OR FDEP Rx BY Ry|<hit6>:<len6>
Rn = FDEP Rx BY Ry|<bit6>:<Ien6> (SE) ...c.ccovveerieirieirieerieneeeens
Rn =Rn OR FDEP Rx BY Ry|<bit6>:<len6> (SE)
Rn = FEXT RX BY RY|<DIt6>:<IENG>ocovviviciececee e,
Rn = FEXT RX BY Ry|<bit6>:<IEN6> (SE)ovvvvvieieieireieiseisesessinsiens
RN ZEXP RX oo
RN = EXP RX (EX) o
RN Z LEFTZ RX oot
RN = LEFTO RX oo
RN = FPACK FX oo
Fn = FUNPACK Rx

XVi

B.3 MULTIFUNCTION COMPUTATIONScoooiiiiiriiniesnise e B-76

Dual Add/Subtract (FIXEA-PL.)cvveerirrireirieisiereee e B-77
Dual Add/Subtract (FIOating-Pt)cccoeurirreniinereseeeeeeeeeseees B-78
Parallel Multiplier & ALU (FIXEA-PL.) ..o B-79
Parallel Multiplier & ALU (FIOAting-PL.)ccccrieerierinerereeseeeeeens B-80
Parallel Multiplier & Dual Add/SUBLIaCE...........ccoeurirrrirerereeeens B-82
[APPENDIX C NUMERIC FORMATS|
C.l OVERVIEW .ottt C-1
C.2 IEEE SINGLE-PRECISION FLOATING-POINT DATA FORMATcccovevrnivnenns C1
C.3 EXTENDED PRECISION FLOATING-POINT FORMATcccvvrmrirmirneirerneieens C-2
C4 SHORT WORD FLOATING-POINT FORMATccovureiniieeneiernsineisesneeesennens C-3
C.5 FIXED-POINT FORMATS ..ottt C5
[APPENDIX D JTAG TEST ACCESS PORT|
Dl OVERVIEW ..ottt D-1
D2 TEST ACCESS PORT ..ottt sttt esisenen D-2
D.3 INSTRUCTION REGISTERcomtiiinirriineiniineiesnsis st sssse s ssesssens D-3
D.4 BOUNDARY REGISTERcoostuirimieriiniieineieinsiseisssieeessse s ssessssssssssssessnes D-5
D.5 DEVICE IDENTIFICATION REGISTERcccooiuimimeiiineieineeneinsiessseeissieenns D-13
D.6 BUILT-IN SELF-TEST OPERATION (BIST) ...evviererrerneirrineeeiineeeeesierssieenns D-13
D.7 PRIVATE INSTRUCTIONSccosiiirriieiieneiniseissineisssseise st sssens D-13
D.8 REFERENCESooiiiiieiineiree ettt D-13
[APPENDIX E CONTROL/STATUS REGISTERS |
ELl OVERVIEW .ottt E-1
E.2 SYSTEM REGISTERS (CORE PROCESSOR)........cceumieneiereireinreersnsieeseeenss E-2
E21 Effect Latency & Read LAtENCYcccoverrererienceniierence s
E22 System Register Bit OPErations.........c.ccvvvcerieerieirineneesieeneseseeseseeesesseeens
E221 Bit TESE FIAQ ...vveveceecireeieis e
E23 User-Defined Status REGISLErSccoeurieiireeirieineineie e
E.3 IOP REGISTERS (I/O PROCESSOR)ccniiuieerireiiineieeinsiesssiessssieesesenns
E3.1 |OP REQISIErS SUMMAIYcovuierrieiieireiieisieesee et
E3.2 |OP Register ACCESS RESHICHONScuvveeerireiriieeseree s
E3.3 IOP Register Group Access Contention
E34 |OP Register Write LAtenCIEScoveeeriirriereirineiseiseneeee s

XVii

xviii

E.13
E.14
E.15
E.16
E.17
E.18

E.19
E.20
E.21

MODE1 REGISTER
MODE?2 REGISTER
ARITHMETIC STATUS (ASTAT) w.cooveeoeseosseeeeses oo E-18
STICKY STATUS (STKY) eevoroceeesecoessesceesseseessseeessessesseseeesss e oo E-20
INTERRUPT LATCH (IRPTL) & INTERRUPT MASK

(IMASK) ..ottt sttt
SYSTEM CONFIGURATION (SYSCON)
SYSTEM STATUS (SYSTAT) coccoootoeeseeesssceoeseseesseseesss oo
EXTERNAL MEMORY WAIT STATE CONTROL

(WAIT) oot E-32
EXTERNAL PORT DMA CONTROL

(DMACE-DMACO) ..o oot
DMA CHANNEL STATUS (DMASTAT)
LINK BUFFER CONTROL (LCTL) ...coveteoesooeseooes oo oo
LINK BUFFER COMMON CONTROL (LCOM)....cccccoveorscoese oo E-43
LINK ASSIGNMENT REGISTER (LAR)ooeeceoreeoesecoesssoesesoessseessson E-46
LINK SERVICE REQUEST (LSRQ) ...vvvceeorscomrecoeseeessssemsssossss oo E-47
SPORT TRANSMIT CONTROL

(STCTLO, STCTLL) croeeeecvosseesseeese oot
SPORT RECEIVE CONTROL (SRCTLO, SRCTL1)
SPORT DIVISORS (TDIV, RDIV) .ot eessesees e
SYMBOL DEFINITIONS FILE (DEF21060.H)......oocccccoeecooescrorss oo

[APPENDIX F INTERRUPT VECTOR TABLE |

[APPENDIX G SHARC GLOSSARY |

P\PPENDIX H DOCUMENTATION ERRATA

INDEX

FIGURES
Figure 1.1 Super Harvard ArChiteCIUIEc..cvevevieeeeieee i -

Figure 1.2 ADSP-2106x SHARC Block Diagram

Figure 1.3 ADSP-2106X SYSIEMevviierieiiereieieiseei et -
Figure 1.4 System Design and Development ProCeSSccwveiereereeniinieneinnins 1-17

Figure 2.1 COMPUERLION UNIES ... 2-2
Figure 2.2 Multiplier Fixed-Point Result PIacement ..., 2-12
Figure 2.3 MR Transfer FOMMALS ..o 2-13

aalperi
APPENDIX H DOCUMENTATION ERRATA

aalperi

Figure 2.4
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 3.7
Figure 3.8
Figure 3.9
Figure 3.10
Figure 3.11
Figure 3.12
Figure 3.13
Figure 3.14
Figure 3.15
Figure 3.16

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5

Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 5.7a
Figure 5.7b
Figure 5.8
Figure 5.9a
Figure 5.9b
Figure 5.10

Register File Fields For Shifter INStructionsccooevevinrreneienenn. 2-20
Register File Fields For FDEP, FEXT INStruCtionsccoeveerenceninnn. 2-20
Bit Field Deposit Instruction
Bit Field Deposit Example
Bit Field Extract Example

Input Registers For Multifunction Computations (ALU & Multiplier)2-27
Program FIOW Variationsccoeeererrenineenieineenesseeseeesees e eeees -
Pipelined EXECULION CYCIEScvveriierieercrieisieesceeie e -
Program Sequencer Block Diagram

Nondelayed BranChes ... -
Delayed BranChes ... -
LOOP OPEIALION ...eviieeireiciieee ettt -
One-Instruction Counter-Based LOOPS ... -

Two-Instruction Counter-Based LOOPScceveerirrerireenerneeinennineeneieens -
Pushing The Loop Counter Stack For Nested Loops
INterrupt HanAlingc..ceveeeriiceeeeeeeee e
Timer BIOCK Diagramc.ceeevevireeienieseiseiseessississississsssiessenens
TIMEXP Signalcoocvevevereiieeeseinees
Timer Enable & Disable ..o
Timer Interrupt TiMiNGc.cvevevreeneeneresesineis
Instruction Cache ArChItECIUEc.ovvivveeiiieee e -
Cache-Inefficient COAE ..o -

Data Address Generator BIOCK DIagramc.oevereeneneinieninsnsnsennens -
Alternate DAG REJISEISc..vvuevrivrierieieieiiseseissessessesissnees
Pre-Modify & Post-Modify Operationscoocveereereereeneenienieniens

Circular Data BUFFETS ..o s -
DAG ReQiStEr TTANSTErScvvvvviereerceeecieiee s -

ADSP-2106X BIOCK DIaQramccceeeereeiineiniiniiniinsinsinsissssssssss e, 5-2
PX REGISIET ..o 5-6
PX ReQIStEr TTANSTErS ..o 5-7
Memory Addresses (E = external, M = Multiprocessor, S = Internal)......5-9
ADSP-2106X MEMOIY MAPcvvvvvriiiriiiisiieieieeeeessisse e -
ADSP-21060 Internal MEMOry SPacecveeeeeieeenienieneenieens
ADSP-21062 Internal MEMOrY SPAacCEc.ceereeeeieierieienierienens
ADSP-21061 Internal MemMOry SPacecceeeieeerienienienionens

Memory Organization vs. Address (ADSP-21060)
Memory Organization vs. Address (ADSP-21062)
Memory Organization vs. Address (ADSP-21061)
Basic Examples of Mixed Instructions & Data In A Memory Block

Xix

XX

Figure 5.11
Figure 5.12
Figure 5.13

Figure 5.14

Figure 5.a

Figure 5.15
Figure 5.16
Figure 5.17
Figure 5.18
Figure 5.19

Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7
Figure 6.8
Figure 6.9
Figure 6.10
Figure 6.11
Figure 6.12

Figure 7.1
Figure 7.2
Figure 7.3
Figure 7.4
Figure 7.5
Figure 7.6
Figure 7.7
Figure 7.8
Figure 7.9

Figure 8.1
Figure 8.2
Figure 8.3
Figure 8.4
Figure 8.a
Figure 8.5

Short WOrd AQArESSEScovveverieieeieeeeeeeee e 5-28
Preprocessing of 16-Bit Short Word AddreSses.........cooceeeveeencnineens 5-29
48-Bit Words & 32-Bit Words Mixed In A Memory Block

(ADSP-21060)coueerrenrerreeireseeiseissesssss s essse st 5-31

48-Bit Words & 32-Bit Words Mixed In A Memory Block
(ADSP-21062 or ADSP-21061)

External Port Data Alignment.....

WAIT REGISLEN ...ttt -
Bus Idle Cycle, Hold Time Cycle, Page Idle Cycle.........ccccooeriuneeunce. 5-43
Example DRAM INEITACE ..o s 5-46
External Memory ACCESS TIMINGcvueureriirirrieerieerereereeeeiseseeeeeee s 5-49
Multiprocessor Memory ACCESS TIMINGcevreirrurereeerreeerereeneeeeeeens 5-51
ADSP-2106X BIOCK DIaQramcoueeeieienieienieniisiisissississessessssnssesens 6-2
DMA Data Paths & CONIOIcoevevieieiireieiresesesese s 6-3
DMACX REGISEIScvvvrveeieeseiseieiseisei s 6-9
DMA Address GENEIatioNccvrevevrevririeieneiseiseissiseissessessissiessenens 6-24
Rotating Priority Example (ADSP-21060 & ADSP-21062).............cc....... 6-27
Chain Pointer Register & PCIBItcouveviriiniieniieeeeieenenns 6-29
TCB Setup In Memory (For External Port DMA Channel)..................... 6-31
DMA Handshake Timing With Asynchronous ReqUESEScc.veeun. 6-45
DMARX Delay After Enabling Handshake DMAccccoevinininirennn. 6-47
System Configurations For ADSP-2106x-To-ADSP-2106x DMA 6-49
Example DMA Hardware Interface

DMARX/DMAGX TIMINGcvereeieeiieicieeeieeseeseesieeseeessseeeissssessse s -
ADSP-2106X MUItIProCeSSOr SYSIEMcvvivvirereirieerieincieeeeeeeseisieens -
Data FIOW MUItPrOCESSING ...euvuveurreeieeieirineeseieiseesce e -
Cluster MUILIPrOCESSINGcvreeerereeniieenreerereieisieeseie e -
Two-Dimensional SIMD Mesh Multiprocessing

BuS Arbitration TMINGcocerveerieicieeeireeeseesees e -
Bus Request & Read/Write TIMINGccovrevrenininnnnsessnseenens -
Core Priority ACCESS TIMINGcovrierrreirirrireeieereeineieeis e -
Broadcast Write Timing Example

SYSTAT REYISENvvveveeeise s -
External Port & HOSt INEEIfaCe ..o 8-2
Example Timing FOr Bus ACQUISIEIONcoviienienininisiinisieeeens 8-7
Example Timing For Host Read & Write CyCles ..., 8-11
SYSCON REQISIEN ...

External Port Data Alignment

Example Timing For Host Interface Data Packingcccccoevrviennn. 8-27

Figure 8.6
Figure 8.7
Figure 8.8
Figure 8.9

Figure 9.a
Figure 9.b
Figure 9.1
Figure 9.2
Figure 9.3
Figure 9.4
Figure 9.5
Figure 9.5a
Figure 9.6
Figure 9.7
Figure 9.8

Figure 10.1
Figure 10.2
Figure 10.3
Figure 10.4
Figure 10.5
Figure 10.6
Figure 10.7
Figure 10.8

Figure 11.1
Figure 11.a
Figure 11.2
Figure 11.3
Figure 11.4
Figure 11.5
Figure 11.6
Figure 11.7
Figure 11.8
Figure 11.9

Figure 11.10
Figure 11.11

SYSTAT REJISIEN ..t 8-30
Basic System Bus INtErACEocveeireriirerereneecs e, 8-35
Bidirectional System Bus INterface..........cccovvrerinerinncnienenerns 8-37
ADSP-2106x Subsystems On A SyStem BUSccccoveerieerinrncenirennen. 8-41
Link Port Pin CONNECHIONSovovviiirieieieiee e -

Link Port Communication EXamplesccoceenrnennneneneenesns -
Link Ports & Buffers

LCTL REQISIEN ..

LCOM REJISIET .ttt
LAR REJISIET ...ttt -
Link Port Handshake Timingcooerrineninesesceeeeeeseneeens -
Logic For Link Port INtErrUPLSc.ocuveerieerieeesieeseieeee e -
LSRQ REGISLEN ...t -
Token Passing FIOW Chart ..o -
Local DRAM With LINK POIS ..o -
Serial Port BIOCK DIa@ramccovieiiieieiieieeeesene s 10-3
STCTLO, STCTL1 Transmit Control REQIStErS........cccvvvrvierereinne. 10-10
SRCTLO, SRCTL1 Receive Control REGISLErSccvvrreierereinnne. 10-12

TDIVO, TDIV1 Transmit Divisor Registers
RDIVO, RDIV1 Receive Divisor Registers

Framed vs. Unframed Data........ccccoovervrerrcienne.

Normal vs. Alternate Framing

Multichannel OPEration ..o
Basic ADSP-2106X SYSIEMcuruiuierieriireireissiseiessssssssessesssssensessensns 11-1
External Port Data AGNMENE ..o 11-9
Flag OUPUL TIMING ...covvvvirerieeeeeeee e 11-13
Target Board Connector For ADSP-2106x EZ-ICE Emulator

(JUMPETS IN PIACE) ... 11-15
JTAG Scan Path Connections For Multiprocessor

ADSP-2106X SYSIEMSeuviivrirerriiitisiieieies e 11-16
Not Recommended Clock Distribution Method

(End-Of-Line Termination) ..., 11-20
Recommended Clock Distribution Method

(Source TermINALoN)eeeereieieieeiiissees s 11-21
Source Termination For Long-Distance

P0INt-TO-PoINt CONNECHONScvuvreririieieeieiiee s 11-22
Star Connection Damping RESISIOrS ..o, 11-23
Single Damping Resistor Between Processor Groups ... 11-23
Single Transmission Line Terminated At Both ENdSccovvvinnn. 11-24
Bypass Capacitor PIaCEMENL ... 11-25

XXI

XXii

Figure 11.12

Figure 11.13

Figure A.1
Figure A.2

Figure B.1

Figure C.1
Figure C.2
Figure C.3
Figure C.4
Figure C.5
Figure C.6

Figure D.1

TABLES

Table 3.1
Table 3.2
Table 3.3

Table 5.1
Table 5.2a
Table 5.2b
Table 5.3
Table 5.4
Table 5.5
Table 5.6

Table 5.7
Table 5.8

Table 6.1a
Table 6.1b
Table 6.2
Table 6.3
Table 6.4

Multiple SHARCs Booting From One EPROM,

PrOCESSOrS-TAKE-TUMSouvrvrirceieceseseseisse s 11-36
Multiple SHARCs Booting From One EPROM,

ONE-BOOLS-OLNENS ..o 11-36
Map 1 Universal Register COUEScovrurirninirinieneeseiseeseens A-12
Map 2 Universal RGIStEr COEScvviuririenierieerieireieiesessseiseeseneene A-13
Allowed Input Registers For Multifunction Computations B-76
IEEE 32-Bit Single-Precision Floating-Point Formatccccccceevineene. C-1
40-Bit Extended-Precision Floating-Point FOrmat...........c..cccveovirenirnenee. C-2
16-Bit Floating-Point FOMMALc.cevieieierisiissssises s C-3
32-Bit Fixed-Point FOIMALSc..cvevirereieiieieeceece e, C-6
64-Bit Unsigned Fixed-Point Productcccovirininininninnieiien, C-7
64-Bit Signed Fixed-Point Productccoevenenininennnneneneens C-8
Serial SCaN PatNS ..o, D-4
Program Sequencer Registers & System RegiSterscocovvreenieneen. 35
Condition & Loop Termination COUEScovvvrvrnrererinrieieieeieieien, 3-8
Interrupt VECOrs & PHIOTIEYccovvvveeiee e 3-25

ADSP-21060 Internal Memory Addresses
ADSP-21062 Internal Memory Addresses
ADSP-21061 Internal Memory Addresses

Address Ranges For Instructions & Data (ADSP-21060) 5-26
Address Ranges For Instructions & Data (ADSP-21062)c........ 5-26
Starting Address for Contiguous 32-Bit Data (ADSP-21060) 5-30
Starting Address for Contiguous 32-Bit Data

(ADSP-21062 OF ADSP-21061).......cuivieieeeieneiseiseissisessssesssssessesseneens 5-33
External Memory Interface Signals ..o 5-36
WAIT Register Bit DEfinitionscoceeieiiinininnnsssssseeens 5-41
ADSP-2106x DMA Channels & Data BUFfers ... -
ADSP-2106x DMA Channels & Data BUFfers ... -
DMA Control, Buffer, & Parameter Registers.........coovvvveviniins

External Port DMA Control Registers (DMACx) -
Serial Port DMA Channelscvvienniieeieeier e -

Table 6.5
Table 6.6
Table 6.7
Table 6.8
Table 6.9
Table 6.10
Table 6.11
Table 6.12
Table 6.13
Table 6.14
Table 6.15
Table 6.16

Table 7.1
Table 7.2
Table 7.3
Table 7.4

Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5

Table 9.1
Table 9.2
Table 9.3
Table 9.4
Table 9.5

Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9

Table 11.1
Table 11.2

STCTLx/SRCTLx Control Bits For Serial POrt DMA..........ccovvvieiinens 6-14
SPORT DMA INTEITUPES ...ttt 6-15
Link Port DMA ChannelSc.ccueviimiensreeeeeses s 6-15
LCTL Control Bits For Link Port DMAcocoeivvevierierieieeieerennns 6-16
Link Buffer DMA INEEITUPLScvvririeicerieiceeeieeeseneeeiee e 6-17
DMASTAT REQISIENevieiciieirei et 6-19
DMA Parameter REJISIENScvvueuriurireerieineeireisieiseseissse e 6-23
Parameter Registers For Each DMA Channelccccoovieniincninnn. 6-23
Internal Memory /O Bus ACCESS PIIOMLYcovveveeierieriereiniiniisiiniis 6-25
TCB Chain Loading SEQUENCEceuveerreireriereirineesceineie e 6-30
DMA Interrupt VECtors & PrIOMLY ..o 6-33
2-D ReQiSter MaPPING ...ceveeieeeeieeeireseineisieisceine e 6-52
Pin Connections For Cluster Multiprocessor SyStemccccveveveene. 7-1
ADSP-2106X MUItiprocessor SIgNals ..o, 7-9
Rotating Priority Arbitration EXampleccovvneninnininnsinis 7-14
SYSTAT SEAUS BILS ... 7-34
Host Interface SIgNalscoovvvvreierieieieeee e 8-3
Address Bits To Be Driven During Asynchronous Host Accesses........... 8-8
SYSCON Control Bits For Host Interface Packingc.ocvevieriens 8-21
Data Bus Lines Used For Different Host Packing Modes 8-25
SYSTAT SEAUS BILS ...t 8-29
LINK POt PINS ..o 9-2
Link Control REGISEr (LCTL)vvueveeeieireineiseisessssississssisessss s 9-6
Link Common Control Register (LCOM) ..o 9-9
Link Assignment RegiSter (LAR) ..o 9-12
Link Service Request Register (LSRQ)cuvvevreereeniineiriiniiniinisiiseis 9-21
Serial POME PINS w..ovicviciieicicic s 10-2
SPORT INEITUPLS ..ocvec e 10-4
SPORT Register Addresses & INItAliZation ... 10-6
STCTLx Transmit Control RegiSter BItSccovvviieieieieieieens 10-9
SRCTLXx Receive Control RegiSter BitS ..., 10-11
Transmit Divisor Register Bit FIeldS ..o, 10-13
Receive Divisor Register Bit FIEldS ..o 10-13
Parameter Registers For Each SPORT DMA Channel...........cccoueu.e. 10-34
SPORT DMA Parameter REGISErSviuiuieieniiniiniiniinieiseienenens 10-35
ADSP-2106x Pin States At RESETc.ccvivininininnesnessssissssieens 11-9
Boot Mode Selection PINS ..o 11-28

xxiii

XXV

Table 11.3
Table 11.4

Table 11.5
Table 11.6

Table B.1
Table B.2
Table B.3
Table B.4
Table B.5
Table B.6
Table B.7

Table C.1
Table D.1

Table E.1
Table E.2
Table E.3
Table E.4
Table E.5
Table E.6
Table E.7

LISTINGS

Listing 9.1
Listing 9.2
Listing 9.3

Listing 10.1
Listing 10.2
Listing 10.3

DMA Channel 6 Parameter Register Initialization

FOr EPROM BOONGcuvieiciieeeisineisieeseie et 11-30
Ext. Port DMA Channel 6 Parameter Register Initialization

FOr HOSt BOOLING +...vvvvieeciicie et 11-33
Data Delays & ThroUGNPULScoveereereieirierineesieseie e 11-46
Latencies & ThrOUGNPULSceurirerienieinreeneneseeese e 11-47

Fixed-Point ALU OPEFatioNScviveereererreneeniieineeineeeeiseseeseeseseissseens
Floating-Point ALU Operationscccoceeeeeneerineenennes

Multiplier OPerationsccceereeererreeereeereeereeneeenees

Multiplier MOA2 OPLONSccevieeeiirieiriiireiee e
Multiplier MOAL OPONSccuvvierecereeireiieiei e
Shifter OPEIAtiONSc.cuireieicieeiree e
Parallel Multiplier/ALU Computations

IEEE Single-Precision Floating-Point Data TYPesccovrierierieneees C-2
TESE INSIIUCHIONS ..o D-3

System Registers (Core Registers)
|OP RegiSters (I/.0 PrOCESSON)vuieiereieierirnirinniisisisre e,
IOP Registers (System Control)

[OP REQISIErS (DMA)ouivriiieireiseiseiseise st
IOP RegiSters (LiNK POIS)c.curiereerieriiriiieinieseisessiseisssississesseens
IOP Registers (Serial Ports) -
IOP Register Addresses, RESET Initialization, & Grouping E-11

Core-Driven EXamPle ..o -
DMA Transfer Example...............
Link Token Passing Example

Non-Interrupt-Driven SPORT Control (Single-Word Transfers) 10-38
Interrupt-Driven SPORT Control (Single-Word Transfers) 10-40
SPORT DMA EXGMPIE ..o 10-42

Introduction B3 1

11 OVERVIEW

The ADSP-2106x SHARC—Super Harvard Architecture Computer—is a
high-performance 32-bit digital signal processor for speech, sound, graphics,
and imaging applications. The SHARC builds on the ADSP-21000 Family
DSP core to form a complete system-on-a-chip, adding a dual-ported on-chip
SRAM and integrated 1/0 peripherals supported by a dedicated 1/0 bus.
With its on-chip instruction cache, the processor can execute every
instruction in a single cycle. Four independent buses for dual data,
instructions, and 1/0, plus crossbar switch memory connections, comprise
the Super Harvard Architecture of the ADSP-2106x.

The ADSP-2106x SHARC represents a new standard of integration for digital
signal processors, combining a high-performance floating-point DSP core
with integrated, on-chip features including a host processor interface, DMA
controller, serial ports, and link port and shared bus connectivity for glueless
DSP multiprocessing.

Figure 1.1 illustrates the Super Harvard Architecture of the ADSP-2106x:

a crossbar bus switch connecting the core numeric processor to an
independent 1/0 processor, dual-ported memory, and parallel system bus
port. Figure 1.2 shows a detailed block diagram of the processor, illustrating
the following architectural features:

32-Bit IEEE Floating-Point Computation Units—Multiplier, ALU, and Shifter
Data Register File

Data Address Generators (DAG1, DAG?2)

Program Sequencer with Instruction Cache

Interval Timer

Dual-Ported SRAM

External Port for Interfacing to Off-Chip Memory & Peripherals
Host Port & Multiprocessor Interface

DMA Controller

Serial Ports

Link Ports

JTAG Test Access Port

Figure 1.2 also shows the three on-chip buses of the ADSP-2106x:

the PM bus (program memory), DM bus (data memory), and 1/0 bus.
The PM bus is used to access either instructions or data. During a
single cycle the processor can access two data operands, one over the
PM bus and one over the DM bus, an instruction (from the cache), and
perform a DMA transfer.

The ADSP-2106x’s external port provides the processor’s interface to
external memory, memory-mapped 1/0, a host processor, and
additional multiprocessing ADSP-2106xs. The external port performs
internal and external bus arbitration as well as supplying control
signals to shared, global memory and 170 devices.

Figure 1.3 illustrates a typical single-processor system. A
multiprocessor system is shown in Chapter 7, Multiprocessing.

Dual-Ported,
Multi-Access
Memory

Parallel
i ~a—— " C ossbar Bus System
N >
Numeric Processor]\ Interconnect Bus
Port

I/O Processor
&
DMA Controller

Figure 1.1 Super Harvard Architecture

T Core Processor N

e Dual-Ported SRAM ™~

DATA y
REGISTER
F FILE % U
16 x 40-Bit
BARREL
MULTIPLIER
SHIFTER ALU

* not available on the ADSP-21061

Figure 1.2 ADSP-2106x SHARC Block Diagram

HOST INTERFACE

6

[76

36

/ﬂ — —
% % TSk=2E owa %
CONTROLLER
10P
REGISTERS
SERIAL PORTS
Control,)]
Status, &
Data Buffers
<:> * LINK(I;)ORTS

~— 1/0 Processor

This user’s manual contains architectural information and an
instruction set description required for the design and programming of
ADSP-2106x-based systems. In addition to this manual, hardware
designers should refer to the ADSP-21060/62 Data Sheet and the
ADSP-21061 Data Sheet for timing, electrical, and package
specifications.

1-3

TIMER ||INSTRUCTION ; —
CACHE °l3 JTAG
KT 28
32 x 48 Bit Two Independent, 2
@ @ Dual-Ported Blocks
Emulation
DAG 1 DAG 2] PROGRAM PROCESSOR PORT I/0 PORT
SEQUENCER ADDR DATA DATA ADDR
8x4x32f] [8x4x24 Ql T Zoy Zos A
External Port
PM Address Bus (PMA) 24 (
| I e =
EPA Bus
DM Address Bus (DMA) 32 T v Mux
MULTIPROCESSOR
PM Data Bus (PMD) 48 L - INTERFACE
Bus PMD
—N I 11 T~ Data 48
L Connect ﬁ DM Data Bus (DMD) _32/4Q ‘ ﬁ U [1T —|° Bus =
®9 pMD Mux

1-4

This manual covers three ADSP-2106x processors: the ADSP-21060,
ADSP-21062, and ADSP-21061. The ADSP-21060 contains 4 megabits of on-
chip SRAM, the ADSP-21062 contains 2 megabits, and the ADSP-21061
contains 1 megabit. The Memory chapter of this manual describes the
differences in memory architecture and programming considerations of the
three processors. All three processors are code- and function-compatible
with the ADSP-21020 processor. With the exception of memory size, the
ADSP-21060 and ADSP-21062 are identical in all other aspects as well.
Besides memory size, there are four differences between these two
processors and the ADSP-21061:

< No link ports on the ADSP-21061

= 6 DMA channels — 4 for serial port and 2 for external port (instead of 4)
= Additional features and changes in DMA for the serial port

= Newidl e 16 instruction for a further reduced power mode

These differences are described in detail in the DMA, Serial Port, and
Program Sequencer chapters.

ADSP-2106x FANEEVANEEPAN
1X CLOCK|—————{ CLKIN
—»{ EBOOT BMS —» > Cs BOOT
—»{ LBOOT 2 2 :>ADDR EPROM
3 | & W (OPTIONAL)
R = x < DATA
7{" Q2.0 Z = = <:>
<« P{FLAG o < 3
TIMEXP
< ADDRy, o= — P
e o v S S | B v
(6 Maximum) X RD |a—p] » OFE
(OPTIONAL) 14— LXDAT,, WR le—p! » WE (OPTIONAL)
ACK re—> |4—| ACK
AC] AC
SERIAL | TCLKO M50) =
DEVICE |] RCLKO PACGE
<—»| TFSO SBTS |4— DMA DEVICE
(OPTIONAL) | gl RFSO SW rt—> (OPTIONAL)
- DTO ADRCLK W DATA
» DRO - \'/:,\V I
DMAR 1.5 | 4—f T
SERIAL | €] TCLKL DMAG . [——
«4—p{ RCLK1 e
DEVICE | V| 1rs1 _CS |4— HOST
(opTIoNAL) | & S Rret HBR |#— |4— —| PROCESSOR
il ety HBG 14— > INTERFACE
o o REDY —W P (opTiONAL)
BRy¢ lt—]
—»{ RPBA Wi’f q— — L0
—» D, _ K) DATA
RESET JTAG
AV VARV

3

Figure 1.3 ADSP-2106x System

1.2 ADSP-21000 FAMILY FEATURES & BENEFITS

The ADSP-2106x SHARC processors belong to the ADSP-21000 Family of
floating-point digital signal processors (DSPs). The ADSP-21000
Family architecture further addresses the five central requirements for
DSPs established in the ADSP-2100 Family of 16-bit fixed-point DSPs:

Fast, flexible arithmetic computation units

Unconstrained data flow to and from the computation units
Extended precision and dynamic range in the computation units
Dual address generators

Efficient program sequencing

Fast, Flexible Arithmetic. The ADSP-21000 Family processors execute
all instructions in a single cycle. They provide both fast cycle times and
a complete set of arithmetic operations including Seed 1/X, Seed 1/vX,
Min, Max, Clip, Shift, and Rotate, in addition to the traditional
multiplication, addition, subtraction, and combined multiplication/
addition. The processors are IEEE floating-point compatible and allow
either interrupt on arithmetic exception or latched status exception
handling.

Unconstrained Data Flow. The ADSP-2106x has an enhanced Harvard
architecture combined with a 10-port data register file. In every cycle:

Two operands can be read or written to or from the register file,
Two operands can be supplied to the ALU,

Two operands can be supplied to the multiplier, and

Two results can be received from the ALU and multiplier.

The processor’s 48-bit orthogonal instruction word supports fully
parallel data transfer and arithmetic operations in the same instruction.

40-Bit Extended Precision. The ADSP-21000 Family processors handle
32-bit IEEE floating-point format, 32-bit integer and fractional formats
(twos-complement and unsigned), and extended-precision 40-bit IEEE
floating-point format. The processors carry extended precision
throughout their computation units, limiting intermediate data
truncation errors. When working with data on-chip, the
extended-precision 32-bit mantissa can be transferred to and from all
computation units. The 40-bit data bus may be extended off-chip if
desired. The fixed-point formats have an 80-bit accumulator for true
32-bit fixed-point computations.

Dual Address Generators. The ADSP-21000 Family processors have
two data address generators (DAGS) that provide immediate or
indirect (pre- and post-modify) addressing. Modulus and bit-reverse
operations are supported with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
ADSP-21000 Family processors support single-cycle setup and exit for
loops. Loops are both nestable (six levels in hardware) and
interruptable. The processors support both delayed and non-delayed
branches.

121 System-Level Enhancements

The ADSP-21000 Family processors include several enhancements that
simplify system development. The enhancements occur in three key
areas:

= Architectural features supporting high-level languages and operating
systems

= |EEE 1149.1 JTAG serial scan path and on-chip emulation features

= Support of IEEE floating-point formats

High Level Languages. The ADSP-21000 Family architecture has
several features that directly support high-level language compilers
and operating systems:

General purpose data and address register files
32-bit native data types

Large address space

Pre- and post-modify addressing
Unconstrained circular data buffer placement
On-chip program, loop, and interrupt stacks

Additionally, the ADSP-21000 Family architecture is designed
specifically to support ANSI-standard Numerical C extensions—the
first compiled language to support vector data types and operators for
numeric and signal processing.

Serial Scan and Emulation Features. The ADSP-21000 Family
processors support the IEEE standard P1149.1 Joint Test Action Group
(JTAG) standard for system test. This standard defines a method for
serially scanning the 1/0 status of each component in a system. The
JTAG serial port is also used by the ADSP-2106x EZ-ICE to gain access
to the processor’s on-chip emulation features.

IEEE Formats. The ADSP-21000 Family processors support IEEE
floating-point data formats. This means that algorithms developed on
IEEE-compatible processors and workstations are portable across
processors without concern for possible instability introduced by
biased rounding or inconsistent error handling.

122 Why Floating-Point DSP?

A digital signal processor’s data format determines its ability to handle
signals of differing precision, dynamic range, and signal-to-noise
ratios. However, ease-of-use and time-to-market considerations are
often equally important.

Precision. The number of bits of precision of A/D converters has
continued to increase, and the trend is for both precision and sampling
rates to increase.

Dynamic Range. Compression and decompression algorithms have
traditionally operated on signals of known bandwidth. These
algorithms were developed to behave regularly, to keep costs down
and implementations easy. Increasingly, however, the trend in
algorithm development is not to constrain the regularity and dynamic
range of intermediate results. Adaptive filtering and imaging are two
applications requiring wide dynamic range.

Signal-to-Noise Ratio. Radar, sonar and even commercial applications
like speech recognition require wide dynamic range in order to discern
selected signals from noisy environments.

Ease-of-Use. In general, 32-bit floating-point DSPs are easier to use
and allow a quicker time-to-market than 16-bit fixed-point processors.
The extent to which this is true depends on the floating-point
processor’s architecture. Consistency with IEEE workstation
simulations and the elimination of scaling are two clear ease-of-use
advantages. High-level language programmability, large address
spaces, and wide dynamic range allow system development time to be
spent on algorithms and signal processing concerns rather than
assembly language coding, code paging, and error handling.

13 ADSP-2106X ARCHITECTURE

The following sections summarize the features of the ADSP-2106x
SHARC architecture. These features are described in greater detail in
succeeding chapters.

1.3.1 Core Processor

The core processor of the ADSP-2106x consists of three computation
units, a program sequencer, two data address generators, timer,
instruction cache, and data register file.

1.31.1 Computation Units

The ADSP-2106x core processor contains three independent
computation units: an ALU, a multiplier with a fixed-point
accumulator, and a shifter. For meeting a wide variety of processing
needs, the computation units process data in three formats: 32-bit
fixed-point, 32-bit floating-point and 40-bit floating-point. The floating-
point operations are single-precision IEEE-compatible. The 32-bit
floating-point format is the standard IEEE format, whereas the 40-bit
IEEE extended-precision format has eight additional LSBs of mantissa
for greater accuracy.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply/add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and
extraction and exponent derivation operations on 32-bit operands.

The computation units perform single-cycle operations; there is no
computation pipeline. The units are connected in parallel rather than
serially. The output of any unit may be the input of any unit on the
next cycle. In a multifunction computation, the ALU and multiplier
perform independent, simultaneous operations.

1.31.2 Data Register File

A general-purpose data register file is used for transferring data
between the computation units and the data buses, and for storing
intermediate results. The register file has two sets (primary and
alternate) of sixteen registers each, for fast context switching. All of the
registers are 40 bits wide. The register file, combined with the core
processor’s Harvard architecture, allows unconstrained data flow
between computation units and internal memory.

1.3.1.3 Program Sequencer & Data Address Generators

Two dedicated address generators and a program sequencer supply
addresses for memory accesses. Together the sequencer and data
address generators allow computational operations to execute with
maximum efficiency since the computation units can be devoted
exclusively to processing data. With its instruction cache, the
ADSP-2106x can simultaneously fetch an instruction (from the cache)
and access two data operands (from memory). The data address
generators implement circular data buffers in hardware.

The program sequencer supplies instruction addresses to program
memory. It controls loop iterations and evaluates conditional
instructions. With an internal loop counter and loop stack, the
ADSP-2106x executes looped code with zero overhead. No explicit
jump instructions are required to loop or to decrement and test the
counter.

The ADSP-2106x achieves its fast execution rate by means of pipelined
fetch, decode and execute cycles. If external memories are used, they are

allowed more time to complete an access than if there were no decode
cycle.

The data address generators (DAGSs) provide memory addresses when
data is transferred between memory and registers. Dual data address
generators enable the processor to output simultaneous addresses for
two operand reads or writes. DAGL1 supplies 32-bit addresses to data
memory. DAG2 supplies 24-bit addresses to program memory for
program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers
and eight length values. A pointer used for indirect addressing can be
modified by a value in a specified register, either before (pre-modify)
or after (post-modify) the access. A length value may be associated
with each pointer to perform automatic modulo addressing for circular
data buffers; the circular buffers can be located at arbitrary boundaries
in memory. Each DAG register has an alternate register that can be
activated for fast context switching.

Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing, and are
commonly used in digital filters and Fourier transforms. The DAGs
automatically handle address pointer wraparound, reducing overhead,
increasing performance, and simplifying implementation.

1.3.1.4 Instruction Cache

The program sequencer includes a 32-word instruction cache that
enables three-bus operation for fetching an instruction and two data
values. The cache is selective—only instructions whose fetches conflict
with program memory data accesses are cached. This allows full-speed
execution of core, looped operations such as digital filter
multiply-accumulates and FFT butterfly processing.

1.3.1.5 Interrupts

The ADSP-2106x has four external hardware interrupts: three
general-purpose interrupts, IRQ,._g, and a special interrupt for reset.
The processor also has internally generated interrupts for the timer,
DMA controller operations, circular buffer overflow, stack overflows,
arithmetic exceptions, multiprocessor vector interrupts, and
user-defined software interrupts.

For the general-purpose external interrupts and the internal timer
interrupt, the ADSP-2106x automatically stacks the arithmetic status
and mode (MODEZ1) registers in parallel with the interrupt servicing,
allowing four nesting levels of very fast service for these interrupts.

1.3.1.6 Timer

The programmable interval timer provides periodic interrupt
generation. When enabled, the timer decrements a 32-bit count register
every cycle. When this count register reaches zero, the ADSP-2106x
generates an interrupt and asserts its TIMEXP output. The count
register is automatically reloaded from a 32-bit period register and the
count resumes immediately.

1.3.1.7 Core Processor Buses

The processor core has four buses: Program Memory Address, Data
Memory Address, Program Memory Data, and Data Memory Data.
On the ADSP-2106x processors, data memory stores data operands
while program memory is used to store both instructions and data
(filter coefficients, for example)—this allows dual data fetches, when
the instruction is supplied by the cache.

The PM Address bus and DM Address bus are used to transfer the
addresses for instructions and data. The PM Data bus and DM Data
bus are used to transfer the data or instructions stored in each type of
memory. The PM Address bus is 24 bits wide allowing access of up to
16M words of mixed instructions and data. The PM Data bus is 48 bits
wide to accommodate the 48-bit instruction width. Fixed-point and
single-precision floating-point data is aligned to the upper 32 bits of
the PM Data bus.

The DM Address bus is 32 bits wide allowing direct access of up to

4G words of data. The DM Data bus is 40 bits wide. Fixed-point and
single-precision floating-point data is aligned to the upper 32 bits of
the DM Data bus. The DM Data bus provides a path for the contents of
any register in the processor to be transferred to any other register or
to any data memory location in a single cycle. The data memory
address comes from one of two sources: an absolute value specified in
the instruction code (direct addressing) or the output of a data address
generator (indirect addressing).

1.3.1.8 Internal Data Transfers

Nearly every register in the core processor of the ADSP-2106x is
classified as a universal register. Instructions are provided for
transferring data between any two universal registers or between a
universal register and memory. This includes control registers and
status registers, as well as the data registers in the register file.

The PX bus connect registers permit data to be passed between the
48-bit PM Data bus and the 40-bit DM Data bus or between the 40-bit
register file and the PM Data bus. These registers contain hardware to
handle the 8-bit width difference.

1.3.1.9 Context Switching

Many of the processor’s registers have alternate registers that can be
activated during interrupt servicing to facilitate a fast context switch.
The data registers in the register file, the DAG registers, and the
multiplier result register all have alternates. Registers active at reset
are called primary registers, while the others are called alternate (or
secondary) registers. Control bits in a mode control register determine
which set of registers is active at any particular time.

1.3.1.10 Instruction Set

The ADSP-21000 Family instruction set provides a wide variety of
programming capabilities. Multifunction instructions enable
computations in parallel with data transfers, as well as simultaneous
multiplier and ALU operations. The addressing power of the
ADSP-2106x gives you flexibility in moving data both internally and
externally. Every instruction can be executed in a single processor
cycle. The ADSP-21000 Family assembly language uses an algebraic
syntax for ease of coding and readability. A comprehensive set of
development tools supports program development.

1.3.2 Dual-Ported Internal Memory

The ADSP-21060 contains 4 megabits of on-chip SRAM, organized as
two blocks of 2 Mbits each, which can be configured for different
combinations of code and data storage. The ADSP-21062 includes a

2 Mbit SRAM, organized as two 1 Mbit blocks. Each memory block is
dual-ported for single-cycle, independent accesses by the core
processor and 1/0 processor or DMA controller. The dual-ported
memory and separate on-chip buses allow two data transfers from the
core and one from 1/0, all in a single cycle.

All of the memory can be accessed as 16-bit, 32-bit, or 48-bit words.
On the ADSP-21060, the memory can be configured as a maximum of
128K words of 32-bit data, 256K words of 16-bit data, 80K words of
48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 4 megabits. On the ADSP-21062, the memory can be
configured as a maximum of 64K words of 32-bit data, 128K words of
16-bit data, 40K words of 48-bit instructions (and 40-bit data), or
combinations of different word sizes up to 2 megabits. On the ADSP-
21061, the memory can be configured as a maximum of 32K words of
32-bit data, 64K words of 16-bit data, 16K words of 48-bit instructions
(and 40-bit data), or combinations of different word sizes up to 1
megabit.

A 16-bit floating-point storage format is supported which effectively
doubles the amount of data that may be stored on chip. Conversion
between the 32-bit floating-point and 16-bit floating-point formats is
done in a single instruction.

While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, using the

DM bus for transfers, and the other block stores instructions and data,
using the PM bus for transfers. Using the DM bus and PM bus in this
way, with one dedicated to each memory block, assures single-cycle
execution with two data transfers. In this case, the instruction must be
available in the cache. Single-cycle execution is also maintained when
one of the data operands is transferred to or from off-chip, via the
ADSP-2106x’s external port.

1.3.3 External Memory & Peripherals Interface

The ADSP-2106x’s external port provides the processor’s interface to
off-chip memory and peripherals. The 4-gigaword off-chip address
space is included in the ADSP-2106x’s unified address space. The
separate on-chip buses—for PM addresses, PM data, DM addresses,
DM data, 1/0 addresses, and 1/0 data—are multiplexed at the
external port to create an external system bus with a single 32-bit
address bus and a single 48-bit data bus. External SRAM can be either
16, 32, or 48 bits wide; the ADSP-2106x’s on-chip DMA controller
automatically packs external data into the appropriate word width,
either 48-bit instructions or 32-bit data.

Addressing of external memory devices is facilitated by on-chip
decoding of high-order address lines to generate memory bank select
signals. Separate control lines are also generated for simplified
addressing of page-mode DRAM. The ADSP-2106x provides
programmable memory wait states and external memory acknowledge
controls to allow interfacing to DRAM and peripherals with variable
access, hold, and disable time requirements.

1.3.4 Host Processor Interface

The ADSP-2106x’s host interface allows easy connection to standard
microprocessor buses, both 16-bit and 32-bit, with little additional
hardware required. Asynchronous transfers at speeds up to the full
clock rate of the ADSP-2106x are supported. The host interface is
accessed through the ADSP-2106x’s external port and is memory-
mapped into the unified address space. Four channels of DMA are
available for the host interface; code and data transfers are
accomplished with low software overhead. The host can directly read
and write the internal memory of the ADSP-2106x, and can access the
DMA channel setup and mailbox registers. Vector interrupt support is
provided for efficient execution of host commands.

1.3.5 Multiprocessing

The ADSP-2106x offers powerful features tailored to multiprocessing
DSP systems. The unified address space allows direct interprocessor
accesses of each ADSP-2106x’s internal memory. Distributed bus
arbitration logic is included on-chip for simple, glueless connection of
systems containing up to six ADSP-2106xs and a host processor.
Master processor changeover incurs only one cycle of overhead. Bus
arbitration is selectable as either fixed or rotating priority. Processor
bus lock allows indivisible read-modify-write sequences for semaphores.
A vector interrupt capability is provided for interprocessor commands.
Maximum throughput for interprocessor data transfer is

240 Mbytes/sec over the link ports or external port. Broadcast writes
allow simultaneous transmission of data to all ADSP-2106xs and can
be used to implement reflective semaphores.

1.3.6 I/O Processor

The ADSP-2106x’s 1/0 Processor (IOP) includes two serial ports, six
4-bit link ports, and a DMA controller.

1.3.6.1 Serial Ports

The ADSP-2106x features two synchronous serial ports that provide an
inexpensive interface to a wide variety of digital and mixed-signal
peripheral devices. The serial ports can operate at the full clock rate of
the processor, providing each with a maximum data rate of 40 Mbit/s.
Independent transmit and receive functions provide greater flexibility
for serial communications. Serial port data can be automatically
transferred to and from on-chip memory via DMA. Each of the serial
ports offers a TDM multichannel mode.

The serial ports can operate with little-endian or big-endian
transmission formats, with word lengths selectable from 3 to 32 bits.
They offer selectable synchronization and transmit modes as well as
optional p-law or A-law companding. Serial port clocks and frame
syncs can be internally or externally generated.

1.3.6.2 Link Ports

The ADSP-21062 and ADSP-21060 feature six 4-bit link ports that
provide additional 1/0 capabilities. The link ports can be clocked twice
per cycle, allowing each to transfer 8 bits per cycle. Link port I/0 is
especially useful for point-to-point interprocessor communication in
multiprocessing systems.

The link ports can operate independently and simultaneously, with a
maximum data throughput of 240 Mbytes/s. Link port data is packed
into 32-bit or 48-bit words, and can be directly read by the core
processor or DMA-transferred to on-chip memory. Each link port has
its own double-buffered input and output registers.
Clock/acknowledge handshaking controls link port transfers.
Transfers are programmable as either transmit or receive.

There are no link ports on the ADSP-21061.

1.3.6.3 DMA Controller

The ADSP-2106x’s on-chip DMA controller allows zero-overhead data
transfers without processor intervention. The DMA controller operates
independently and invisibly to the processor core, allowing DMA
operations to occur while the core is simultaneously executing its
program. Both code and data can be downloaded to the ADSP-2106x
using DMA transfers.

DMA transfers can occur between the ADSP-2106x’s internal memory
and external memory, external peripherals, or a host processor. DMA
transfers can also occur between the ADSP-2106x’s internal memory
and its serial ports or link ports. DMA transfers between external
memory and external peripheral devices are another option. External
bus packing to 16, 32, or 48-bit words is automatically performed
during DMA transfers.

Ten channels of DMA are available on the ADSP-21060 and
ADSP-21062—two via the link ports, four via the serial ports, and four
via the processor’s external port (for either host processor, other
ADSP-2106xs, memory or 1/0 transfers). Four additional link port
DMA channels are shared with serial port 1 and the external port.
There are six channels of DMA available on the ADSP-21061—four via
the serial ports and two via the external port. Asynchronous off-chip
peripherals can control two DMA channels using DMA Request/Grant
lines (DMAR7., , DMAG,_,). Other DMA features include interrupt
generation upon completion of DMA transfers and DMA chaining for
automatic linked DMA transfers.

The ten DMA channels of the ADSP-21060 and ADSP-21062 are
numbered as shown below:

DMA Data

Channel# Buffer Description

DMA Channel 0 RX0 Serial Port 0 Receive

DMA Channel 1 RX1 (or LBUFO) Serial Port 1 Receive (or Link Buffer 0)
DMA Channel 2 TX0 Serial Port 0 Transmit

DMA Channel 3~ TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)
DMA Channel 4 LBUF2 Link Buffer 2

DMA Channel 5 LBUF3 Link Buffer 3

DMA Channel 6 EPBO (or LBUF4) Ext. Port FIFO Buffer O (or Link Buffer 4)
DMA Channel 7* EPBL (or LBUF5) Ext. Port FIFO Buffer 1 (or Link Buffer 5)
DMA Channel 8 * EPB2 Ext. Port FIFO Buffer 2

DMA Channel 9 EPB3 Ext. Port FIFO Buffer 3

* DMARI1 and DMAGL1 are handshake controls for DMA Channel 7.
DMAR2 and DMAG?2 are handshake controls for DMA Channel 8.

1.3.6.4 Booting

The internal memory of the ADSP-2106x can be booted at system
powerup from an 8-bit EPROM or a host processor. Additionally, the
ADSP-21060 and the ADSP-21062 can also be booted through one of
the link ports. Selection of the boot source is controlled by the BMS,
EBOOT, and LBOOT pins. Both 32-bit and 16-bit host processors can
be used for booting.

14 DEVELOPMENT TOOLS

The ADSP-2106x is supported with a complete set of software and
hardware development tools, including an EZ-LABU Evaluation
Board, EZ-ICEU In-Circuit Emulator, and development software. The
development software provides tools for programming and debugging
applications in both assembly language and C. The EZ-ICE emulator
allows system integration and hardware/software debugging. Figure
1.4 shows the process of developing an application using the
development tools.

The development software includes an ANSI C Compiler. The
compiler includes Numerical C extensions based on the work of the
ANSI NCEG committee (Numerical C Extensions Group).

Numerical C provides extensions to the C language for array selection,
vector math operations, complex data types, circular pointers, and
variably-dimensioned arrays. Other components of the development
software include a C Runtime Library with custom DSP functions, C
and assembly language Debugger, Assembler, Assembly Library/
Librarian, Linker, and Simulator.

Step 1:
DESCRIBE ARCHITECTURE

Step 2: ’ ANSI Assembler
GEEERATE CODE C COMPILER Source File)| AssemBLER

System
Architecture
File

Executable
File

Step 3:
EZ-LAB EVALUATION BOARD
DEBUG SOFTWARE 3 or SOFTWARE :
3RD-PARTY PC PLUG-IN CARD SIMULATOR
Step 4:
DEBUG IN TARGET SYSTEM |K———— eziceemutator [K—=—— Target e
oart

Tested &
Debugged
DSP System

EPROM/Host/
Link Boot File

Step 5:
MANUFACTURE FINAL SYSTEM

Q: BOOT LOADER [('————

O = User File or Hardware I:l = Software Development Tools C) = Hardware Development Tools

Figure 1.4 System Design and Development Process

The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG test
access port of the ADSP-2106x processor to monitor and control the
target board processor during emulation. The EZ-ICE provides full-
speed emulation, allowing inspection and modification of memory,
registers, and processor stacks. Non-intrusive in-circuit emulation is
assured by the use of the processor’s JTAG interface—the emulator
does not affect target system loading or timing.

Further details and ordering information are available in the
ADSP-21000 Family Hardware & Software Development Tools data sheet.
This data sheet can be requested from any Analog Devices sales office
or distributor.

15 MESH MULTIPROCESSING

Mesh multiprocessing is a parallel processing system architecture that
offers high throughput, system flexibility, and software simplicity. The
ADSP-21060 and ADSP-21062 SHARC processors include features
which specifically support this system architecture. Mesh
multiprocessing systems are suited to a wide variety of applications
including wide-area airborne radar systems, interactive medical
imaging, virtual reality, high-speed engineering simulations, neural
networks, and solutions of large systems of linear equations.

16 ADDITIONAL LITERATURE

The following publications can be ordered from any Analog Devices
sales office.

ADSP-21060/62 SHARC Data Sheet

ADSP-21061 SHARC Data Sheet

ADSP-21000 Family Hardware & Software Development Tools Data Sheet
ADSP-21000 Family Assembler Tools & Simulator Manual

ADSP-21000 Family C Tools Manual

ADSP-21000 Family C Runtime Library Manual

ADSP-21000 Family Applications Handbook, Vol. 1

Computation Units [2

2.1 OVERVIEW

The computation units of the ADSP-2106x provide the numeric processing
power for performing DSP algorithms. The ADSP-2106x contains three
computation units: an arithmetic/logic unit (ALU), a multiplier and a
shifter. Both fixed-point and floating-point operations are supported by
the processor. Each computation unit executes instructions in a single
cycle.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply/add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and extraction
operations on 32-bit operands and can derive exponents as well.

The computation units are architecturally arranged in parallel, as shown
in Figure 2.1 on the next page. The output of any computation unit may be
the input of any computation unit on the next cycle. The computation
units input data from and output data to a 10-port register file that
consists of sixteen primary registers and sixteen alternate registers. The
register file is accessible to the ADSP-2106x program and data memory
data buses for transferring data between the computation units and
external memory or other parts of the processor.

The individual registers of the register file are prefixed with an “F” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “R” when used in fixed-point
computations. The following instructions, for example, use the same
registers:

FO=F1* F2; floating-point multiply
RO=R1* R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer; they
only determine how the ALU, multiplier, or shifter treat the data. The F or
R may be either uppercase or lowercase; the assembler is case-insensitive.

PM Data Bus

3
DM Data Bus
A
]]
REGISTER
]] FILE v]] J]
MULTIPLIER SHIFTER ALU
16 x 40-bit
y -t
|MR2 |MR1 |MRO | \

Figure 2.1 Computation Units

This chapter covers the following topics:

= Data Formats and Rounding

= ALU Architecture and Functions

= Multiplier Architecture and Functions
= Shifter Architecture and Functions

< Multifunction Computations

= Register File and Data Transfers

2.2 IEEE FLOATING-POINT OPERATIONS

The ADSP-2106x multiplier and ALU support the single-precision
floating-point format specified in the IEEE 754/854 standard. This
standard is described in Appendix C, Numeric Formats. The ADSP-2106x is
IEEE 754/854 compatible for single-precision floating-point operations in
all respects except that:

= The ADSP-2106x does not provide inexact flags.

< NAN (“Not-A-Number”) inputs generate an invalid exception and
return a quiet NAN (all 1s).

= Denormal operands are flushed to zero when input to a computation unit
and do not generate an underflow exception. Any denormal or
underflow result from an arithmetic operation is flushed to zero and an
underflow exception is generated.

= Round-to-nearest and round-toward-zero modes are supported.
Rounding to +Infinity and rounding to —Infinity are not supported.

In addition, the ADSP-2106x supports a 40-bit extended precision floating-
point mode, which has eight additional LSBs of the mantissa and is
compliant with the 754/854 standards; however, results in this format are
more precise than the IEEE single-precision standard specifies.

221 Extended Floating-Point Precision

Floating-point data can be either 32 or 40 bits wide on the ADSP-2106x.
Extended precision floating-point format (8 bits of exponent and 32 bits of
mantissa) is selected if the RND32 bit in the MODEL1 register is cleared (0).
If this bit is set (1), then normal IEEE precision is used (8 bits exponent and
24 bits of mantissa). In this case, the computation unit sets the eight LSBs of
floating-point inputs to zeros before performing the operation. The
mantissa of a result is rounded to 23 bits (not including the hidden bit) and
the 8 LSBs of the 40-bit result are set to zeros to form a 32-bit number that is
equivalent to the IEEE standard result.

2.2.2 Short Word Floating-Point Format

The ADSP-2106x supports a 16-bit floating-point data type and provides
conversion instructions for it. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

Two shifter instructions, FPACK and FUNPACK, perform the packing
and unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE
floating-point number to a 16-bit floating-point number. FUNPACK
converts the 16-bit floating-point numbers back to 32-bit IEEE floating-
point. Each instruction executes in a single cycle.

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including
“hidden” 1) is right-shifted the appropriate amount. The packed result is a
denormal which can be unpacked into a normal IEEE floating-point
number.

2.2.3 Floating-Point Exceptions

The multiplier and ALU each provide exception information when
executing floating-point operations. Each unit updates overflow,
underflow and invalid operation flags in the arithmetic status (ASTAT)
register and in the sticky status (STKY) register. An underflow, overflow
or invalid operation from any unit also generates a maskable interrupt.
Thus, there are three ways to handle floating-point exceptions:

= Interrupts. The exception condition is handled immediately in an
interrupt service routine. You would use this method if it was important
to correct all exceptions as they happen.

= ASTAT register. The exception flags in the ASTAT register pertaining
to a particular arithmetic operation are tested after the operation is
performed. You would use this method to monitor a particular floating-
point operation.

= STKY register. Exception flags in the STKY register are examined at the
end of a series of operations. If any flags are set, some of the results are
incorrect. You would use this method if exception handling was not
critical.

2.3 FIXED-POINT OPERATIONS

Fixed-point numbers are always represented in 32 bits and are left-
justified (occupy the 32 MSBs) in the 40-bit data fields of the ADSP-2106x.
They may be treated as fractional or integer numbers and as unsigned or
twos-complement. Each computation unit has its own limitations on how
these formats may be mixed for a given operation. The computation units
read 32-bit operands from 40-bit registers, ignoring the 8 LSBs, and write
32-bit results, zeroing the 8 LSBs.

2.4 ROUNDING

Two modes of rounding are supported in the ADSP-2106x: round-toward-
zero and round-toward-nearest. The rounding modes follow the IEEE 754
standard definitions, which are briefly stated as follows:

Round-Toward-Zero. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to zero. This is equivalent to truncation.

Round-Toward-Nearest. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to the result before rounding. If the result before rounding is
exactly halfway between two numbers in the destination format (differing by
an LSB), the rounded result is that number which has an LSB equal to zero.
Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB less
than the value that represents Infinity, a result that is halfway between the
maximum floating-point value and Infinity rounds to Infinity in this mode.

The rounding mode for all ALU operations and for floating-point multiplier
operations is determined by the TRUNC bit in the MODE1 register. If the
TRUNC bit is set, the round-to-zero mode is selected; otherwise, the round-
to-nearest mode is used.

For fixed-point multiplier operations on fractional data, the same two
rounding modes are supported, but only the round-to-nearest operation is
actually performed by the multiplier. Because the multiplier has a local result
register for fixed-point operations, rounding-to-zero is accomplished
implicitly by reading only the upper bits of the result and discarding the
lower bits.

2.5 ALU

The ALU performs arithmetic operations on fixed-point or floating-point data
and logical operations on fixed-point data. ALU fixed-point instructions
operate on 32-bit fixed-point operands and output 32-bit fixed-point results.
ALU floating-point instructions operate on 32-bit or 40-bit floating-point
operands and output 32-bit or 40-bit floating-point results.

ALU instructions include:

= Floating-point addition, subtraction, add/subtract, average

= Fixed-point addition, subtraction, add/subtract, average

= Floating-point manipulation: binary log, scale, mantissa

= Fixed-point add with carry, subtract with borrow, increment, decrement
= Logical AND, OR, XOR, NOT

= Functions: Absolute value, pass, min, max, clip, compare

= Format conversion

= Reciprocal and reciprocal square root primitives

Dual add/subtract and parallel ALU and multiplier operations are described
under “Multifunction Computations,” later in this chapter.

251 ALU Operation

The ALU takes one or two input operands, called the X input and the Y
input, which can be any data registers in the register file. It usually returns
one result; in add/subtract operations it returns two results, and in
compare operations it returns no result (only flags are updated). ALU
results can be returned to any location in the register file.

Input operands are transferred from the register file during the first half of
the cycle. Results are transferred to the register file during the second half
of the cycle. Thus the ALU can read and write the same register file
location in a single cycle.

If the ALU operation is fixed-point, the X input and Y input are each
treated as a 32-bit fixed-point operand. The upper 32 bits from the source
location in the register file are transferred. For fixed-point operations, the
result(s) are always 32-bit fixed-point values. Some floating-point
operations (LOGB, MANT and FIX) can also yield fixed-point results.
Fixed-point results are transferred to the upper 32 bits of register file. The
lower eight bits of the register file destination are cleared.

The format of fixed-point operands and results depends on the operation.
In most arithmetic operations, there is no need to distinguish between
integer and fractional formats. Fixed-point inputs to operations such as
scaling a floating-point value are treated as integers. For purposes of
determining status such as overflow, fixed-point arithmetic operands and
results are treated as twos-complement numbers.

25.2 ALU Operating Modes

The ALU is affected by three bits in the MODEL1 register; the ALU
saturation bit affects ALU operations that yield fixed-point results, and the
rounding mode and rounding boundary bits affect floating-point
operations in both the ALU and multiplier.

MODE1

Bit Name Function

13 ALUSAT 1=Enable ALU saturation (full scale in fixed-point)
0=Disable ALU saturation

15 TRUNC 1=Truncation; 0=Round to nearest

16 RND32 1=Round to 32 bits; 0=Round to 40 bits

2.5.2.1 Saturation Mode

In saturation mode, all positive fixed-point overflows cause the maximum
positive fixed-point number (0x7FFF FFFF) to be returned, and all
negative overflows cause the maximum negative number (0x8000 0000) to
be returned. If the ALUSAT bit is set, fixed-point results that overflow are
saturated. If the ALUSAT bit is cleared, fixed-point results that overflow
are not saturated; the upper 32 bits of the result are returned unaltered.
The ALU overflow flag reflects the ALU result before saturation.

2.5.2.2 Floating-Point Rounding Modes

The ALU supports two IEEE rounding modes. If the TRUNC bit is set, the
ALU rounds a result to zero (truncation). If the TRUNC bit is cleared, the
ALU rounds to nearest.

2.5.2.3 Floating-Point Rounding Boundary

The results of floating-point ALU operations can be either 32-bit or 40-bit
floating-point data on the ADSP-2106x. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before the ALU operation
is performed (except for the RND operation), and ALU floating-point
results are output in the 32-bit IEEE format. The lower eight bits of the
result are cleared. If the RND32 bit is cleared, the ALU inputs 40-bit
operands unchanged and outputs 40-bit results from floating-point
operations, and all 40 bits are written to the specified register file location.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

253 ALU Status Flags

The ALU updates seven status flags in the ASTAT register, shown below,
at the end of each operation. The states of these flags reflect the result of
the most recent ALU operation. The ALU updates the Compare
Accumulation bits in ASTAT at the end of every Compare operation. The
ALU also updates four “sticky” status flags in the STKY register. Once set,
a sticky flag remains high until explicitly cleared.

ASTAT

Bit Name Definition

0 AZ ALU result zero or floating-point underflow

1 AV ALU overflow

2 AN ALU result negative

3 AC ALU fixed-point carry

4 AS ALU X input sign (ABS, MANT operations)

5 Al ALU floating-point invalid operation

10 AF Last ALU operation was a floating-point operation

31-24 CACC Compare Accumulation register (results of last 8 compare
operations)

STKY

Bit Name Definition

0 AUS ALU floating-point underflow

1 AVS ALU floating-point overflow

2 AOS ALU fixed-point overflow

5 AlS ALU floating-point invalid operation

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the ALU is performing
an operation, the explicit write to ASTAT or STKY supersedes any flag
update from the ALU operation.

2531 ALU Zero Flag (AZ)

The zero flag is determined for all fixed-point and floating-point ALU
operations. AZ is set whenever the result of an ALU operation is zero.
AZ also signifies floating-point underflow; see the next section. It is
otherwise cleared.

2.5.3.2 ALU Underflow Flag (AZ, AUS)

Underflow is determined for all ALU operations that return a floating-
point result and for floating-point to fixed-point conversion. AUS is set
whenever the result of an ALU operation is smaller than the smallest
number representable in the output format. AZ is set whenever a
floating-point result is smaller than the smallest number representable in
the output format.

2.5.3.3 ALU Negative Flag (AN)

The negative flag is determined for all ALU operations. It is set whenever
the result of an ALU operation is negative. It is otherwise cleared.

2.5.3.4 ALU Overflow Flag (AV, AOS, AVS)

Overflow is determined for all fixed-point and floating-point ALU
operations. For fixed-point results, AV and AOS are set whenever the
XOR of the two most significant bits is a 1; otherwise AV is cleared. For
floating-point results AV and AVS are set whenever the post-rounded
result overflows (unbiased exponent > 127); otherwise AV is cleared.

2.5.3.5 ALU Fixed-Point Carry Flag (AC)

The carry flag is determined for all fixed-point ALU operations. For
fixed-point arithmetic operations, AC is set if there is a carry out of most
significant bit of the result, and is otherwise cleared. AC is cleared for
fixed-point logic, PASS, MIN, MAX, COMP, ABS, and CLIP operations.
The ALU reads the AC flag in fixed-point addition with carry and
fixed-point subtraction with carry operations.

2.5.3.6 ALU Sign Flag (AS)

The sign flag is determined for only the fixed-point and floating-point
ABS operations and the MANT operation. AS is set if the input operand is
negative. It is otherwise cleared. The ALU clears AS for all operations
other than ABS and MANT operations; this is different from the operation
of ADSP-2100 family processors, which do not update the AS flag on
operations other than ABS.

2537 ALU Invalid Flag (Al)

The invalid flag is determined for all floating-point ALU operations.
Al and AIS are set whenever

= an input operand is a NAN

= an addition of opposite-signed Infinities is attempted

= a subtraction of like-signed Infinities is attempted

= when saturation mode is not set, a floating-point to fixed-point
conversion results in an overflow or operates on an Infinity.

Al is otherwise cleared.

2.5.3.8 ALU Floating-Point Flag (AF)

AF is determined for all fixed-point and floating-point ALU operations. It
is set if the last operation was a floating-point operation; it is otherwise
cleared.

2.5.3.9 Compare Accumulation

Bits 31-24 in the ASTAT register store the flag results of up to eight ALU
compare operations. These bits form a right-shift register. When an ALU
compare operation is executed, the eight bits are shifted toward the LSB
(bit 24 is lost). The MSB, bit 31, is then written with the result of the
compare operation. If the X operand is greater than the Y operand in the
compare instruction, bit 31 is set; it is cleared otherwise. The accumulated
compare flags can be used to implement 2- and 3-dimensional clipping
operations for graphics applications.

254 ALU Instruction Summary

Instruction ASTAT Status Flags STKY Status Flags

Fixed-point: AZ AV AN AC AS Al AF CACC AUS AVS AOS AIS

¢ Rn=Rx+Ry 0 0 0o - - = W

¢ Rn=Rx-Ry *x

¢ Rn=Rx+Ry+Cl

¢ Rn=Rx-Ry+Cl-1
Rn = (Rx + Ry)/2
COMP(Rx, Ry)
Rn=Rx+ ClI
Rn=Rx+Cl-1
Rn=Rx+1
Rn=Rx-1

¢ Rn=-Rx

Rn = ABS Rx

Rn = PASS Rx

Rn =Rx AND Ry

Rn =Rx OR Ry

Rn =Rx XOR Ry

Rn = NOT Rx

Rn = MIN(RX, Ry)

Rn = MAX(RX, Ry)

Rn = CLIP Rx BY Ry

Floating—point:

*%
*%

*%
*%
*%
*%
*%

*%

o

OO0

* Ok F kR R R R Ok ok Ok Ok Ok kX X X F Ok ok
* Ok ok Rk kX RO ok ok Ok Ok K K K X F Ok Ok
OO0 O0OO0CODO0OODO0OODODOODOOOOOO
OO0 O0OO0COO0OO0OOOODOODOOOOOO
|
|
|
|

OOO0OOOOOO * * * * * OO * * * *

[elolololololololololololololololololoNe o o] OOO0OO0OOOOOO * * * * O * * * * *
[elolololololololololoB JoloNol NololoNe o o o] OO0 O0OO0DO0ODO0OO *OOOOOOOOOO

Fn=Fx+Fy * * * * 1 _ PO R
Fn=Fx-Fy * * * * 1 _ Kk kk _ kk
Fn = ABS (Fx + Fy) * * 0 * 1 _ *x kK _ xk
Fn = ABS (Fx - Fy) * * 0 * 1 _ *k kK _ *%
Fn=(Fx + Fy)/2 * 0 * * 1 w»*o - - %
COMP(Fx, Fy) * 0 % L o
Fn =-Fx * * * * 1 _ _ *% _ *k
Fn = ABS Fx * * 0 * 1 - _ Hk _ *k
Fn = PASS Fx * 0 * * 1 _ _ _ _ *k
Fn =RND Fx * * * * 1 — _ *k _ *k
Fn = SCALB Fx BY Ry * * * * 1 _ Kk kK I
Rn = MANT Fx * * 0 * 1 _ _ ok %k
Rn = LOGB Fx * * * * 1 - I %k
Rn =FIX Fx BY Ry * * * * 1 _ kK kK _ wx
Rn = FIX Fx * * * * 1 _ Kk kK %k
Fn=FLOATRxBYRy * * * 0 1 _ wH o HK _ _
Fn = FLOAT Rx * 0 * 0 1 - - - - -
Fn = RECIPS Fx * * * * 1 _ k% Ak _ ax
Fn = RSQRTS Fx * * * * 1 —_ _ *ok _ *k
Fn=Fx COPYSIGN Fy * 0 * * 1 - - - Ak
Fn = MIN(Fx, Fy) * 0 * * 1 _ _ _ ok
Fn = MAX(Fx, Fy) * 0 * * 1 _ _ _ ok
Fn =CLIP Fx BY Fy * 0 * * 1 _ _ _ _ kk

Rn, Rx, Ry = Any register file location; treated as fixed-point
Fn, Fx, Fy = Any register file location; treated as floating-point
¢ = ADSP-21xx-compatible instruction

* set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction
— no effect

2.6 MULTIPLIER

The multiplier performs fixed-point or floating-point multiplication and fixed-
point multiply/accumulate operations. Fixed-point multiply/accumulates may
be performed with either cumulative addition or cumulative subtraction.
Floating-point multiply/accumulates can be accomplished through parallel
operation of the ALU and multiplier, using multifunction instructions. See
“Multifunction Computations” later in this chapter.

Multiplier floating-point instructions operate on 32-bit or 40-bit floating-point
operands and output 32-bit or 40-bit floating-point results. Multiplier fixed-point
instructions operate on 32-bit fixed-point data and produce 80-bit results. Inputs
are treated as fractional or integer, unsigned or twos-complement.

Multiplier instructions include:

= Floating-point multiplication

= Fixed-point multiplication

= Fixed-point multiply/accumulate with addition, rounding optional

= Fixed-point multiply/accumulate with subtraction, rounding optional
= Rounding result register

= Saturating result register

= Clearing result register

2.6.1 Multiplier Operation

The multiplier takes two input operands, called the X input and the Y input,
which can be any data registers in the register file. Fixed-point operations can
accumulate fixed-point results in either of two local multiplier result registers
(MR) or write results back to the register file. Results stored in the MR registers
can also be rounded or saturated in separate operations. Floating-point
operations yield floating-point results, which are always written directly back
to the register file.

Input operands are transferred during the first half of the cycle. Results are
transferred during the second half of the cycle. Thus the multiplier can read
and write the same register file location in a single cycle.

If the multiplier operation is fixed-point, inputs taken from the register file are
read from the upper 32 bits of the source location. Fixed-point operands may be
treated as both in integer format or both in fractional format. The format of the
result is the same as the format of the inputs. Each fixed-point operand may be
treated as either an unsigned or a twos-complement number. If both inputs are
fractional and signed, the multiplier automatically shifts the result left one bit to
remove the redundant sign bit. The input data type is specified within the
multiplier instruction.

2-11

MR Register

2.6.2 Fixed-Point Results

Fixed-point operations yield 80-bit results in the MR register. The location
of a result in the 80-bit field depends on whether the result is in fractional or
integer format, as shown in Figure 2.2. If the result is sent directly to the
register file, the 32 bits that have the same format as the input data are
transferred, i.e. bits 63-32 for a fractional result or bits 31-0 for an integer
result. The eight LSBs of the 40-bit register file location are zero-filled.
Fractional results can be rounded-to-nearest before being sent to the register
file, as explained later in this chapter. If rounding is not specified,
discarding bits 31-0 effectively truncates a fractional result (rounds to zero).

79 63 31 0
| MR2 [MR1 [MRO |
| OVERFLOW] FRACTIONAL RESULT | UNDERFLOW |
| overFLow | OVERFLOW | INTEGER RESULT |

Figure 2.2 Multiplier Fixed-Point Result Placement

2.6.2.1 MR Registers

The entire result can be sent to one of two dedicated 80-bit result registers
(MR). The MR registers have identical format; each is divided into MR2,
MR1 and MRO registers that can be individually read from or written to
the register file. When data is read from MR2, it is sign-extended to 32 bits
(see Figure 2.3). The eight LSBs of the 40-bit register file location are zero-
filled when data is read from MR2, MR1 or MRO to the register file. Data is
written into MR2, MR1 or MRO from the 32 MSBs of a register file location;
the eight LSBs are ignored. Data written to MR1 is sign-extended to MR2,
i.e. the MSB of MR1 is repeated in the 16 bits of MR2. Data written to MRO,
however, is not sign-extended.

The two MR registers are designated MRF (foreground) and MRB
(background); foreground refers to those registers currently activated by
the SRCU bit in the MODEL register, and background refers to those that
are not. In the case that only one MR register is used at a time, the SRCU
bit activates one or the other to facilitate context switching. However,
unlike other registers for which alternate sets exist, both MR register sets
are accessible at the same time. All (fixed-point) accumulation instructions

16 bits 16 bits 8 bits
SIGN EXTEND | MR2 IZEROS |

1

1

; 32 bits 8 bits

| MR1 |zeros |

32 bits

8 bits

<
Py
o

|zEros |

Figure 2.3 MR Transfer Formats

may specify either result register for accumulation, regardless of the state of
the SRCU bit. Thus, instead of using the MR registers as a primary and an
alternate, you can use them as two parallel accumulators. This feature
facilitates complex math.

Transfers between MR registers and the register file are considered
computation unit operations, since they involve the multiplier. Thus,
although the syntax for the transfer is the same as for any other transfer to or
from the register file, an MR transfer is placed in an instruction where a
computation is normally specified. For example, the ADSP-2106x can perform
a multiply/accumulate in parallel with a read of data memory, as in:

MRF=MRF- R5* R0, R6=DM | 1, M2) ;
or it can perform an MR transfer instead of the computation, as in:
R5=MR1F, R6=DM| 1, M) ;

2.6.3 Fixed-Point Operations

In addition to multiplication, fixed-point operations include accumulation,
rounding and saturation of fixed-point data. There are three MR register
operations: Clear, Round and Saturate.

2.6.3.1 Clear MR Register

The clear operation resets the specified MR register to zero. This operation is
performed at the start of a multiply/accumulate operation to remove results
left over from the previous operation.

2.6.3.2 Round MR Register

Rounding of a fixed-point result occurs either as part of a multiply or
multiply/accumulate operation or as an explicit operation on the MR
register. The rounding operation applies only to fractional results (integer
results are not affected) and rounds the 80-bit MR value to nearest at bit
32, i.e. at the MR1-MRO boundary. The rounded result in MR1 can be sent
either to the register file or back to the same MR register. To round a
fractional result to zero (truncation) instead of to nearest, you would
simply transfer the unrounded result from MR1, discarding the lower 32
bits in MRO.

2.6.3.3 Saturate MR Register On Overflow

The saturate operation sets MR to a maximum value if the MR value has
overflowed. Overflow occurs when the MR value is greater than the
maximum value for the data format (unsigned or twos-complement and
integer or fractional) that is specified in the saturate instruction. There are
six possible maximum values (shown in hexadecimal):

MR2 MR1 MRO

Maximum twos-complement fractional number

0000 TFFF FFFF FFFF FFFF positive
FFFF 8000 0000 0000 0000 negative
Maximum twos-complement integer number

0000 0000 0000 7FFF FFFF positive
FFFF FFFF FFFF 8000 0000 negative
Maximum unsigned fractional number

0000 FFFF FFFF FFFF FFFF

Maximum unsigned integer number

0000 0000 0000 FFFF FFFF

The result from MR saturation can be sent either to the register file or back
to the same MR register.

2.6.4 Floating-Point Operating Modes

The multiplier is affected by two mode status bits in the MODEL1 register:
the rounding mode and rounding boundary bits, which affect operations
in both the multiplier and the ALU.

MODE1

Bit Name Function

15 TRUNC 1=Truncation; 0=Round to nearest

16 RND32 1=Round to 32 bits; 0=Round to 40 bits

2.6.4.1 Floating-Point Rounding Modes

The multiplier supports two IEEE rounding modes for floating-point
operations. If the TRUNC bit is set, the multiplier rounds a floating-point
result to zero (truncation). If the TRUNC bit is cleared, the multiplier
rounds to nearest.

2.6.4.2 Floating-Point Rounding Boundary

Floating-point multiplier inputs and results can be either 32-bit or 40-bit
floating-point data on the ADSP-2106x. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before multiplication, and
floating-point results are output in the 32-bit IEEE format, with the lower
eight bits of the 40-bit register file location cleared. The mantissa of the
result is rounded to 23 bits (not including the hidden bit). If the RND32 bit
is cleared, the multiplier inputs full 40-bit values from the register file and
outputs results in the 40-bit extended IEEE format, with the mantissa
rounded to 31 bits not including the hidden bit.

2.6.5 Multiplier Status Flags

The multiplier updates four status flags at the end of each operation. All
of these flags appear in the ASTAT register. The states of these flags reflect
the result of the most recent multiplier operation. The multiplier also
updates four “sticky” status flags in the STKY register. Once set, a sticky
flag remains high until explicitly cleared.

ASTAT

Bit Name Definition

6 MN Multiplier result negative

7 MV Multiplier overflow

8 MU Multiplier underflow

9 Ml Multiplier floating-point invalid operation

o N
- =
=
2

Name Definition

MOS Multiplier fixed-point overflow

MVS Multiplier floating-point overflow

MUS Multiplier underflow

MIS Multiplier floating-point invalid operation

QOOO\I(D|

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

2.6.5.1 Multiplier Underflow Flag (MU)

Underflow is determined for all fixed-point and floating-point multiplier
operations. It is set whenever the result of a multiplier operation is smaller
than the smallest number representable in the output format. It is
otherwise cleared.

For floating-point results, MU and MUS are set whenever the post-
rounded result underflows (unbiased exponent < -126). Denormal
operands are treated as Zeros, therefore they never cause underflows.

For fixed-point results, MU and MUS depend on the data format and are
set under the following conditions:

Twos-complement:
Fractional: upper 48 bits all zeros or all ones, lower 32 bits not all zeros

Integer: not possible

Unsigned:
Fractional: upper 48 bits all zeros, lower 32 bits not all zeros
Integer: not possible

If the fixed-point result is sent to an MR register, the underflowed portion
of the result is available in MRO (fractional result only).

2.6.5.2 Multiplier Negative Flag (MN)

The negative flag is determined for all multiplier operations. MN is set
whenever the result of a multiplier operation is negative. It is otherwise cleared.

2.6.5.3 Multiplier Overflow Flag (MV)

Overflow is determined for all fixed-point and floating-point multiplier
operations.

For floating-point results, MV and MVS are set whenever the post-rounded
result overflows (unbiased exponent > 127).

For fixed-point results, MV and MOS depend on the data format and are set
under the following conditions:

Twos-complement:

Fractional: upper 17 bits of MR not all zeros or all ones

Integer: upper 49 bits of MR not all zeros or all ones
Unsigned:

Fractional: upper 16 bits of MR not all zeros

Integer: upper 48 bits of MR not all zeros

If the fixed-point result is sent to an MR register, the overflowed portion of
the result is available in MR1 and MR2 (integer result) or MR2 only (fractional
result).

2.6.5.4 Multiplier Invalid Flag (MI)

The invalid flag is determined for floating-point multiplication. Ml is set
whenever:

= an input operand is a NAN.
= the inputs are Infinity and Zero (note: denormal inputs are treated as Zeros.)

Ml is otherwise cleared.

2.6.6

Multiplier Instruction Summary

Instruction ASTAT Flags STKY Flags
MU MN MV Ml MUS MOS MVS MIS

Fixed-Point:
Rn | = Rx*Ry (‘SHS‘F) « % % 0 - - -
MRF ullul |l
MRB FR
Rn = MRF| + Rx*Ry (‘SHS‘F) * x % 0 - - -
Rn = MRB ullul |l
MRF = MRF FR
MRB = MRB
Rn = MRF| - RxxRy (‘SHS‘F) * o+ x 0 - e - -
Rn = MRB ulul |l
MRF = MRF FR
MRB = MRB
Rn = SAT MRF (S1) * %+ x 0 - w - -
Rn = SAT MRB ((S]))
MRF = SAT MRF (SF)
MRB = SAT MRB (UF)
Rn = RND MRF ‘(SF) * x % 0 - o = =
Rn = RND MRB (UF)
MRF = RND MRF
MRB = RND MRB
MRF| =0 0 0 0 O - - - -
MRB
MRxF |= Rn 0 0 0 O - - - -
MRxB
Rn =|MRxF 0 0 0 O - - - -

MRxB

Floating-Point:

Fn=FxxFy

*% —_ *% *%

Note: For floating-point multiply/accumulates, see “Multifunction Computations"

* set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction

— no effect

Rn, Rx, Ry = R15-R0; register file location, treated as fixed-point

Fn, Fx, Fy = F15-F0; register file location, treated as floating-point

MRxF = MR2F, MR1F, MROF; multiplier result accumulators, foreground
MRxB = MR2B, MR1B, MROB; multiplier result accumulators, background

Multiplier Instruction Summary, cont.
Optional Modifiers for Fixed-Point:

(|0 (oo) S Signed input
55|22 U Unsigned input
2l 2l|es | Integer input(s)
IS S5 F Fractional input(s)
® FR Fractional inputs, Rounded output
8 (SF) Default format for 1-input operations

(SSF) Default format for 2-input operations

2.7 SHIFTER

The shifter operates on 32-bit fixed-point operands. Shifter operations
include:

= shifts and rotates from off-scale left to off-scale right

= bit manipulation operations, including bit set, clear, toggle, and test

= bit field manipulation operations including extract and deposit

= support for ADSP-2100 family compatible fixed-point/floating-point
conversion operations (exponent extract, number of leading 1s or 0s)

2.7.1 Shifter Operation

The shifter takes from one to three input operands: the X-input, which is
operated upon; the Y-input, which specifies shift magnitudes, bit field
lengths or bit positions; and the Z-input, which is operated on and
updated (as in, for example, Rn = Rn OR LSHIFT Rx BY Ry). The shifter
returns one output to the register file.

Input operands are fetched from the upper 32 bits of a register file location
(bits 39-8, as shown in Figure 2.4 on the following page) or from an
immediate value in the instruction. The operands are transferred during
the first half of the cycle. The result is transferred to the upper 32 bits of a
register (with the eight LSBs zero-filled) during the second half of the
cycle. Thus the shifter can read and write the same register file location in
asingle cycle.

The X-input and Z-input are always 32-bit fixed-point values. The Y-input
is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in the
register file as shown in Figure 2.4 below.

Some shifter operations produce 8-bit or 6-bit results. These results are
placed in either the shf8 field or the bit6 field (see Figure 2.5) and are sign-
extended to 32 bits. Thus the shifter always returns a 32-bit result.

39 7 0

32-Bit Y-Input or Result

39 15 7 0

| [-

8-Bit Y-Input or Result
Figure 2.4 Register File Fields For Shifter Instructions

2.7.2 Bit Field Deposit & Extract Instructions

The shifter’s bit field deposit and bit field extract instructions allow the
manipulation of groups of bits within a 32-bit fixed-point integer word.

The Y-input for these instructions specifies two 6-bit values, bit6 and len6,
positioned in the Ry register as shown in Figure 2.5. Bit6 and len6 are
interpreted as positive integers. Bit6 is the starting bit position for the
deposit or extract. Len6 is the bit field length, which specifies how many
bits are deposited or extracted.

39 19 13 7 0

| [T oo -

12-Bit Y-Input
Figure 2.5 Register File Fields For FDEP, FEXT Instructions

The FDEP (field deposit) instructions take a group of bits from the input
register Rx (starting at the LSB of the 32-bit integer field) and deposit them
anywhere within the result register Rn. The bit6 value specifies the
starting bit position for the deposit. See Figure 2.6.

The FEXT (field extract) instructions extract a group of bits from anywhere
within the input register Rx and place them in the result register Rn
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract.

Rn=FDEP Rx BY Ry

39 19 13 7 0

Ry N0 |

Ry determines length of bit field to take from Rx and starting bit position for deposit in Rn

39 7 0

g e==

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

39 7 0
Rn| | depositfied |
bité reference point

bit6 = starting bit position for deposit, referenced from LSB of 32-bit field

Figure 2.6 Bit Field Deposit Instruction

The following field deposit instruction example is pictured in Figure 2.7:

RO=FDEP R1 BY RZ;

RO=FDEP R1 BY R2;

R1=0x000000FF00
R2=0x0000021000

39 32 24 16 8 0
R2 | 00000000] 00000000] 00000010] 00010000] 00000000] 0x0000 0210 00
len6 =8
len6 bit6 bit6 = 16

39 32 24 16 8 0
R1 | 00000000| 00000000 0000000011 111111] 00000000| 0x0000 0OFF 0O

39 32 24 16 38 0
RO | 00000000 11111111] 00000000 OOOOOOOO| 00000000| OxOOFF 0000 00
24 16 0
starting bit reference
position for point
deposit

8 bits are taken from R1 and deposited in RO, starting at bit 16.
("Bit 16" is relative to reference point, the LSB of 32-bit integer field.)

Figure 2.7 Bit Field Deposit Example

The following field extract instruction example is pictured in Figure 2.8:

R3=FEXT R4 BY R5;

R3=FEXT R4 BY R5;

R4=0x8788000000
R5=0x0000021700

39 32 24 16 8 0
R5 | OOOOOOOOl OOOOOOOOl OOOO©©1©| ©©010111| 00000000| 0x0000 0217 00
len6 =8
len6 bité bit6 = 23
39 32 24 16 8 0
R4 | 100001.11{ 10000000 | 00000000] 00000000] 00000000] 0x8788 0000 00
16 8 0
starting bit position reference
for extract point

39 32 24 16 8 0
R3 OOOOOOOOl 00000000| 00000000 ©©©©1111| 00000000| 0x0000 O0OF 00

8 bits are extracted from R4 and placed in R3, aligned to the LSB of the 32-bit integer field.

Figure 2.8 Bit Field Extract Example

2.7.3 Shifter Status Flags

The shifter returns three status flags at the end of the operation. All of
these flags appear in the ASTAT register. The SZ flag indicates if the
output is zero, the SV flag indicates an overflow, and the SS flag indicates
the sign bit in exponent extract operations.

ASTAT

Bit Name Definition

11 S\ Shifter overflow of bits to left of MSB

12 SZ Shifter result zero

13 SS Shifter input sign (for exponent extract only)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
explicitly in the same cycle that the shifter is performing an operation, the
explicit write to ASTAT supersedes any flag update caused by the shift
operation.

2.7.3.1 Shifter Zero Flag (SZ2)
SZ is affected by all shifter operations. It is set whenever:

= the result of a shifter operation is zero, or
= a bit test instruction specifies a bit outside of the 32-bit fixed-point field.

SZ is otherwise cleared.

2.7.3.2 Shifter Overflow Flag (SV)
SV is affected by all shifter operations. It is set whenever:

= significant bits are shifted to the left of the 32-bit fixed-point field,

= a bit outside of the 32-bit fixed-point field is tested, set or cleared,

= afield that is partially or wholly to the left of the 32-bit fixed-point field
is extracted, or

e a LEFTZ or LEFTO operation returns a result of 32.

SV is otherwise cleared.

2.7.3.3 Shifter Sign Flag (SS)

SS is affected by all shifter operations. For the two EXP (exponent
extract) operations, it is set if the fixed-point input operand is negative
and cleared if it is positive. For all other shifter operations, SS is
cleared.

2.7.4 Shifter Instruction Summary

Instruction Flags

%)
<

*

Rn = LSHIFT Rx BY Ry

Rn = LSHIFT Rx BY <data8>

Rn =Rn OR LSHIFT Rx BY Ry

Rn =Rn OR LSHIFT Rx BY <data8>
Rn = ASHIFT Rx BY Ry

Rn = ASHIFT Rx BY<data8>

Rn =Rn OR ASHIFT Rx BY Ry

Rn = Rn OR ASHIFT Rx BY <data8>
Rn =ROT Rx BY RY

Rn = ROT Rx BY <data8>

Rn =BCLR Rx BY Ry

Rn = BCLR Rx BY <data8>

Rn =BSET RxBY Ry

Rn = BSET Rx BY <data8>

Rn =BTGL Rx BY Ry

Rn =BTGL Rx BY <data8>

BTST Rx BY Ry

BTST Rx BY <data8>

Rn = FDEP Rx BY Ry

Rn = FDEP Rx BY <bit6>:<len6>

Rn = Rn OR FDEP Rx BY Ry

Rn = Rn OR FDEP Rx BY <bit6>:<len6>
Rn = FDEP Rx BY Ry (SE)

Rn = FDEP Rx BY <bit6>:<len6> (SE)
Rn = Rn OR FDEP Rx BY Ry (SE)

Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)
Rn = FEXT Rx BY Ry

Rn = FEXT Rx BY <bit6>:<len6>

Rn = FEXT Rx BY Ry (SE)

Rn = FEXT Rx BY <bit6>:<len6> (SE)
¢ Rn=EXPRx (EX)

¢ Rn=EXPRx

Rn =LEFTZ Rx

Rn = LEFTO Rx

Rn = FPACK Fx

Fn = FUNPACK Rx

OO0 0O0O0O0 00

OO)(->(->(->(->(-’(-)(->(-’(->(->(->(-**********************m

QOO OoO * *OOOOOOOOOOOOOOOOOOOOOOOOOOOOOO&

QO * * X OO * F 2k 2k X X X 2k 2k X X X 2k 2k X X X X X X OO F F * X X F F

* = Depends on data

Rn, Rx, Ry = Any register file location; bit fields used depend on instruction
Fn, Fx = Any register file location; floating-point word

¢ = ADSP-2100-compatible instruction

2.8 MULTIFUNCTION COMPUTATIONS

In addition to the computations performed by each computation unit, the
ADSP-2106x also provides multifunction computations that combine
parallel operation of the multiplier and the ALU, or dual functions in the
ALU. The two operations are performed in the same way as they are in
corresponding single-function computations. Flags are also determined in
the same way as for the same single-function computations, except that in
the dual add/subtract computation the ALU flags from the two
operations are ORed together.

Each of the four input operands for computations that use both the ALU
and multiplier are constrained to a different set of four register file
locations, as summarized below and shown in Figure 2.9. For example, the
X-input to the ALU can only be R8, R9, R10 or R11. In all other operations,
the input operands may be any register file locations.

Dual Add/Subtract

Ra=Rx+ Ry, Rs=Rx-Ry
Fa=Fx+Fy, Fs=Fx-Fy

Fixed-Point Multiply/Accumulate and Add, Subtract or Average

RmM=R3-0 * R7-4 (SSFR) , Ra=R11-8 + R15-12
MRF=MRF + R3-0 * R7-4 (SSF) | |, Ra=R11-8 - R15-12
RmM=MRF + R3-0 * R7-4 (SSFR) | |, Ra=(R11-8 + R15-12)/2

MRF=MRF - R3-0 * R7-4 (SSF) | ,
Rm=MRF - R3-0 * R7-4 (SSFR) | ,

Floating-Point Multiplication and ALU Operation
Fm=F3-0 * F7-4 , Fa=F11-8 + F15-12
Fa=F11-8 - F15-12
Fa=FLOAT R11-8 by R15-12
Ra=FIX F11-8 by R15-12
Fa=(F11-8 + F15-12)/2
Fa=ABS F11-8
Fa=MAX (F11-8, F15-12)
Fa=MIN (F11-8, F15-12)

Multiplication and Dual Add/Subtract
Rm =R3-0*R7-4 (SSFR), Ra=R11-8+R15-12, Rs=R11-8-R15-12

Fm=F3-0*F7-4, Fa =F11-8 + F15-12, Fs=F11-8 - F15-12
Rm, Ra, Rs, Rx, Ry —Any register file location; fixed-point
Fm, Fa, Fs, Fx, Fy —Any register file location; floating-point
R3-0 -R3,R2,R1, RO F3-0 -F3,F2,F1, FO
R7-4 -R7, R6, R5, R4 F7-4 —F7, F6, F5, F4
R11-8 -R11, R10, R9, R8 F11-8 -F11, F10, F9, F8
R15-12 -R15, R14, R13, R12 F15-12 -F15, F14, F13, F12
SSFR —X-input signed, Y-input signed, Fractional input, Rounded-to-nearest output
SSF —X-input signed, Y-input signed, Fractional input

Register File

RO - FO
R1-F1
R2 - F2
R3-F3

Multiplier

R4 - F4
R5 - F5
R6 - F6

L R7-F7 Any Register

L
Any Register R8-F8 7

R9 - F9
R10- F10 \
R11-F11
R12-F12
R13 - F13 /
R14-Fl4
R15- F15

ALU

Figure 2.9 Input Registers For Multifunction Computations (ALU & Multiplier)

2.9 REGISTER FILE

The register file provides the interface between the processor’s internal
data buses and the computation units. It also provides local storage for
operands and results. The register file consists of 16 primary registers and
16 alternate (secondary) registers. All of the data registers are 40 bits wide.
32-bit data from the computation units is always left-justified; on register
reads, the eight LSBs are ignored, and on writes, the eight LSBs are written
with zeros.

Program memory data accesses and data memory accesses to the register
file occur on the PM Data bus and DM Data bus, respectively. One PM
Data bus and/or one DM Data bus access can occur in one cycle. Transfers
between the register file and the 40-bit DM Data bus are always 40 bits
wide. The register file transfers data to and from the 48-bit PM Data bus in
the most significant 40 bits, writing zeros in the lower eight bits on
transfers to the PM Data bus.

If the same register file location is specified as both the source of an
operand and the destination of a result or memory fetch, the read occurs
in the first half of the cycle and the write in the second half. Thus the old
data is used as the operand before the location is updated with the new
result data. If writes to the same location take place in the same cycle, only
the write with higher precedence actually occurs. Precedence is
determined by the source of the data being written; from highest to
lowest, the precedence is:

= Data memory or universal register
= Program memory

- ALU

= Multiplier

= Shifter

The individual registers of the register file are prefixed with an “F” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “R” when used in fixed-point
computations. The following instructions, for example, use the same
registers:

FO=F1* F2; floating-point multiply
RO=R1* R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer; they
only determine how the ALU, multiplier, or shifter treat the data. The F or
R may be either uppercase or lowercase; the assembler is case-insensitive.

2.9.1 Alternate (Secondary) Registers

To facilitate fast context switching, the register file has an alternate register
set. Each half of the register file—the lower half, RO through R7, and the
upper half, R8 through R15—can independently activate its alternate
register set. Two bits in the MODEL register select the active sets. Data can
be shared between contexts by placing the data to be shared in one half of
the register file and activating the alternate register set of the other half.

MODE1

Bit Name Definition
7 SRRFH Register file alternate select for R15-R8 (F15-F8)
10 SRRFL Register file alternate select for R7-R0 (F7-F0)

Note that there is one cycle of effect latency from the instruction setting
the bit in MODEL1 to when the alternate registers may be accessed. For
example,

BIT SET MODE1 SRRFL; /* activate alternate registers */
NOP;
RO=7;

/* wait until alternate registers activate */

2 Computation Units

Program Sequencing

31 OVERVIEW

Program flow in the ADSP-2106x is most often linear; the processor
executes program instructions sequentially. Variations in this linear flow
are provided by the following program structures, illustrated in

Figure 3.1 on the following page:

= Loops. One sequence of instructions is executed several times with zero
overhead.

= Subroutines. The processor temporarily interrupts sequential flow to
execute instructions from another part of program memory.

= Jumps. Program flow is permanently transferred to another part of
program memory.

= Interrupts. A special case of subroutines in which the execution of the
routine is triggered by an event that happens at run time, not by a
program instruction.

= Idle. A special instruction that causes the processor to cease operations,
holding its current state. When an interrupt occurs, the processor
services the interrupt and continues normal execution.

Managing these program structures is the job of the ADSP-2106x’s
program sequencer. The program sequencer selects the address of the next
instruction, generating most of those addresses itself. It also performs a
wide range of related functions, such as

incrementing the fetch address,
maintaining stacks,

evaluating conditions,

decrementing the loop counter,
calculating new addresses,

= maintaining an instruction cache, and
= handling interrupts.

3

Address:n Instruction DO UNTIL JUMP
n+1 | Instruction Instruction Instruction
n+2 | Instruction Instruction | Instruction
n+3 | Instruction Instruction N Times Instruction
n+4 | Instruction Instruction Instruction
n+5 | Instruction Instruction Instruction

Linear Flow Loop Jump
INTERRUPT
CALL \ Instruction IDLE :)
P /nstruction P~ /nstruction Instruction
Instruction Instruction Instruction
Instruction
Instruction
Instruction Instruction Instruction
Instruction Instruction
Instruction Instruction
RTS RTI
Subroutine Interrupt Idle

Figure 3.1 Program Flow Variations

3.1.1 Instruction Cycle
The ADSP-2106x processes instructions in three clock cycles:

= In the fetch cycle, the ADSP-2106x reads the instruction from either the
on-chip instruction cache or from program memory.

= During the decode cycle, the instruction is decoded, generating
conditions that control instruction execution.

= In the execute cycle, the ADSP-2106x executes the instruction; the
operations specified by the instruction are completed.

These cycles are overlapping, or pipelined, as shown in Figure 3.2. In
sequential program flow, when one instruction is being fetched, the
instruction fetched in the previous cycle is being decoded, and the
instruction fetched two cycles before is being executed. Thus, the
throughput is one instruction per cycle.

time Fetch Decode Execute
(cycles)
1 0x08
2 0x09 0x08
3 0x0A 0x09 0x08
4 0x0B 0x0A 0x09
5 0x0C 0x0B 0x0A
v

Figure 3.2 Pipelined Execution Cycles

Any non-sequential program flow can potentially decrease the
ADSP-2106x’s instruction throughput. Non-sequential program
operations include:

= Program memory data accesses that conflict with instruction fetches
= Jumps

= Subroutine Calls and Returns

< Interrupts and Returns

= Loops

3.1.2 Program Sequencer Architecture

Figure 3.3, on the next page, shows a block diagram of the program
sequencer. The sequencer selects the value of the next fetch address from
several possible sources.

The fetch address register, decode address register and program counter
(PC) contain, respectively, the addresses of the instructions currently
being fetched, decoded and executed. The PC is coupled with the PC
stack, which is used to store return addresses and top-of-loop addresses.

LOOP LOGIC

LOOP ADDRESS
INTERNAL PMD BUS STACK ~| ASTAT | MODE1 INTERRUPTS
LO()SE’rEgENT | INTERRUPT
STATUS INTERRUPT LATCH
STACK |*7| CONTROLLER NTERRUPT INTERRUPT
INSTRUCTION MASK LOGIC
CACHE
INTERRUPT
Loop MASK POINTER
L CONTROLLER
INPUT
INSTRUCTION LATCH | FLAGS
vy l
CONDITION
LOGIC DAG2
PROGRAM
v ‘ COUNTER L
+ DECODE A
ADDRESS
DIRECT T PC STACK |SEILF,<\IEC%T
BRANCH ADDRESS
INTERRUPT
VECTOR
RETURN ADDRESS OR
TOP OF LOOP
v v v

PC-RELATIVE
ADDRESS |

NEXT ADDRESS MULTIPLEXER

|

PMA BUS
Figure 3.3 Program Sequencer Block Diagram

The interrupt controller performs all functions related to interrupt
processing, such as determining whether an interrupt is masked and
generating the appropriate interrupt vector address.

The instruction cache provides the means by which the ADSP-2106x can
access data in program memory and fetch an instruction (from the cache)
in the same cycle. The DAG2 data address generator (described in the next
chapter) outputs program memory data addresses.

The sequencer evaluates conditional instructions and loop termination
conditions using information from the status registers. The loop address
stack and loop counter stack support nested loops. The status stack stores
status registers for implementing nested interrupt routines.

3.1.2.1 Program Sequencer Registers & System Registers

Table 3.1 lists the registers located in the program sequencer. The

functions of these registers are described in subsequent sections of this

chapter. All registers in the program sequencer are universal registers and
are thus accessible to other universal registers as well as to data memory.

All registers and the tops of stacks are readable; all registers except the

fetch address, decode address and PC are writeable. The PC stack can be

pushed and popped by writing the PC stack pointer, which is readable
and writeable. The loop address stack and status stack are pushed and

popped by expl

icit instructions.

The System Register Bit Manipulation instruction can be used to set, clear,
toggle or test specific bits in the system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous Instructions.

Due to pipelining, writes to some of these registers do not take effect on

the next cycle; for example, if you write the MODEL register to enable

ALU saturation mode, the change will not occur until two cycles after the
write. Also, some registers are not updated on the cycle immediately
following a write; it takes an extra cycle before a read of the register yields
the new value. Table 3.1 summarizes the number of extra cycles for a write
to take effect (effect latency) and for a new value to appear in the register
(read latency). A “0” indicates that the write takes effect or appears in the

register on the next cycle after the write instruction is executed. A “1”

indicates one extra cycle.

Program Sequencer
Registers
FADDR*
DADDR*

pC*

PCSTK

PCSTKP

LADDR
CURLCNTR
LCNTR

System Registers
MODE1
MODE2

IRPTL

IMASK
IMASKP
ASTAT

STKY

USTAT1
USTAT2

Contents

fetch address

decode address

execute address

top of PC stack

PC stack pointer

top of loop address stack

top of loop count stack (current loop count)
loop count for next DO UNTIL loop

mode control bits

mode control bits

interrupt latch

interrupt mask

interrupt mask pointer (for nesting)
arithmetic status flags

sticky status flags

user-defined status flags
user-defined status flags

Table 3.1 Program Sequencer Registers & System Registers

* read-only

Read
Latency

[cNeoNaN _Nell

OCOO0OOFrROO0OOO

Effect
Latency

[cNoNaoN el

COoORRRRERRERRER

3.2 PROGRAM SEQUENCER OPERATIONS

This section gives an overview of the operation of the program sequencer.
The various kinds of program flow are defined here and described in
detail in subsequent sections.

3.21 Sequential Instruction Flow

The program sequencer determines the next instruction address by
examining both the current instruction being executed and the current
state of the processor. If no conditions require otherwise, the ADSP-2106x
executes instructions from program memory in sequential order by simply
incrementing the fetch address.

3.22 Program Memory Data Accesses

Usually, the ADSP-2106x fetches an instruction from memory on each
cycle. When the ADSP-2106x executes an instruction which requires data
to be read from or written to the same memory block in which the
instruction is stored, there is a conflict for access to that block. The
ADSP-2106x uses its instruction cache to reduce delays caused by this type
of conflict.

The first time the ADSP-2106x encounters an instruction fetch that
conflicts with a program memory data access, it must wait to fetch the
instruction on the following cycle, causing a delay. The ADSP-2106x
automatically writes the fetched instruction to the cache to prevent the
same delay from happening again. The ADSP-2106x checks the instruction
cache on every program memory data access. If the instruction needed is
in the cache, the instruction fetch from the cache happens in parallel with
the program memory data access, without incurring a delay.

323 Branches

A branch occurs when the fetch address is not the next sequential address
following the previous fetch address. Jumps, calls and returns are the
types of branches which the ADSP-2106x supports. In the program
sequencer, the only difference between a jump and a call is that upon
execution of a call, a return address is pushed onto the PC stack so that it
is available when a return instruction is later executed. Jumps branch to a
new location without allowing return.

3.24 Loops

The ADSP-2106x supports program loops with the DO UNTIL instruction.
The DO UNTIL instruction causes the ADSP-2106x to repeat a sequence of
instructions until a specified condition tests true.

3.3 CONDITIONAL INSTRUCTION EXECUTION

The program sequencer evaluates conditions to determine whether to
execute a conditional instruction and when to terminate a loop. The
conditions are based on information from the arithmetic status (ASTAT)
register, mode control 1 (MODEZ1) register, flag inputs and loop counter.
The arithmetic ASTAT bits are described in the previous chapter,
Computation Units.

Each condition that the ADSP-2106x evaluates has an assembler
mnemonic and a unique code which is used in a conditional instruction’s
opcode. For most conditions, the program sequencer can test both true
and false states, e.g., equal to zero and not equal to zero. Table 3.2, on the
following page, defines the 32 condition and termination codes.

The bit test flag (BTF) is bit 18 of the ASTAT register. This flag is set (or
cleared) by the results of the BIT TST and BIT XOR forms of the

System Register Bit Manipulation instruction, which can be used to test the
contents of the ADSP-2106x’s system registers. This instruction is
described in Appendix A, Group IV-Miscellaneous instructions. After BTF
is set by this instruction, it can be used as the condition in a conditional
instruction (with the mnemonic TF; see Table 3.2).

The two conditions that do not have complements are LCE/NOT LCE
(loop counter expired/not expired) and TRUE/FOREVER. The
interpretation of these condition codes is determined by context; TRUE
and NOT LCE are used in conditional instructions, FOREVER and LCE in
loop termination. The IF TRUE construct creates an unconditional
instruction (the same effect as leaving out the condition entirely). A DO
FOREVER instruction executes a loop indefinitely, until an interrupt or
reset intervenes.

The LCE condition (loop counter expired) is most commonly used in a
DO UNTIL instruction. Because the LCE condition checks the value of the
loop counter (CURLCNTR), an IF NOT LCE conditional instruction
should not follow a write to CURLCNTR from memory. Otherwise,
because the write occurs after the NOT LCE test, the condition is based on
the old CURLCNTR value.

The bus master condition (BM) indicates whether the ADSP-2106x is the
current bus master in a multiprocessor system. To enable the use of this
condition, bits 17 and 18 of the MODEL1 register must both be zeros;
otherwise the condition is always evaluated as false.

Z

0.

LOG)\IO?UW-&OJI\)I—‘O|

Mnemonic

EQ

FLAGO_IN
FLAGI_IN
FLAG2_IN
FLAG3_IN
TF

BM

LCE

NOT LCE

Description

ALU equal zero

ALU less than zero

ALU less than or equal zero
ALU carry

ALU overflow
Multiplier overflow
Multiplier sign

Shifter overflow

Shifter zero

Flag 0 input

Flag 1 input

Flag 2 input

Flag 3 input

Bit test flag

Bus Master

Loop counter expired
(DO UNTIL term)

Loop counter not expired
(IF cond)

Bits 16-30 are the complements of bits 0-14

16

NOT FLAGO_IN
NOT FLAGI_IN
NOT FLAGZ2_IN
NOT FLAGS3_IN
NOT TF

NBM

FOREVER
TRUE

ALU not equal to zero

ALU greater than or equal zero

ALU greater than zero
Not ALU carry

Not ALU overflow

Not multiplier overflow
Not multiplier sign

Not shifter overflow
Not shifter zero

Not Flag 0 input

Not Flag 1 input

Not Flag 2 input

Not Flag 3 input

Not bit test flag

Not Bus Master

Always False (DO UNTIL)
Always True (IF)

Table 3.2 Condition & Loop Termination Codes

Notes:
1. [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] =1
2. [AF and (AN xor (AV and ALUSAT)) or (AFand AN)JorAZ=1
3. [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] =0
4. [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ=0

True If

AZ=1

See Note 1 below
See Note 2 below
AC=1

AV =1

MV =1

MN =1

sv=1

sZz=1

FIo=1

Fl1=1

FI2=1

FI3=1

BTF=1

CURLCNTR =1

CURLCNTRZ1

AZ=0

See Note 3 below
See Note 4 below
AC=0

AV =0

MV =0

MN =0

SV=0

SZ=0

FI0O=0

FI1=0

FI2=0

FI3=0

BTF=0

always
always

34 BRANCHES (CALL, JUMP, RTS, RTI)

The CALL instruction initiates a subroutine. Both jumps and calls transfer
program flow to another memory location, but a call also pushes a return
address onto the PC stack so that it is available when a return from
subroutine instruction is later executed. Jumps branch to a new location
without allowing return.

A return causes the processor to branch to the address stored at the top of
the PC stack. There are two types of returns: return from subroutine (RTS)
and return from interrupt (RTI). The difference between the two is that the
RTI instruction not only pops the return address off the PC stack, but also:
1) pops the status stack if the ASTAT and MODE1 status registers have
been pushed (if the interrupt was IRQ,_,, the timer interrupt, or the VIRPT
vector interrupt), and 2) clears the appropriate bit in the interrupt latch
register (IRPTL) and the interrupt mask pointer (IMASKP).

There are a number of parameters you can specify for branches:

= Jumps, calls and returns can be conditional. The program sequencer can
evaluate any one of several status conditions to decide whether the
branch should be taken. If no condition is specified, the branch is
always taken.

= Jumps and calls can be indirect, direct, or PC-relative. An indirect branch
goes to an address supplied by one of the data address generators,
DAG?2. Direct branches jump to the 24-bit address specified in an
immediate field in the branch instruction. PC-relative branches also use a
value specified in the instruction, but the sequencer adds this value to
the current PC value to compute the destination address.

= Jumps, calls and returns can be delayed or nondelayed. In a delayed
branch, the two instructions immediately after the branch instruction
are executed; in a nondelayed branch, the program sequencer suppresses
the execution of those two instructions (NOPs are performed instead).

= The JUMP (LA) instruction causes an automatic loop abort if it occurs
inside a loop. When the loop is aborted, the PC and loop address stacks
are popped once, so that if the loop was nested, the stacks still contain
the correct values for the outer loop. JUMP (LA) is similar to the break
instruction of the C programming language used to prematurely
terminate execution of a loop. (Note: JUMP (LA) may not be used in the
last three instructions of a loop.)

341 Delayed & Nondelayed Branches

An instruction modifier (DB) indicates that a branch is delayed; otherwise,
it is nondelayed. If the branch is nondelayed, the two instructions after the
branch, which are in the fetch and decode stages, are not executed (see
Figure 3.4); for a call, the decode address (the address of the instruction
after the call) is the return address. During the two no-operation cycles,
the first instruction at the branch address is fetched and decoded.

NON-DELAYED JUMP OR CALL

CLOCK CYCLES ——»

Execute .
Instruction n nop nop J
Decode ‘ .
Instruction n+1->nop n+2->nop j j+1
Fetch _ ‘ .
Instruction n+2 J j*1 j*2
n+1 suppressed n+2 suppressed; for
call, n+1 pushed on
PC stack

NON-DELAYED RETURN
CLOCK CYCLES ——»

Execute
Instruction n nop nop r
Decode
Instruction n+l->nop n+2->nop r r+1
Fetch
Instruction n+2 r r+1 r+2
n+1 suppressed n+2 suppressed; r
popped from PC
stack

n = Branch instruction

j = Instruction at Jump or Call address

r = Instruction

at Return address

Figure 3.4 Nondelayed Branches

In a delayed branch, the processor continues to execute two more
instructions while the instruction at the branch address is fetched and
decoded (see Figure 3.5); in the case of a call, the return address is the
third address after the branch instruction. A delayed branch is more
efficient, but it makes the code harder to understand because of the
instructions between the branch instruction and the actual branch.

DELAYED JUMP OR CALL

CLOCK CYCLES —»

Execute .
Instruction n n+1 n+2 J
Decode . .
Instruction n+1 n+2 J i+l
Fetch] n+2 J J+l J+2
Instruction
for call, n+3
pushed on PC
stack
DELAYED RETURN
CLOCK CYCLES >
Execute n n+1 n+2 r
Instruction
Decode_ n+1 n+2 r r+1
Instruction
Fetch n+2 r r+1 r+2
Instruction

r popped from
PC stack

n = Branch instruction
j = Instruction at Jump or Call address

r = Instruction at Return address

Figure 3.5 Delayed Branches

Because of the instruction pipeline, a delayed branch instruction and the
two instructions that follow it must be executed sequentially. Instructions
in the two locations immediately following a delayed branch instruction
may not be any of the following:

= Other Jumps, Calls or Returns

= Pushes or Pops of the PC stack

= Writes to the PC stack or PC stack pointer
= DO UNTIL instruction

= IDLE or IDLE16 instruction

These exceptions are checked by the ADSP-21000 Family assembler.

The ADSP-2106x does not process an interrupt in between a delayed
branch instruction and either of the two instructions that follow, since
these three instructions must be executed sequentially. Any interrupt that
occurs during these instructions is latched but not processed until the
branch is complete.

A read of the PC stack or PC stack pointer immediately after a delayed call
or return is permitted, but it will show that the return address on the PC
stack has already been pushed or popped, even though the branch has not
occurred yet.

3.4.2 PC Stack

The PC stack holds return addresses for subroutines and interrupt service
routines and top-of-loop addresses for loops. The PC stack is 30 locations
deep by 24 bits wide.

The PC stack is popped during returns from interrupts (RTI), returns from
subroutines (RTS) and terminations of loops. The stack is full when all
entries are occupied, empty when no entries are occupied, and overflowed
if a call occurs when the stack is already full. The full and empty flags are
stored in the sticky status register (STKY). The full flag causes a maskable
interrupt.

A PC stack interrupt occurs when 29 locations of the PC stack are filled
(the almost full state). Entering the interrupt service routine then
immediately causes a push on the PC stack, making it full. Thus the
interrupt is a stack full interrupt, even though the condition that triggers it
is the almost full condition. The other stacks in the sequencer, the loop
address stack, loop counter stack and status stack, are provided with
overflow interrupts that are activated when a push occurs while the stack
is in a full state.

The program counter stack pointer (PCSTKP) is a readable and writeable
register that contains the address of the top of the PC stack. The value of
PCSTKP is zero when the PC stack is empty, 1, 2, ..., 30 when the stack
contains data, and 31 when the stack is overflowed. A write to PCSTKP
takes effect after a one-cycle delay. If the PC stack is overflowed, a write to
PCSTKP has no effect.

35 LOOPS (DO UNTIL)

The DO UNTIL instruction provides for efficient software loops, without
the overhead of additional instructions to branch, test a condition, or
decrement a counter. Here is a simple example of an ADSP-2106x loop:

LCNTR=30, DO | abel UNTIL LCE;
RO=DM | 0, MD), F2=PM | 8, MB) ;
R1=R0- R15;

| abel : F4=F2+F3;

When the ADSP-2106x executes a DO UNTIL instruction, the program
sequencer pushes the address of the last loop instruction and the
termination condition for exiting the loop (both specified in the
instruction) onto the loop address stack. It also pushes the top-of-loop
address, which is the address of the instruction following the DO UNTIL
instruction, on the PC stack.

Because of the instruction pipeline (fetch, decode and execute cycles), the
processor tests the termination condition (and, if the loop is counter-
based, decrements the counter) before the end of the loop so that the next
fetch either exits the loop or returns to the top based on the test condition.
Specifically, the condition is tested when the instruction two locations
before the last instruction in the loop (at location e — 2, where ¢ is the end-
of-loop address) is executed. If the termination condition is not satisfied,
the processor fetches the instruction from the top-of-loop address stored
on the top of the PC stack. If the termination condition is true, the
sequencer fetches the next instruction after the end of the loop and pops
the loop stack and PC stack. Loop operation is shown in Figure 3.6, on the
next page.

LOOP-BACK

CLOCKCYCLES —»

Execute
Instruction e-2 el € b
Decode
Instruction el e b b+1
Fetch
Instruction e b b+1 b+2
termination loop start
condition tests address is top of
false PC stack
LOOP TERMINATION
CLOCK CYCLES —»
Execute
Instruction e-2 el e e+l
Decode
Instruction e-1 e e+l e+2
Fetch
Instruction e e+l e+2 e+3
termination loop-back aborts;
condition tests PC and loop
true stacks popped

e = Loop end instruction
b = Loop start instruction

Figure 3.6 Loop Operation

351 Restrictions & Short Loops

This section describes several programming restrictions for loops. It also
explains restrictions applying to short (one- and two-instruction) loops,
which require special consideration because of the three-instruction
fetch-decode-execute pipeline.

3.5.1.1 General Restrictions
= Nested loops cannot terminate on the same instruction.

= The last three instructions of a loop cannot be any branch (jump, call, or
return); otherwise, the loop may not be executed correctly. This also
applies to one-instruction loops and two-instruction loops with only
one iteration. There is one exception to this rule, a non-delayed CALL
(no DB modifier) paired with an RTS (LR), return from subroutine with
loop reentry modifier. The non-delayed CALL may be used as one of
the last three instructions of a loop (but not in a one-instruction loop or
a two-instruction, single-iteration loop.)

The RTS (LR) instruction ensures proper reentry into a loop. In counter-
based loops, for example, the termination condition is checked by
decrementing the current loop counter (CURLCNTR) during execution
of the instruction two locations before the end of the loop. A non-
delayed call may then be used in one of the last two locations, providing
an RTS (LR) instruction is used to return from the subroutine. The loop
reentry (LR) modifier assures proper reentry into the loop, by
preventing the loop counter from being decremented again (i.e. twice
for the same loop iteration).

3.5.1.2 Counter-Based Loops

The third-to-last instruction of a counter-based loop (at e — 2, where ¢ is the
end-of-loop address) cannot be a write to the counter from memory.

Short loops terminate in a special way because of the instruction (fetch-
decode-execute) pipeline. Counter-based loops of one or two instructions
are not long enough for the sequencer to check the termination condition
two instructions from the end of the loop. In these short loops, the
sequencer has already looped back when the termination condition is
tested. The sequencer provides special handling to avoid overhead (NOP)
cycles if the loop is iterated a minimum number of times. The detailed
operation is shown in Figures 3.7 and 3.8 (on the following page). For no
overhead, a loop of length one must be executed at least three times and a
loop of length two must be executed at least twice.

Loops of length one that iterate only once or twice and loops of length two
that iterate only once incur two cycles of overhead because there are two
aborted instructions after the last iteration to clear the instruction pipeline.

Processing of an interrupt that occurs during the last iteration of a
one-instruction loop that executes once or twice, a two-instruction loop
that executes once, or the cycle following one of these loops (which is a
NOP) is delayed by one cycle. Similarly, in a one-instruction loop that
iterates at least three times, processing is delayed by one cycle if the
interrupt occurs during the third-to-last iteration.

3.5.1.3 Non-Counter-Based Loops

A non-counter-based loop is one in which the loop termination condition
is something other than LCE. When a non-counter-based loop is the outer
loop of a series of nested loops, the end address of the outer loop must be
located at least two addresses after the end address of the inner loop.

The JUMP (LA) instruction is used to prematurely abort execution of a
loop. When this instruction is located in the inner loop of a series of nested
loops and the outer loop is nhon-counter-based, the address jumped to
cannot be the last instruction of the outer loop. The address jumped to

may, however, be the next-to-last instruction (or any earlier).

ONE-INSTRUCTION LOOP, THREE ITERATIONS

CLOCK CYCLES —m
Execute n n+1 n+1 n+1 n+2
Instruction first iteration second iteration third iteration
Decode_ n+1l n+1l n+1l n+2 n+3
Instruction
Fetch n+2 n+1 n+2 n+3 n+4
Instruction
LCNTR <-3 opcode latch not loop-back aborts;
updated; fetch PC & loop stacks
address not popped
updated; count
expired tests true
ONE-INSTRUCTION LOOP, TWO ITERATIONS (Two Cycles of Overhead)
CLOCK CYCLES —p
Execute n n+1 n+1
Instruction first iteration second iteration Zon Zon n+2
Decode
Instruction n+1l n+1l n+1->nop n+1—>nop n+2 n+3
Fetch n+2 n+1 n+1 n+2 n+3 n+4
Instruction
LCNTR <-2 opcode latch not count expired loop-back aborts;

updated; fetch
address not
updated

tests true

PC & loop stacks
popped

Figure 3.7 One-Instruction Counter-Based Loops

n = DO UNTIL instruction
n+2 = instruction after loop

Non-counter-based short loops terminate in a special way because of the
fetch-decode-execute instruction pipeline:

= In a three-instruction loop, the termination condition is tested when the
top of loop instruction is executed. When the condition becomes true,
the sequencer completes one full pass of the loop before exiting.

= In a two-instruction loop, the termination condition is checked during
the last (second) instruction. If the condition becomes true when the first
instruction is executed, it tests true during the second and one more full
pass is completed before exiting. If the condition becomes true during
the second instruction, however, two more full passes occur before the
loop exit.

= In a one-instruction loop, the termination condition is checked every
cycle. When the condition becomes true, the loop executes three more
times before exiting.

TWO-INSTRUCTION LOOP, TWO ITERATIONS

CLOCK CYCLES —>
Execute n+1 n+2 n+1 n+2
Instruction n first iteration first iteration second iteration second iteration n+3
Decode
Instruction n+l n+2 n+l n+2 n+3 n+4
Fetch
Instruction n+2 n+1 n+2 n+3 n+4 n+5
LCNTR <- 2 PC stack last instruction loop-back aborts;
supplies loop fetched, causes PC & loop stacks
start address condition test; popped
tests true
TWO-INSTRUCTION LOOP, ONE ITERATION (Two Cycles of Overhead)
CLOCK CYCLES —>
Execute_ n) _n+1 _) _n+2 . nop nop n+3
Instruction first iteration first iteration
Decode n+1 n+2 n+1->nop n+2->nop n+3 n+4
Instruction
Fetch n+2 n+1 n+2 n+3 n+4 n+5
Instruction
LCNTR<-1 PC stack last instruction loop-back
supplies loop fetched, causes aborts; PC &
start address condition test; loop stacks
tests true popped

Figure 3.8 Two-Instruction Counter-Based Loops

n = DO UNTIL instruction
n+3 = instruction after loop

3-17

352 LoopAddress Stack

The loop address stack is six levels deep by 32 bits wide. The 32-bit word
of each level consists of a 24-bit loop termination address, a 5-bit
termination code, and a 2-bit loop type code:

Bits Value
0-23 Loop termination address
24-28 Termination code
29 reserved (always reads 0)
30-31 Loop type code:
00 arithmetic condition-based (not LCE)
01 counter-based, length 1
10 counter-based, length 2
11 counter-based, length > 2

The loop termination address, termination code and loop type code are
stacked when a DO UNTIL or PUSH LOOP instruction is executed. The
stack is popped two instructions before the end of the last loop iteration or
when a POP LOORP instruction is issued. A stack overflows if a push
occurs when all entries in the loop stack are occupied. The stack is empty
when no entries are occupied. The overflow and empty flags are in the
sticky status register (STKY). Overflow causes a maskable interrupt.

The LADDR register contains the top of the loop address stack. It is
readable and writeable over the DM Data bus. Reading and writing
LADDR does not move the loop address stack pointer; a stack push or
pop, performed with explicit instructions, moves the stack pointer.
LADDR contains the value OxFFFF FFFF when the loop address stack is
empty.

Because the termination condition is checked two instructions before the
end of the loop, the loop stack is popped before the end of the loop on the
final iteration. If LADDR is read at either of these instructions, the value
will no longer be the termination address for the loop.

A jump out of a loop pops the loop address stack (and the loop count
stack if the loop is counter-based) if the Loop Abort (LA) modifier is
specified for the jump. This allows the loop mechanism to continue to
function correctly. Only one pop is performed, however, so the loop abort
cannot be used to jump more than one level of loop nesting.

3.5.3 Loop Counters And Stack

The loop counter stack is six levels deep by 32 bits wide. The loop counter
stack works in synchronization with the loop address stack; both stacks
always have the same number of locations occupied. Thus, the same
empty and overflow status flags apply to both stacks.

The ADSP-2106x program sequencer operates two separate loop counters:
the current loop counter (CURLCNTR), which tracks iterations for a loop
being executed, and the loop counter (LCNTR), which holds the count
value before the loop is executed. Two counters are needed to maintain
the count for an outer loop while setting up the count for an inner loop.

35.3.1 CURLCNTR

The top entry in the loop counter stack always contains the loop count
currently in effect. This entry is the CURLCNTR register, which is
readable and writeable over the DM Data bus. A read of CURLCNTR
when the loop counter stack is empty gives the value OXFFFF FFFF.

The program sequencer decrements the value of CURLCNTR for each
loop iteration. Because the termination condition is checked two
instruction cycles before the end of the loop, the loop counter is also
decremented before the end of the loop. If CURLCNTR is read at either of
the last two loop instructions, therefore, the value is already the count for
the next iteration.

The loop counter stack is popped two instructions before the end of the
last loop iteration. When the loop counter stack is popped, the new top
entry of the stack becomes the CURLCNTR value, the count in effect for
the executing loop. If there is no executing loop, the value of CURLCNTR
is OXFFFF FFFF after the pop.

Writing CURLCNTR does not cause a stack push. Thus, if you write a new
value to CURLCNTR, you change the count value of the loop currently
executing. A write to CURLCNTR when no DO UNTIL LCE loop is
executing has no effect.

Because the processor must use CURLCNTR to perform counter-based
loops, there are some restrictions on when you can write CURLCNTR. As
mentioned under “Loop Restrictions,” the third-to-last instruction of a DO
UNTIL LCE loop cannot be a write to CURLCNTR from memory. The
instruction that follows a write to CURLCNTR from memory cannot be an
IF NOT LCE instruction.

3532 LCNTR

LCNTR is the value of the top of the loop counter stack plus one, i.e., it is
the location on the stack which will take effect on the next loop stack push.
To set up a count value for a nested loop without affecting the count value
of the loop currently executing, you write the count value to LCNTR. A
value of zero in LCNTR causes a loop to execute 232 times.

The DO UNTIL LCE instruction pushes the value of LCNTR on the loop
count stack, so that it becomes the new CURLCNTR value. This process is
illustrated in Figure 3.9. The previous CURLCNTR value is preserved one
location down in the stack.

A read of LCNTR when the loop counter stack is full results in invalid
data. When the loop counter stack is full, any data written to LCNTR is
discarded.

If you read LCNTR during the last two instructions of a terminating loop,
its value is the last CURLCNTR value for the loop.

CURLCNTR | OXFFFF FFFF

LCNTR - aaaa aaaa CURLCNTR -| aaaa aaaa aaaa aaaa aaaa aaaa
LCNTR - bbbb bbbb CURLCNTR -| bbbb bbbb bbbb bbbb
LCNTR - cccce ccee CURLCNTR -|cccc ceee
LCNTR - dddd dddd
Stack empty; no Single loop in Two nested loops Three nested loops
loop executing; progress; load in progress; load in progress; load
load LCNTR with LCNTR with LCNTR with LCNTR with
aaaa aaaa bbbb bbbb cccc ceee dddd dddd
aaaa aaaa aaaa aaaa aaaa aaaa
bbbb bbbb bbbb bbbb bbbb bbbb
cccc ceee cccc ceee cccc cece
CURLCNTR -|dddd dddd dddd dddd dddd dddd
LCNTR - eeee eeee CURLCNTR | eeee eeee eeee eeee
LCNTR - fFff Fff CURLCNTR -| ffff ffff
Four nested loops Five nested loops Six nested
in progress; load in progress; load loops in
LCNTR with LCNTR with progress;
eeee eeee fff Fff stack full

Figure 3.9 Pushing The Loop Counter Stack For Nested Loops

3-20

3.6 INTERRUPTS

Interrupts are caused by a variety of conditions, both internal and
external to the processor. An interrupt forces a subroutine call to a
predefined address, the interrupt vector. The ADSP-2106x assigns a
unique vector to each type of interrupt.

Externally, the ADSP-2106x supports three prioritized, individually
maskable interrupts, each of which can be either level or edge-
triggered. These interrupts are caused by an external device asserting
one of the ADSP-2106x’s interrupt inputs (IRQ,_). Among the
internally generated interrupts are arithmetic exceptions, stack
overflows, and circular data buffer overflows.

An interrupt request is deemed valid if it is not masked, if interrupts
are globally enabled (if bit 12 in MODEL is set), and if a higher priority
request is not pending. Valid requests invoke an interrupt service
sequence that branches to the address reserved for that interrupt.
Interrupt vectors are spaced at 8-instruction intervals; longer service
routines can be accommodated by branching to another region of
memory. Program execution returns to normal sequencing when an
RTI (return from interrupt) instruction is executed.

The ADSP-2106x core processor cannot service an interrupt unless it is
executing instructions or is in the IDLE state. IDLE and IDLE16 are a
special instructions that halt the processor core until an external
interrupt or the timer interrupt occurs.

To process an interrupt, the ADSP-2106x’s program sequencer
performs the following actions:

1. Outputs the appropriate interrupt vector address.
2. Pushes the current PC value (the return address) on the PC stack.

3. If the interrupt is either an external interrupt (IRQ,_;), the internal timer
interrupt, or the VIRPT multiprocessor vector interrupt, the program
sequencer pushes the current value of the ASTAT and MODEL1 registers
onto the status stack.

4. Sets the appropriate bit in the interrupt latch register (IRPTL).

5. Alters the interrupt mask pointer (IMASKP) to reflect the current
interrupt nesting state. The nesting mode (NESTM) bit in the MODE1
register determines whether all interrupts or only lower priority
interrupts are masked during the service routine.

At the end of the interrupt service routine, the RTI instruction causes
the following actions:

1. Returns to the address stored at the top of the PC stack.
2. Pops this value off of the PC stack.

3. Pops the status stack if the ASTAT and MODET1 status registers were
pushed (for the IRQ,_, external interrupts, timer interrupt, or VIRPT
vector interrupt).

4. Clears the appropriate bit in the interrupt latch register (IRPTL) and
interrupt mask pointer (IMASKP).

All interrupt service routines, except for reset, should end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is
empty, so there is no return address—the last instruction of the reset
service routine should be a jump to the start of your program.

3.6.1 Interrupt Latency

The ADSP-2106x responds to interrupts in three stages:
synchronization and latching (1 cycle), recognition (1 cycle), and
branching to the interrupt vector (2 cycles). See Figure 3.10. If an
interrupt is forced in software by a write to a bit in IRPTL, it is
recognized in the following cycle, and the two cycles of branching to
the interrupt vector follow that.

For most interrupts, internal and external, only one instruction is
executed after the interrupt occurs (and before the two instructions
aborted) while the processor fetches and decodes the first instruction
of the service routine. Because of the one-cycle delay between an
arithmetic exception and the STKY register update, however, there are
two cycles after an arithmetic exception occurs before interrupt
processing starts.

The standard latency associated with the IRQ,_, interrupts and the
multiprocessor vector interrupt are:

Interrupt Latency (minimum)
IRQ,_, interrupts 3 cycles

Multiprocessor vector interrupt (VIRPT register) 6 cycles

INTERRUPT, SINGLE-CYCLE INSTRUCTION

n = Single-cycle instruction

CLOCK CYCLES —>

Execute n-1 n nop nop v
Instruction

Decode n n+1->nop n+2->nop v v+1
Instruction

Fetch n+1 n+2 v v+1 v+2
Instruction

interrupt occurs interrupt n+1 pushed onto
recognized PC stack; interrupt

vector output

INTERRUPT, PROGRAM MEMORY DATA ACCESS WITH CACHE MISS

n = Instruction coinciding with
program memory data access,

cache miss
CLOCK CYCLES —>
Execute
n-1 n no no no v
Instruction P P P
Decode_ n n+1->nop n+1->nop n+2->nop v v+1
Instruction
Fetch . n+1 - n+2 \ v+l V+2
Instruction
interrupt occurs interrupt interrupt n+1 pushed onto
recognized, but processed PC stack; interrupt
not processed; vector output
program memory
data access
INTERRUPT, DELAYED BRANCH n = Delayed branch instruction
CLOCK CYCLES e
Execute n-1 n n+l n+2 nop nop v
Instruction
Decode n n+1 n+2 j->nop j+1 ->nop v v+1
Instruction
Fetch n+l n+2 j j+1 v vl V2
Instruction
interrupt occurs interrupt for acall, n+3 j pushed onto

recognized, but
not processed

Figure 3.10 Interrupt Handling

pushed onto PC
stack; interrupt
processed

PC stack;
interrupt vector
output

v = instruction at interrupt vector
j =instruction at branch address

If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. (See “Interrupt Nesting &
IMASKP”.) This allows the first instruction of the lower priority interrupt
routine to be executed before it is interrupted.

Certain ADSP-2106x operations that span more than one cycle will hold
off interrupt processing. If an interrupt occurs during one of these
operations, it is synchronized and latched, but its processing is delayed.
The operations that delay interrupt processing in this way are as follows:

= a branch (call, jump, or return) and the following cycle, whether it is an
instruction (in a delayed branch) or a NOP (in a non-delayed branch)

= the first of the two cycles needed to perform a program memory data
access and an instruction fetch (when there is an instruction cache miss).

= the third-to-last iteration of a one-instruction loop

= the last iteration of a one-instruction loop executed once or twice or of a
two-instruction loop executed once, and the following cycle (which is a
NOP)

= the first of the two cycles needed to fetch and decode the first instruction
of an interrupt service routine

= waitstates for external memory accesses

= when an external memory access is required and the ADSP-2106x does not
have control of the external bus (during a host bus grant or when the
ADSP-2106x is a bus slave in a multiprocessing system)

3.6.2 Interrupt Vector Table

Table 3.3 shows all ADSP-2106x interrupts, listed according their bit
position in the IRPTL and IMASK registers (see “Interrupt Latch
Register”). Also shown is the address of the interrupt vector; each vector
is separated by eight memory locations. The addresses in the vector table
represent offsets from a base address. For an interrupt vector table in
internal memory, the base address is 0x0002 0000; for an interrupt vector
table in external memory, the base address is 0x0040 0000. The third
column in Table 3.3 lists a mnemonic name for each interrupt. These
names are provided for convenience, and are not required by the
assembler.

IRPTL/

IMASK Vector Interrupt

Bit # Address* Name** Function

0 0x00 - reserved

1 0x04 RSTI Reset (read-only, non-maskable) HIGHEST PRIORITY
2 0x08 - reserved

3 0x0C SOVFI Status stack or loop stack overflow or PC stack full

4 0x10 TMZHI Timer=0 (high priority option)

5 0x14 VIRPTI Vector Interrupt

6 0x18 IRQ2I IRQ2 asserted

7 0x1C IRQ1I IRQ1 asserted

8 0x20 IRQOI IRQOQ asserted

9 0x24 - reserved

10 0x28 SPROI DMA Channel 0 - SPORTO Receive

11 0x2C SPR1I DMA Channel 1 - SPORT1 Receive (or Link Buffer 0)
12 0x30 SPTOI DMA Channel 2 - SPORTO Transmit

13 0x34 SPT1I DMA Channel 3- SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 - Link Buffer 2

15 0x3C LP3I DMA Channel 5 - Link Buffer 3

16 0x40 EPOI DMA Channel 6 — Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1l DMA Channel 7 — Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 - Ext. Port Buffer 2

19 0x4C EP3I DMA Channel 9 - Ext. Port Buffer 3

20 0x50 LSRQ Link Port Service Request

21 0x54 CB7I Circular Buffer 7 overflow

22 0x58 CB15I Circular Buffer 15 overflow

23 0x5C TMZLI Timer=0 (low priority option)

24 0x60 FIXI Fixed-point overflow

25 0x64 FLTOI Floating-point overflow exception

26 0x68 FLTUI Floating-point underflow exception

27 0x6C FLTH Floating-point invalid exception

28 0x70 SFTOI User software interrupt 0

29 0x74 SFT1I User software interrupt 1

30 0x78 SFT2I User software interrupt 2

31 0x7C SFT3l User software interrupt 3 LOWEST PRIORITY

Table 3.3 Interrupt Vectors & Priority

* Offset from base address: 0x0002 0000 for interrupt vector table in internal memory,
0x0040 0000 for interrupt vector table in external memory

** These IRPTL/IMASK bit names are defined in the def 21060. h include file
supplied with the ADSP-21000 Family Development Software.

The interrupt vector table may be located in internal memory, at
address 0x0002 0000 (the beginning of Block 0), or in external memory
at address 0x0040 0000. If the ADSP-2106x’s on-chip memory is booted
from an external source, the interrupt vector table will be located in
internal memory. If, however, the ADSP-2106x is not booted (because
it will execute from off-chip memory), the vector table must be located
in the off-chip memory. See “Booting” in the System Design chapter for
details on booting mode selection.

Also, if booting is from an external EPROM or host processor, bit 16 of
IMASK (the EPOI interrupt for external port DMA Channel 6) will
automatically be set to 1 following reset—this enables the DMA done
interrupt for booting on Channel 6. IRPTL is initialized to all zeros
following reset.

The IIVT bit in the SYSCON control register can be used to override
the booting mode in determining where the interrupt vector table is
located. If the ADSP-2106x is not booted (no boot mode), setting 1IVT to
1 selects an internal vector table while 11VT=0 selects an external vector
table. If the ADSP-2106x is booted from an external source (any mode
other than no boot mode), then IIVT has no effect.

3.6.3 Interrupt Latch Register (IRPTL)

The interrupt latch (IRPTL) register is a 32-bit register that latches
interrupts. It indicates all interrupts currently being serviced as well as
any which are pending. Because this register is readable and writeable,
any interrupt (except reset) can be set or cleared in software. Do not
write to the reset bit (bit 1) in IRPTL because this puts the processor
into an illegal state.

When an interrupt occurs, the corresponding bit in IRPTL is set.
During execution of the interrupt’s service routine, this bit is kept
cleared—the ADSP-2106x clears the bit during every cycle, preventing
the same interrupt from being latched while its service routine is
already executing.

A special method is provided, however, to allow the reuse of an
interrupt while it is being serviced. This method is provided by the
clear interrupt (Cl) modifier of the JUMP instruction. See Section 3.6.8,
“Clearing The Current Interrupt For Reuse.”

IRPTL is cleared by a processor reset.

(Note: The bits in the IMASK register correspond exactly to those in IRPTL.)

3.6.4 Interrupt Priority

The interrupt bits in IRPTL are ordered by priority. The interrupt
priority is from 0 (highest) to 31 (lowest). Interrupt priority determines
which interrupt is serviced first when more than one occurs in the
same cycle. It also determines which interrupts are nested when
nesting is enabled (see “Interrupt Nesting and IMASKP”).

The arithmetic interrupts—fixed-point overflow and floating-point
overflow, underflow, and invalid operation—are determined from
flags in the sticky status register (STKY). By reading these flags, the
service routine for one of these interrupts can determine which
condition caused the interrupt. The routine also has to clear the
appropriate STKY bit so that the interrupt is not still active after the
service routine is done.

The timer decrementing to zero causes both interrupt 4 and interrupt

14. This feature allows you to choose the priority of the timer interrupt.

Unmask the timer interrupt that has the priority you want, and leave
the other one masked. Unmasking both interrupts results in two
interrupts when the timer reaches zero. In this case the processor
services the higher priority interrupt first, then the lower priority
interrupt.

3.6.5 Interrupt Masking & Control

All interrupts except for reset can be enabled and disabled by the
global interrupt enable bit, IRPTEN, bit 12 in the MODEL1 register. This
bit is cleared at reset. You must set this bit for interrupts to be enabled.

3.6.5.1 Interrupt Mask Register (IMASK)

All interrupts except for reset can be masked. Masked means the
interrupt is disabled. Interrupts that are masked are still latched (in
IRPTL), so that if the interrupt is later unmasked, it is processed.

The IMASK register controls interrupt masking. The bits in IMASK
correspond exactly to the bits in the IRPTL register. For example, bit 10
in IMASK masks or unmasks the same interrupt latched by bit 10 in
IRPTL.

— Ifabitin IMASK is set to 1, its interrupt is unmasked (enabled).
— If the bit is cleared (to 0), the interrupt is masked (disabled).

After reset, all interrupts except for the reset interrupt and the

EPOI interrupt for external port DMA Channel 6 (bit 16 of IMASK) are
masked. The reset interrupt is always non-maskable. The EPOI
interrupt is automatically unmasked after reset if the ADSP-2106x is
booting from EPROM or from a host.

3.6.5.2 Interrupt Nesting & IMASKP

The ADSP-2106x supports the nesting of one interrupt service routine
inside another; that is, a service routine can be interrupted by a higher
priority interrupt. This feature is controlled by the nesting mode bit
(NESTM) in the MODEL1 register.

When the NESTM bit is a 0, an interrupt service routine cannot be
interrupted; any interrupt that occurs will be processed only after the
routine finishes. When NESTM is a 1, higher priority interrupts can
interrupt if they are not masked; lower or equal priority interrupts
cannot. The NESTM bit should only be changed outside of an interrupt
service routine or during the reset service routine; otherwise, interrupt
nesting may not work correctly.

If nesting is enabled and a higher priority interrupt occurs
immediately after a lower priority interrupt, the service routine of the
higher priority interrupt is delayed by one cycle. This allows the first
instruction of the lower priority interrupt routine to be executed before
it is interrupted.

In nesting mode, the ADSP-2106x uses the interrupt mask pointer
(IMASKRP) to create a temporary interrupt mask for each level of
interrupt nesting; the IMASK value is not affected. The ADSP-2106x
changes IMASKP each time a higher priority interrupt interrupts a
lower priority service routine.

The bits in IMASKP correspond to the interrupts in order of priority,
the same as in IRPTL and IMASK. When an interrupt occurs, its bit is
set in IMASKP. If nesting is enabled, a new temporary interrupt mask
is generated by masking all interrupts of equal or lower priority to the
highest priority bit set in IMASKP (and keeping higher priority
interrupts the same as in IMASK). When a return from an interrupt
service routine (RTI) is executed, the highest priority bit set in IMASKP
is cleared, and again a new temporary interrupt mask is generated by
masking all interrupts of equal or lower priority to the highest priority
bit set in IMASKP. The bit set in IMASKP that has the highest priority
always corresponds to the priority of the interrupt being serviced.

If nesting is not enabled, the processor masks out all interrupts and
IMASKEP is not used, although IMASKRP is still updated to create a
temporary interrupt mask.

IRPTL is updated, but the ADSP-2106x does not vector to an interrupt
that occurs while its service routine is already executing. It waits until
the RTI completes before vectoring to the service routine again.

3.6.6 Status Stack Save & Restore

For low-overhead interrupt servicing, the ADSP-2106x automatically
saves and restores the status and mode contexts of the interrupted
program. The three external interrupts (IRQ,_y), the timer interrupt,
and the VIRPT vector interrupt cause an automatic push of ASTAT
and MODEL onto the status stack, which is five levels deep. These
registers are automatically popped from the status stack by the return
from interrupt instruction, RTI (and by the JUMP (Cl) instruction,
described below in “Clearing The Current Interrupt For Reuse”).

0 Only IRQ,_q, timer, and VIRPT interrupts cause a push of the
status stack. All other interrupts require an explicit save and
restore of the appropriate registers to memory.

Pushing ASTAT and MODEL1 preserves the status and control bit
settings so that if the service routine alters these bits, the original
settings are automatically restored upon the return from interrupt.

Note, however, that the FLAG,_, bits in ASTAT are not affected by
status stack pushes and pops; the values of these bits carry over from
the main program to the service routine and from the service routine
back to the main program.

The top of the status stack contains the current values of ASTAT and
MODEL. Reading and writing these registers does not move the stack
pointer. The stack pointer is moved, however, by explicit PUSH and
POP instructions.

3.6.7 Software Interrupts

The ADSP-2106x provides software interrupts that emulate interrupt
behavior but are activated through software instead of hardware.
Setting one of bits 28-31 in IRPTL, with either a BIT SET instruction or
a write to IRPTL, activates a software interrupt. The ADSP-2106x
branches to the corresponding interrupt routine if that interrupt is not
masked and interrupts are enabled.

3.6.8 Clearing The Current Interrupt For Reuse

Normally the ADSP-2106x ignores and does not latch an interrupt that
reoccurs while its service routine is already executing. When the
interrupt initially occurs, the corresponding bit in IRPTL is set. During
execution of the service routine, this bit is kept cleared—the
ADSP-2106x clears the bit during every cycle, preventing the same
interrupt from being latched while its service routine is already
executing.

The clear interrupt (Cl) modifier of the JUMP instruction, however,
allows the reuse of an interrupt while it is being serviced. This can be
useful in systems that require fast interrupt response and low interrupt
latency. The JUMP (CI) instruction should be located within the
interrupt service routine. JUMP (ClI) clears the status of the current
interrupt without leaving the interrupt service routine, reducing the
interrupt routine to a normal subroutine—this allows the interrupt to
occur again, as a result of a different event or task in the ADSP-2106x
system.

The JUMP (CI) instruction reduces an interrupt service routine to a
normal subroutine by clearing the appropriate bit in the interrupt latch
register (IRPTL) and interrupt mask pointer (IMASKP) and popping
the status stack. The ADSP-2106x then stops automatically clearing the
interrupt’s latch bit (in IRPTL) in every cycle, allowing the interrupt to
occur again.

When returning from a subroutine which has been reduced from an
interrupt service routine with a JUMP (CI) instruction, the (LR)
modifier of the RTS instruction must be used (in case the interrupt
occurred during the last two instructions of a loop). Refer to “General
Restrictions” in Section 3.5, “Loops”, for a description of the RTS (LR)
instruction.

The following example shows an interrupt service routine that is
reduced to a subroutine with the (Cl) modifier:

instrl,; {interrupt entry from main progran
JUMP(PC, 3) (DB, C); {clear interrupt status}

instr3;

instr4;

instrb5;

RTS (LR); {use LR nodifier with return from subroutine}

Note that the JUMP(PC, 3) (DB, Cl) instruction actually only
continues linear execution flow by jumping to the location PC + 3
(instr5), with the two intervening instructions (instr3, instr4) being
executed because of the delayed branch (DB). This JUMP instruction is
only an example—a JUMP (CI) can be to any location.

3.6.9 External Interrupt Timing & Sensitivity
Each of the ADSP-2106x’s three external interrupts, IRQ,_,, can be
either level- or edge-triggered.

The ADSP-2106x samples interrupts once every CLKIN cycle. Level-
sensitive interrupts are considered valid if sampled active (low). A
level-sensitive interrupt must go inactive (high) before the processor
returns from the interrupt service routine. If a level-sensitive interrupt
is still active when the processor samples it, the processor treats it as a
new request, repeating the same interrupt routine without returning to
the main program (assuming no higher priority interrupts are active).

Edge-triggered interrupt requests are considered valid if sampled high
in one cycle and low in the next. The interrupt can stay active
indefinitely. To request another interrupt, the signal must go high,
then low again.

Edge-triggered interrupts require less external hardware compared to
level-sensitive requests since there is never a need to negate the
request. However, multiple interrupting devices may share a single
level-sensitive request line on a wired-OR basis, which allows for easy
system expansion.

A bit for each interrupt in the MODE2 register indicates the sensitivity
mode of each interrupt.

MODE?2

Bit Name Definition

0 IRQOE 1=edge-sensitive; O=level-sensitive
1 IRQ1E 1=edge-sensitive; O=level-sensitive
2 IRQ2E 1=edge-sensitive; O=level-sensitive

3.6.9.1 Asynchronous External Interrupts

The processor accepts interrupts that are asynchronous to the ADSP-
2106x clock; that is, an interrupt signal may change at any time. An
asynchronous interrupt must be held low at least one CLKIN cycle to
guarantee that it is sampled. Synchronous interrupts need only meet
the setup and hold time requirements relative to the rising edge of
CLKIN, as specified in the ADSP-2106x Data Sheet.

3.6.10 Multiprocessor Vector Interrupts (VIRPT)

Vector interrupts are used for interprocessor commands in multiple-
processor systems. When an external processor writes an address to
the VIRPT register a vector interrupt is caused. The external processor
may be either another ADSP-2106x or a host.

When the vector interrupt is serviced, the ADSP-2106x automatically
pushes the status stack and begins executing the service routine
located at the address specified in VIRPT. The lower 24 bits of VIRPT
contain the address; the upper 8 bits may be optionally used as data to
be read by the interrupt service routine. At reset, VIRPT is initialized to
its standard address in the ADSP-2106x’s interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which
are NOPs. When the RTI (return from interrupt) instruction is reached
in the service routine, the ADSP-2106x automatically pops the status
stack.

The VIPD bit in SYSTAT reflects the status of the VIRPT register. If
VIRPT is written while a previous vector interrupt is pending, the new
vector address replaces the pending one. If VIRPT is written while a
previous vector interrupt is being serviced, the new vector address is
ignored and no new interrupt is triggered. If the ADSP-2106x writes to
its own VIRPT register it is ignored.

To use the ADSP-2106x’s vector interrupt feature, external processors
can take the following sequence of actions:

1. Poll the VIRPT register until it reads a certain token value (i.e. zero).

2. Write the vector interrupt service routine address to VIRPT.

3. When the service routine is finished, it writes the token back into
VIRPT to indicate that it is finished and that another vector interrupt
can be initiated.

3.7 TIMER

The ADSP-2106x includes a programmable interval timer which can
generate periodic interrupts. You program the timer by writing values
to its two registers and you control timer operation through a bit in the
MODE?2? register. An external output, TIMEXP, signals to other devices
that the timer count has expired.

Figure 3.11 shows a block diagram of the timer. Two universal
registers, TPERIOD and TCOUNT, control the timer interval.

Register Function Width
TPERIOD Timer Period Register 32 bits
TCOUNT Timer Counter Register 32 bits

DM Data BUS

TPERIOD

Decrement

Interrupt; assert TIMEXP;
reload from TPERIOD

Figure 3.11 Timer Block Diagram

The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle. When the
TCOUNT value reaches zero, the timer generates an interrupt and
asserts the TIMEXP output high for 4 cycles (when the timer is
enabled). See Figure 3.12. On the clock cycle after TCOUNT reaches
zero, the timer automatically reloads TCOUNT from the TPERIOD
register.

The TPERIOD value specifies the frequency of timer interrupts. The
number of cycles between interrupts is TPERIOD + 1. The maximum
value of TPERIOD is 232 — 1, so if the clock cycle is 50 ns, the maximum
interval between interrupts is 214.75 seconds.

CLOCK J

TIMEXP

TCOUNT =1 TCOUNT =0

Figure 3.12 TIMEXP Signal

3.7.1 Timer Enable/Disable

To start and stop the timer, you enable and disable it with the TIMEN
bit in the MODE2 register. With the timer disabled, you load TCOUNT
with an initial count value and TPERIOD with the number of cycles for
the interval you want. Then you enable the timer when you want to
begin the count.

At reset, the timer enable bit in the MODE?2 register is cleared, so the
timer is disabled. When the timer is disabled, it does not decrement the
TCOUNT register and it generates no interrupts. When the timer
enable bit is set, the timer starts decrementing the TCOUNT register at
the end of the next clock cycle. If the bit is subsequently cleared, the
timer is disabled and stops decrementing TCOUNT after the next clock
cycle (see Figure 3.13).

MODE2
Bit Name Definition
5 TIMEN Timer enable

TIMER ENABLE

Set TIMEN in MODE2 Timer Active
CLOCK
TCOUNT =N TCOUNT =N TCOUNT=N-1

TIMER DISABLE

Clear TIMEN in MODE2 Timer Inactive
CLOCK
TCOUNT=M-1 TCOUNT=M-2 TCOUNT=M-2

Figure 3.13 Timer Enable & Disable

3.7.2 Timer Interrupts

When the value of TCOUNT reaches zero, the timer generates two
interrupts, one with a relatively high priority, the other with a
relatively low priority. At reset, both are masked. You should unmask
only the timer interrupt that has the priority you want, and leave the
other masked.

IRPTL Interrupt Vector

Bit Name Address Function
4 TMZHI 0x10 Timer =0 (high priority option)
23 TMZLI 0x5C Timer=0 (low priority option)

Interrupt priority determines which interrupt is serviced first when
two occur in the same cycle. It also affects interrupt nesting—when
nesting is enabled, only higher priority interrupts can interrupt a
service routine in progress.

CLOCK

PM

ADDRESS

Like other interrupts, the timer interrupt requires two cycles to fetch
and decode the first instruction of the service routine. The service
routine begins executing four cycles after the timer count reaches zero,
as shown in Figure 3.14.

B [S A S B

NOP NOP EXECUTE
TCOUNT =1 TCOUNT =0 (FETCH) (DECODE) FIRST
SERVICE

ROUTINE
INSTRUCTION

X X X ><*>< X

TIMER
INTERRUPT
VECTOR

Figure 3.14 Timer Interrupt Timing

3.7.3 Timer Registers

Both the TPERIOD and TCOUNT registers can be read and written by
universal register transfers. Reading the registers has no effect on the
timer. An explicit write to TCOUNT has priority over both the loading
of TCOUNT from TPERIOD and the decrementing of TCOUNT.

Neither TCOUNT nor TPERIOD are affected by a reset, so you should
initialize both registers after reset, before enabling the timer.

3.8 STACK FLAGS

The STKY status register maintains stack full and stack empty flags for
the PC stack as well as overflow and empty flags for the status stack
and loop stack. Unlike other bits in STKY, several of these flag bits are
not “sticky.” They are set by the occurrence of the corresponding
condition and are cleared when the condition is changed (by a push,
pop, or processor reset).

STKY Sticky/

Bit Name Definition Not Sticky Cleared By
21 PCFL PC stack full Not sticky Pop

22 PCEM PC stack empty Not sticky Push

23 SSOV Status stack overflow Sticky RESET

24 SSEM Status stack empty Not sticky Push

25 LSOV Loop stacks* overflow Sticky RESET

26 LSEM Loop stacks* empty Not sticky Push

* | oop address stack and loop counter stack

The status stack flags are read-only. Writes to the STKY register have
no effect on these bits.

The overflow and full flags are provided for diagnostic aid only and
are not intended to allow recovery from overflow. Status stack or loop
stack overflow or PC stack full causes an interrupt.

The empty flags facilitate stack saves to memory. You monitor the
empty flag when saving a stack to memory to know when all values
have been transferred. The empty flags do not cause interrupts because
an empty stack is an acceptable condition.

3.9 IDLE & IDLE16

IDLE and IDLE16 are special instructions that halt the ADSP-2106x
core processor in a low-power state until an external interrupt (IRQ,_y),
timer interrupt, DMA interrupt, or VIRPT vector interrupt occurs.
When the processor executes an IDLE instruction, it fetches one more
instruction at the current fetch address and then suspends operation.
The ADSP-2106x’s 1/0 processor is unaffected by the IDLE
instruction—any DMA transfers to or from internal memory will
continue uninterrupted.

The processor’s internal clock continues to run during IDLE, as well as
the timer (if it is enabled). When an external interrupt (IRQ,_,), timer
interrupt, DMA interrupt, or VIRPT vector interrupt occurs, the
processor responds normally. After two cycles needed to fetch and
decode the first instruction of the interrupt service routine, the
processor continues executing instructions normally.

On the ADSP-21061 only, the IDLE16 instruction executes a NOP and puts
the processor in a low power state. IDLE16 is a lower power version of the
IDLE instruction. This instruction halts the processor like the IDLE
instruction; in this case, the internal clock runs at 1/16th the rate of
CLKIN. The ADSP-21061's 1/0 processor continues to function, but all
operations occur at 1/16th the rate. All internal memory transfers require
an extra 15 cycles. The serial clocks and frame syncs (if being sourced by
the ADSP-21061) are divided down by a factor of 16 during IDLE16.
Similarly, all Host accesses take 16 times longer to complete. The
processor remains in the low power state until an interrupt occurs.

After returning from the interrupt, execution continues at the
instruction following the IDLE or IDLE16 instruction.

3.10 INSTRUCTION CACHE

The ADSP-2106x’s on-chip instruction cache is a 2-way, set-associative
cache with entries for 32 instructions. Operation of the cache is
transparent to the programmer. The ADSP-2106x caches only
instructions that conflict with program memory data accesses (over the
PM Data Bus, with the address generated by DAG2 on the

PM Address Bus). This feature makes the cache considerably more
efficient than a cache that loads every instruction, since typically only a
few instructions must access data from a block of program memory.

Because of the three-stage instruction pipeline, if the instruction at
address n requires a program memory data access, there is a conflict
with the instruction fetch at address n+2, assuming sequential
execution. It is this fetched instruction (n+2) that is stored in the
instruction cache, not the instruction requiring the program memory
data access.

If the instruction needed is in the cache, a “cache hit” occurs—the
cache provides the instruction while the program memory data access
is performed. If the instruction needed is not in the cache, a “cache
miss” occurs, and the instruction fetch (from memory) takes place in
the cycle following the program memory data access, incurring one
cycle of overhead. This instruction is loaded into the cache, if the cache
is enabled and not frozen, so that it is available the next time the same
instruction (requiring program memory data) is executed.

3.10.1 Cache Architecture

Figure 3.15 shows a block diagram of the instruction cache. The cache
contains 32 entries. An entry consists of a register pair containing an
instruction and its address. Each entry has a “valid” bit which is set if
the entry contains a valid instruction.

The entries are divided into 16 sets (humbered 15-0) of two entries
each, entry 0 and entry 1. Each set has an LRU (Least Recently Used)
bit whose value indicates which of the two entries contains the least
recently used instruction (1=entry 1, O=entry 0).

Every possible instruction address is mapped to a set in the cache by
its 4 LSBs. When the processor needs to fetch an instruction from the
cache, it uses the 4 address LSBs as an index to a particular set. Within

LRU Bit Instruction Address Valid Bit

Set 0 |:| |

Set 1 |:| |
Set 2 |:|]

Set 13 |:|]
Set 14 |:|]
Set 15 |:|]

Figure 3.15 Instruction Cache Architecture

that set, it checks the addresses of the two entries to see whether either
contains the needed instruction. A cache hit occurs if the instruction is
found, and the LRU bit is updated if necessary to indicate the entry
that did not contain the needed instruction.

A cache miss occurs if neither entry in the set contains the needed
instruction. In this case, a new instruction and its address are loaded
into the least recently used entry of the set that matches the 4 LSBs of
the address. The LRU bit is toggled to indicate that the other entry in
the set is now the least recently used.

Because instructions are mapped to sets by their 4 address LSBs, there
is no need to store these bits in the cache; the 4 LSBs are implied by the
set in which the instruction has been stored. Only bits 23-4 are actually
stored in a cache entry.

3.10.2 Cache Efficiency

Usually, cache operation and its efficiency is not a concern. However,
there are some situations that can degrade cache efficiency and can be
remedied easily in your program.

When a cache miss occurs, the needed instruction is loaded into the
cache so that if the same instruction is needed again, it will be there
(i.e. a cache hit will occur). However, if another instruction whose
address is mapped to the same set displaces this instruction, there will
be a cache miss instead. The LRU bits help to reduce this possibility
since at least two other instructions mapped to the same set must be
needed before an instruction is displaced. If three instructions mapped
to the same set are all needed repeatedly, cache efficiency (i.e. “hit
rate”) can go to zero. The solution is to move one or more of the
instructions to a new address, one that is mapped to a different set.

An example of cache-inefficient code is shown in Figure 3.16. The
program memory data access at address 0x101 in the tight loop causes
the instruction at 0x103 to be cached (in set 3). Each time the
subroutine sub is called, the program memory data accesses at 0x201
and 0x211 displace this instruction by loading the instructions at 0x203
and 0x213 into set 3. If the subroutine is called only rarely during the
loop execution, the impact will be minimal. If the subroutine is called
frequently, the effect will be noticeable. If the execution of the loop is
time-critical, it would be advisable to move the subroutine up one
location (starting at 0x201), so that the two cached instructions end up
in set 4 instead of 3.

Address

0x0100 I cntr=1024, do tight until Ice;
0x0101 r0=dm(i 0, m0), pm(i 8, nB) =f 3;
0x0102 r1=r0-r15;

0x0103 if eqcall (sub);

0x0104 f2=float r1;

0x0105 f3=f2*f 2;

0x0106 tight: f3=f3+f4;

0x0107 pr(i 8, nB) =f 3;

0x0200 sub: r1=R13;

0x0201 r14=pn(i 9, n®);
0x0211 pr(i 9, @) =r12;
0x021F rts;

Figure 3.16 Cache-Inefficient Code

3.10.3 Cache Disable & Cache Freeze

Freezing the cache prevents any changes to its contents—a cache miss
will not result in a new instruction being stored in the cache. Disabling
the cache stops its operation completely; all instruction fetches
conflicting with program memory data accesses are delayed by the
access. These functions are selected by the CADIS (cache enable/
disable) and CAFRZ (cache freeze) bits in the MODE2 register:

MODE2

Bit Name Function

4 CADIS Cache Disable
19 CAFRZ Cache Freeze

After reset the cache is cleared, containing no instructions, and is
unfrozen and enabled.

An instruction containing a program memory data access must not be
placed directly after a cache enable or cache disable instruction—the
ADSP-2106x must wait at least one cycle before executing the PM data
access. A NOP may be inserted to accomplish this.

3 Program Sequencing

Data Addressing B 4

4.1 OVERVIEW

The ADSP-2106x’s two data address generators (DAGSs) simplify the task of
organizing data by maintaining pointers into memory. The DAGs allow the
processor to address memory indirectly; that is, an instruction specifies a
DAG register containing an address instead of the address value itself.

Data address generator 1 (DAG1) generates 32-bit addresses on the

DM Address Bus. Data address generator 2 (DAG2) generates 24-bit
addresses on the PM Address Bus. The basic architecture for both DAGs
is shown in Figure 4.1 on the following page.

The DAGs also support in hardware some functions commonly used in
digital signal processing algorithms. Both DAGs support circular data
buffers, which require advancing a pointer repetitively through a range of
memory. Both DAGs can also perform a bit-reversing operation, which
outputs the bits of an address in reversed order.

4.2 DAG REGISTERS

Each DAG has four types of registers: Index (1), Modify (M), Base (B), and
Length (L) registers.

An | register acts as a pointer to memory, and an M register contains the
increment value for advancing the pointer. By modifying an | register with
different M values, you can vary the increment as needed.

B registers and L registers are used only for circular data buffers. A

B register holds the base address (i.e. the first address) of a circular buffer.
The same-numbered L register contains the number of locations in (i.e. the
length of) the circular buffer.

Each DAG contains eight of each type of register:

DAGL1 registers (32-bit) DAG?2 reqisters (24-bit)
B0O-B7 B8-B15

10-17 18-115

MO-M7 M8-M15

LO-L7 L8-L15

DM Data Bus

DAG1: N=32 N
DAG2: N=24
FROM
INSTRUCTION
L B | N M
Registers Registers Registers Registers
8x N 8x N 8x N 8x N
Y / /
MODULUS
LOGIC
S Y v
| ADD |
\
BIT-REVERSE v
(Optional) I N / A
\ MUX /
Y/
UPDATE 7 y N
BIT-REVERSE
10 (DAG1) or 18 (DAG2) only
(Optional)

PM Address Bus (DAG2)

*24
32

DM Address Bus (DAG1) I

Figure 4.1 Data Address Generator Block Diagram

4-2

421

Alternate DAG Registers

Each DAG register has an alternate (secondary) register for context
switching. For activating alternate registers, each DAG is organized into
high and low halves, as shown in Figure 4.2. The high half of DAG1
contains the I, M, B and L registers numbered 4-7, and the low half, the
registers numbered 0-3. Likewise, the high half of DAG2 consists of

registers 12-15, and the low half consists of registers 8-11.

DAG1 Registers (Data Memory)

10 MO LO BO
11 M1 L1 Bl
12 M?2 L2 B2
13 M3 L3 B3
I I
14 M4 L4 B4
15 M5 L5 B5
16 M6 L6 B6
17 M7 L7 B7
I I
DAG2 Registers (Program Memory)
18 M8 L8 B8
19 M9 L9 B9
110 M10 L10 B10
: 111 : M11 L11 B1l
112 M12 L12 B12
113 M13 L13 B13
114 M14 L14 B14
115 M15 L15 B15

Figure 4.2 Alternate DAG Registers

MODE1
Select Bit

-4— SRDIL

-4— SRDIH

-4— SRD2L

-4— SRD2H

Several control bits in the MODEL1 register determine for each half
whether primary or alternate registers are active (O=primary registers,
1=alternate registers):

MODE1

Bit Name Definition

3 SRD1H DAGL! alternate register select (4-7)

4 SRD1L DAGL! alternate register select (0-3)

5 SRD2H DAG?2 alternate register select (12-15)
6 SRD2L DAG?2 alternate register select (8-11)

This grouping of alternate registers lets you pass pointers between
contexts in each DAG.

4.3 DAG OPERATION
DAG operations include:

= address output with pre-modify or post-modify,
= modulo addressing (for circular buffers), and
= bit-reversed addressing

Short word addresses (for 16-bit data) are right-shifted by one bit before
being output onto the DM Address Bus. This allows internal memory to
use the address directly. (See “16-Bit Short Words” in the Memory chapter
of this manual for details on short word addresses.)

43.1 Address Output & Modification

The processor can add an offset (modifier), either an M register or an
immediate value, to an | register and output the resulting address; this is
called a pre-modify without update operation. Or it can output the | register
value as it is, and then add an M register or immediate value to form a
new | register value. This is a post-modify operation. These operations are
compared in Figure 4.3. The pre-modify operation does not change the
value of the | register. The width of an immediate modifier depends on
the instruction; it can be as large as the width of the | register. The L
register and modulo logic do not affect a pre-modified address—
pre-modify addressing is always linear, not circular.

Pre-modify addressing operations must not change the memory space of
the address; for example, pre-modification of an address in ADSP-2106x
Internal Memory Space should not generate an address in External
Memory Space. Refer to the Memory chapter for information on the
ADSP-2106x memory map.

PRE-MODIFY POST-MODIFY

Without | Register Update With | Register Update
PM (MXx, Ix) PM (Ix, Mx)
DM (MXx, Ix) DM (Ix, Mx)
1. output 2. update
+ +

VI VI

1+ M 1+ M
output

Figure 4.3 Pre-Modify & Post-Modify Operations

4.3.1.1 DAG Modify Instructions

In ADSP-2106x assembly language, pre-modify and post-modify
operations are distinguished by the positions of the index and modifier
(M register or immediate value) in the instruction. The | register before the
modifier indicates a post-modify operation. If the modifier comes first, a
pre-modify without update operation is indicated. The following
instruction, for example, accesses the program memory location with an
address equal to the value stored in 115, and the value 115 + M12 is written
back to the 115 register:

R6 = PM|15, ML2); Indirect addressing with post-modify
If the order of the | and M registers is switched, however,
R6 = PM M2, | 15); Indirect addressing with pre-modify

the instruction accesses the location in program memory with an address
equal to 115 + M12, but does not change the value of 115.

Any M register can modify any | register within the same DAG (DAGL1 or
DAG?2). Thus,

DM MD, 12) = TPERI OD;

is a legal instruction that accesses the data memory location MO + 12;
however,

DM MD, 1 14) = TPERI OD;

is not a legal instruction because the | and M registers belong to different
DAGs.

4.3.1.2 Immediate Modifiers

The magnitude of an immediate value that can modify an | register
depends on the instruction type and whether the | register is in DAG1 or
DAG2. DAG1 modify values can be up to 32 bits wide; DAG2 modify
values can be up to 24 bits wide. Some instructions with parallel
operations only allow modify values up to 6 bits wide. Here are two
examples:

32-bit modifier:

R1=DM 0x40000000, I 1) ; DM address = 11 + 0x4000 0000
6-bit modifier:
F6=F1+F2, PM | 8, 0x0OB) =ASTAT,; PM address = 18, 18 = 18 + Ox0B

4.3.2 Circular Buffer Addressing

The DAGs provide for addressing of locations within a circular data
buffer. A circular buffer is a set of memory locations that stores data. An
index pointer steps through the buffer, being post-modified and updated
by the addition of a specified value (positive or negative) for each step. If
the modified address pointer falls outside the buffer, the length of the
buffer is subtracted from or added to the value, as required to wrap the
index pointer back to the start of the buffer (see Figure 4.4). There are no
restrictions on the value of the base address for a circular buffer.

Circular buffer addressing must use M registers for post-modify of |
registers, not pre-modify; for example:

F1=DM | 0, M) ; Use post-modify addressing for circular buffers,
F1=DM MD, 1 0) ; not pre-modify.

Length =11
Base address =0
Modifier (step size) =4

Sequence shows order in which locations are accessed in one pass.
Sequence repeats on subsequent passes.

0 1 0 0 0
1 1 4 1 1
2 2 2 7 2
3 3 3 3 10
4 2 4 4 4
5 5 5 5 5
6 6 6 8 6
7 7 7 7 11
8 3 8 8 8
9 9 6 9 9
10 10 10 9 10

Figure 4.4 Circular Data Buffers

4.3.2.1 Circular Buffer Operation

You set up a circular buffer in assembly language by initializing an

L register with a positive, nonzero value and loading the corresponding
(same-numbered) B register with the base (starting) address of the buffer.
The corresponding | register is automatically loaded with this same
starting address.

On the first post-modify access using the | register, the DAG outputs the |
register value on the address bus and then modifies it by adding the
specified M register or immediate value to it. If the modified value is
within the buffer range, it is written back to the | register. If the value is
outside the buffer range, the L register value is subtracted (or, if the
modify value is negative, added) first.

If M is positive,
lhew = loig * M if 1,,4 + M < Buffer base + length (end of buffer)
lhew = log tM-L if 1,,4 + M = Buffer base + length (end of buffer)

If M is negative,

lhew = loig * M if 1,,4 + M = Buffer base (start of buffer)
lhew = loigtM+L if 1,;4 + M < Buffer base (start of buffer)

4.3.2.2 Circular Buffer Registers

All four types of DAG registers are involved in the operation of a circular
buffer:

= The | register contains the value which is output on the address bus.

= The M register contains the post-modify amount (positive or negative)
which is added to the | register at the end of each memory access. The

M register can be any M register in the same DAG as the | register and
does not have to have the same number. The modify value can also be an
immediate number instead of an M register. The magnitude of the
modify value, whether from an M register or immediate, must be less
than the length (L register) of the circular buffer.

= The L register sets the size of the circular buffer and thus the address
range that the | register is allowed to circulate through. L must be
positive and cannot have a value greater than 23! — 1 (for LO-L7) or

223 — 1 (for L8-L15). If an L register’s value is zero, its circular buffer
operation is disabled.

= The B register, or the B register plus the L register, is the value that the
modified | value is compared to after each access. When the B register is
loaded, the corresponding I register is simultaneously loaded with the
same value. When | is loaded, B is not changed. B and I can be read
independently.

4.3.2.3 Circular Buffer Overflow Interrupts

There is one set of registers in each DAG that can generate an interrupt upon
circular buffer overflow (i.e. address wraparound). In DAG1, the registers
are B7, 17, L7, and in DAG2 they are B15, 115, L15. Circular buffer overflow
interrupts can be used to implement a ping-pong (i.e. swap 1/0 buffer
pointers) routine, for example.

Whenever a circular buffer addressing operation using these registers
causes the address in the | register to be incremented (or decremented)
past the end (or start) of the circular buffer, an interrupt is generated.
Depending on which register set was used, the interrupt is either:

DAG Registers Vector Symbolic

Interrupt To Use Address Name*
DAGLI1 circular buffer 7 overflow B7,17, L7 0x54 CB71
DAG?2 circular buffer 15 overflow B15, 115, L15 0x58 CB15lI

* These symbols are defined in the #include file def 21060. h . See “Symbol
Definitions File (def21060.h)” at the end of Appendix E, Control/Status Registers.

Specifically, an interrupt is generated during an instruction’s address
post-modify when:

(for M<0) I+M<B
(for M=0) I+M>=B+L

The interrupts can be masked by clearing the appropriate bit in IMASK.

There may be situations where you want to use 17 or 115 without circular
buffering but with the circular buffer overflow interrupts unmasked. To
disable the generation of these interrupts, set the B7/B15 and L7/L15
registers to values that assure the conditions that generate interrupts (as
specified above) never occur. For example, when accessing the address
range 0x1000-0x2000, your program could set B=0x0000 and L=0xFFFF.
Note that setting the L register to zero will not achieve the desired results.

If you are using either of the circular buffer overflow interrupts, you
should avoid using the corresponding | register(s) (17, 115) in the rest of
your program, or be careful to set the B and L registers as described above
to prevent spurious interrupt branching.

The STKY status register includes two bits that also indicate the
occurrence of a circular buffer overflow, bit 17 (DAGL1 circular buffer 7
overflow) and bit 18 (DAG2 circular buffer 15 overflow). These bits are
“sticky”—they remain set until explicitly cleared.

433 Bit-Reversal

Bit-reversal of memory addresses can be performed in two ways: by
enabling the bit-reverse mode on DAG1 or DAG2 and using a specific |
register (10 or 18), or by using the explicit bit-reverse instruction (BITREV).

4.3.3.1 Bit-Reverse Mode

In bit-reverse mode, DAGL1 bit-reverses 32-bit address values output from
10 and DAG2 bit-reverses 24-bit address values output from 18. These
modes are enabled by the BR0 and BR8 bits in the MODEL1 register. Only
address values from 10 or 18 are bit-reversed. This mode affects both pre-
modify and post-modify operations.

MODE1

Bit Name Definition

0 BR8 Bit-reverse mode for 18 (DAG2)
1 BRO Bit-reverse mode for 10 (DAG1)

Bit-reversal occurs at the output of the DAG and does not affect the value
in 10 or 18. In the case of a post-modify operation, the update value is not
bit-reversed.

Example:

| 0=0x80400000;
R1=DM I 0, 3); DM address=0x201, 10=0x80400003

4.3.3.2 Bit-Reverse Instruction

The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (10-115) without actually accessing memory. This instruction
is independent of the bit-reverse mode. The BITREV instruction adds a
32-bit immediate value to a DAGL1 index register (or a 24-bit immediate
value to a DAG?2 index register), bit-reverses the result and writes the
result back to the same index register.

Example:
BI TREV(11, 4); 11 = Bit-reverse of (11+4)

4.4 DAG REGISTER TRANSFERS

DAG registers are part of the universal register set and may be written to
from memory, from another universal register, or from an immediate field
in an instruction. DAG register contents may be written to memory or to a
universal register.

Transfers between 32-bit DAGL1 registers and the 40-bit DM Data Bus are
aligned to bits 39-8 of the bus. When 24-bit DAG2 registers are read to the
40-bit DM Data Bus, M register values are sign-extended to 32 bits and 1,
L, and B register values are zero-filled to 32 bits. The results are aligned to
bits 39-8 of the DM Data Bus. When DAG2 registers are written from the
DM Data Bus, bits 31-8 are transferred and the rest are ignored. Figure 4.5
illustrates these transfers.

39 7 0 39 23 7
¢ 8 ZEROS 8 ZEROS ¢ 8 ZEROS

DAG1 Register (7-0) DAG2 |, L, or B Register (158) |

39 23 7 0 39 23 7

l I

T 8 ZEROS ¢

8SIGNBITY DAG2 M Register (15-8) | DAG2 M Register (15-8)

Figure 4.5 DAG Register Transfers

44.1 DAG Register Transfer Restrictions

For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is automatically inserted by the processor (1).
Certain other sequences cause incorrect results and are not allowed by the
ADSP-21000 Family assembler (2).

1.) When an instruction that loads a DAG register is followed by an
instruction that uses any register in the same DAG for data addressing,
modify instructions, or indirect jumps, the ADSP-2106x inserts an extra
(NOP) cycle between the two instructions. This happens because the same
bus is needed by both operations in the same cycle, therefore the second
operation must be delayed.

Example:

L2=8;
DM 1 0, ML) =R1;

Because L2 is in the same DAG as 10 (and M1), an extra cycle is inserted after
the write to L2.

2.) The following types of instructions can execute on the processor, but
cause incorrect results; these instructions are disallowed by the ADSP-21000
Family assembler:

= An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the index
register. The instruction writes the wrong data to memory or updates the
wrong index register.

Examples:
DM M2, | 1) =I O; or DM 1, M2) =I O;

= Aninstruction that loads a DAG register from memory using indirect
addressing from the same DAG, with update of the index register. The

instruction will either load the DAG register or update the index register,
but not both.

Example:
L2=DM | 1, MD) ;

Memory B3 5

5.1 OVERVIEW

ADSP-2106x processors contain a large dual-ported memory for on-
chip program and data storage. On these processors, the two memory
blocks are named Block 0 and Block 1. A comparison of on-chip
memory (SRAM) available on ADSP-2106x processors is as follows:

On-chip SRAM ADSP-21060 ADSP-21062 ADSP-21061
Total Size 4 MBit 2 MBit 1 MBit
Block size (2) 2 MBit 1 MBit 0.5 MBit
of 48-bit words 40K 20K 8K
(per block)
of 32-bit words 64K 32K 16K
(per block)
of 16-bit words 128K 64K 32K
(per block)

Addressing of up to 4 gigawords of additional, off-chip memory is also
provided through the external port of ADSP-2106x processors.

32-bit memory words are used for single-precision IEEE floating-point
data. 48-bit words contain either instructions or 40-bit extended-
precision floating-point data. In addition, the ADSP-2106x supports a
16-bit short word format which can be used for integer or fractional
data values.

The ADSP-2106x has three internal buses connected to its dual-ported
memory, the PM bus, DM bus, and 1/0 bus. The PM bus and DM bus
share one port of the memory and the 1/0 bus is connected to the
other port. The ADSP-2106x’s internal PM and DM buses are
controlled by the processor core while the 170 bus is controlled by the
ADSP-2106x’s on-chip 1/0 processor. The 1/0 bus allows concurrent
data transfers between either memory block and the ADSP-2106x’s
communication ports (link ports, serial ports, and external port).

With this dual-ported structure, accesses of internal memory by the
processor core and 1/0 processor are independent and transparent to
one another. Each block of memory can be accessed by both the core
processor and the 1/0 processor in every cycle—no extra cycles are

incurred when both the core and the 1/0 processor access the same
block.

) — Core Processor N Dual-Ported SRAM\
TIMER | [INSTRUCTION
CACHE

N —
32 x 48:Bit Two Independent,
ﬁ ﬁ @ Dual-Ported Blocks

JTAG

BLOCK 0

BLOCK 1

Emulation

ﬁ

DAG 1 DAG 2 PROGRAM PROCESSOR PORT I/0 PORT
sxax32f [8xax2a SEQUENCER ADDR DATA DATA___ADDR

T J [%% iop | [10A External Port
PM Address Bus (PMA) 24 48 17 (
‘ | PMA - Addr
DM Address Bus (DMA) 32 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ } ‘ }],:,—VQ e Bus K

DMA Mux

MULTIPROCESSOR

PM Data Bus (PMD) 48 L INTERFACE
Bus PMD
Data
¥ Connect [T [TT11 T
¢ DM Data Bus (DMD) 32/40 [— —)lEro Bus p—
®0 DMD Mux

OST INTERFACE

REGISTER CONTROLLER ||
F FILE q
U 1P]
16 x 40-Bit BARREL REGISTERS . .

MULTIPLIER >
SHIETER ALU = SERIAL PORTS

Control, (2
[‘ [‘ Status, &
Data Buffers

—| LINK PORTS
(6)

N / P I/O Processor

and

ana
ad3
aol

[76

N

36

Figure 5.1 ADSP-2106x Block Diagram

Both the core processor and 1/0 processor have access to the external bus
(DATA47.9 , ADDR31.(), via the ADSP-2106x’s external port. The external
port provides access to off-chip memory and peripherals; it can also access
the internal memory of other ADSP-2106xs connected in a multiprocessing
system. This busing scheme allows the ADSP-2106x to have a single
unified address space in which both code and data is stored.

External memory can be either 16, 32, or 48 bits wide; the ADSP-2106x’s
DMA controller automatically packs external data into the appropriate
word width, either 48-bit instructions or 32-bit data.

Note that the ADSP-2106x’s internal memory is divided into two blocks,
called Block 0 and Block 1, while the external memory space is divided
into four banks.

5.1.1 Dual Data Accesses

The ADSP-2100 and ADSP-21000 Family DSPs traditionally define
memory as either program memory, for instructions, or as data memory,
for data storage. The processors’ modified Harvard architecture, however,
allows data storage within program memory. The ADSP-2106x retains the
ADSP-21000 Family’s separate on-chip buses for program memory and
data memory, but does not pre-define the two on-chip memory blocks as
either PM or DM. This allows the memory to be freely configured to store
different combinations of code and data.

The independent PM and DM buses allow the ADSP-2106x’s processor
core to simultaneously access instructions and data from both memory
blocks. If the core tries to access two words from the same memory block
(over the same bus) for a single instruction, however, an extra cycle is
needed. Instructions are fetched over the PM bus or from the instruction
cache. Data can be accessed over both the DM bus (using DAG1) and the
PM bus (using DAG?2). Figure 5.1 shows the memory bus connections on
the ADSP-2106x.

The ADSP-2106x’s two memory blocks can be configured to store different
combinations of 48-bit instruction words and 32-bit data words.

Maximum efficiency (i.e. single-cycle execution of dual-data-access
instructions), though, is achieved when one block contains a mix of
instructions and PM bus data while the other block contains DM bus data
only.

This means that for an instruction requiring two data accesses, the
PM bus (and DAG?2) is used to access data from the mixed block, the
DM bus (and DAG1) is used to access data from the data-only block,
and the instruction to be fetched must be available from the cache. Another
way to partition the data is to store one operand in external memory
and the other in either block of internal memory.

In typical DSP applications such as digital filters and FFTs, two data
operands must be accessed for some instructions. In a digital filter, for
example, the filter coefficients can be stored in 32-bit words in the
same memory block that contains the 48-bit instructions, while 32-bit
data samples are stored in the other block. This provides single-cycle
execution of dual-data-access instructions, with the filter coefficients
being accessed by DAG2 over the PM bus and the instruction available
from the cache.

In summary, to assure single-cycle, parallel accesses of two on-chip
memory locations, the following conditions must be met:

= The two addresses must be located in different memory blocks
(i.e. one in Block 0, one in Block 1).

= One address must be generated by DAG1 and the other by DAG2.

= The DAGI address must not point to the same memory block that
instructions are being fetched from.

= The instruction should be of the form:

conpute, Rx=DM I 0-l1 7, MO-M7), Ry=PM | 8-1 15, MB-ML5) ;
(Note that reads and writes may be intermixed.)

Remember that a cache miss will occur if the fetched instruction is not
valid during any DAG2 transfer.

5.1.2 Instruction Cache & PM Bus Data Accesses

Normally the ADSP-2106x fetches instructions over the 48-bit PM Data
bus. When, however, the processor executes a dual-data-access
instruction that requires data to be read or written over the PM bus,
there is a conflict for use of the PM Data bus. The ADSP-2106x’s
on-chip instruction cache can resolve this conflict by providing the
instruction (once it is stored in the cache, the first time it is executed).

By providing the instruction, the cache lets the core processor access
data over the PM bus—the core processor fetches the instruction from
the cache instead of from memory so that the processor can
simultaneously transfer data over the PM bus. Only the instructions
whose fetches conflict with PM bus data accesses are cached.

The instruction cache allows data to be accessed over the PM bus,
without any extra cycles, whenever the instruction to be fetched is
already cached (i.e. within a loop). An extra cycle will always occur in
the event of a cache miss, even if the instruction and data are in
different memory blocks but use the same bus.

5.1.3 On-Chip Memory Buses & Address Generation

The ADSP-2106x has three internal buses connected to its dual-ported
memory, the PM bus, DM bus, and 1/0 bus. The PM bus and DM bus
share one port of the memory and the 1/0 bus is connected to the
other port.

The ADSP-2106x’s program sequencer and data address generators
(DAGS) supply memory addresses. The program sequencer supplies
24-bit PM bus addresses for instruction fetches. The DAGs supply
addresses for data reads and writes. (See Figure 5.1.)

The two data address generators allow indirect addressing of data.
DAGL1 supplies 32-bit addresses over the DM bus. DAG2 supplies
24-bit addresses for PM bus data accesses. The two DAGSs can generate
simultaneous addresses—over the PM bus and DM bus—for dual
operand read/writes, if the instruction to be fetched is available from
the cache.

The 48-bit PM Data bus is used to transfer instructions (and data), and
the 40-bit DM Data bus is used to transfer data. The PM Data bus is
48 bits wide to accommodate the 48-bit instruction width. When this
bus is used to transfer 32-bit floating-point or 32-bit fixed-point data,
the data is aligned to the upper 32 bits of the bus.

The 40-bit DM Data bus provides a path for the contents of any register
in the processor to be transferred to any other register or to any
external memory location in a single cycle. Data addresses come from
one of two sources: an absolute value specified in the instruction

(direct addressing), or the output of a data address generator

(indirect addressing). 32-bit fixed-point and 32-bit single-precision
floating-point data is also aligned to the upper 32 bits of the DM Data
bus.

The PX bus connect registers permit data to be passed between the
48-bit PM Data bus and the 40-bit DM Data bus or between the 40-bit
register file and the PM Data bus. These registers contain hardware to
handle the 8-bit width difference.

The three memory buses—PM, DM, and I/0—are multiplexed at the
processor’s external port to create a single off-chip data bus (DATA47.g)
and address bus (ADDR31_g).

5.14 Bus Exchange (PX Registers)

The PX register provides an internal bus exchange path for transferring
data between the 48-bit PM Data Bus and the 40-bit DM Data Bus. The
48-bit PX register consists of PX1 and PX2. PX1 is 16 bits wide and PX2 is
32 bits wide. PX1 and PX2 can be used separately in instructions and can
also be treated as the combined PX register. The alignment of PX1 and
PX2 within PX is shown below in Figure 5.2.

a7 15 0
PX2 | PX1

I
PX Register

Figure 5.2 PX Register

Either PX1, PX2, or the combined PX register can be used in universal
register-to-register transfers or in memory-to-register (and register-to-
memory) transfers. These transfers may take place over the PM Data Bus
or DM Data Bus. The PX register(s) can be read from or written to the
PM Data Bus, the DM Data Bus, or the register file.

Data is aligned in PX register transfers as shown in Figure 5.3. When
data is transferred between PX2 and the PM Data Bus, the upper 32 bits
of the PM Data Bus are used. On transfers from PX2, the 16 LSBs of the
PM Data Bus are filled with zeros. When data is transferred between
PX1 and the PM Data Bus, the middle 16 bits of the PM Data Bus are
used. On transfers from PX1, bits 15-0 and bits 47-32 are filled with
Zeros.

PM Data Bus Transfers

47 15
| 16 ZEROS
PX2
47 31 15
[16 ZEROS [| 16 ZEROS
PX1
47 15
PX2 | PX1
L
T
PX Register

Figure 5.3 PX Register Transfers

DM Data Bus or Register File Transfers

39 7 0
[| 8zeros |
PX2
39 23 7 0
[16 ZEROS [| 8zeros |
PX1
39 0
Register File
47 # 7 0
1]
T
PX Register
39 0
To Internal Memory
47 # 7 0
[szeros |
L |
T
PX Register
47 0
To External Memory
47 ¢ 0

T
PX Register

When the combined PX register is used for PM Data Bus transfers, the
entire 48 bits can be read from or written to program memory.

PX2 contains the 32 MSBs of the 48-bit word while PX1 contains the
16 LSBs. (PM Bus data is left-justified in the 48-bit word.)

To write a 48-bit word to the memory location named Portl over the
PM Data Bus, for example, the following instructions could be used:

RO=0x9A00; /* load RO with 16 LSBs */

R1=0x12345678; /* load R1L with 32 MSBs */

PX1=RO;

PX2=R1;

PM Por t 1) =PX; /* wite 16 LSBs on PM bus 15-0 */
/* and 32 MSBs on PM bus 47-16 */

When data is transferred between PX2 and the DM Data Bus or the
register file, the upper 32 bits of the DM Data Bus (and register file) are
used. On transfers from PX2, the eight LSBs are filled with zeros. (See
Figure 5.3.) When data is transferred between PX1 and the DM Data
Bus or the register file, bits 23-8 of the DM Data Bus (and register file)
are used. On transfers from PX1, bits 7-0 and bits 39-24 are filled with
zeros.

When the combined PX register is used for DM Data Bus transfers, the

upper 40 bits of PX are read or written. For transfers to or from internal
memory, the lower 8 bits are filled with zeroes. For transfers to or from
external memory, the entire 48 bits are transferred.

5.1.5 Memory Block Accesses & Conflicts

Any of the ADSP-2106x’s three internal buses, PM, DM, and 1/0, may
need to access one of the memory blocks at any given time. Each block
of dual-ported memory can be accessed by both the ADSP-2106x’s core
processor (over either the PM or DM bus) and by the 1/0 processor
(over the 1/0 bus) in every cycle—no extra cycles are incurred when
both the core and 1/0 processor access the same block.

A conflict occurs, however, when two core accesses to a single block
are attempted in the same cycle, for example over both the PM bus (by
the program sequencer or DAG2) and DM bus (by DAG1). When this
happens, an extra cycle is incurred—the DM bus access completes first
and the PM bus access completes in the following (extra) cycle.

5.2 ADSP-2106x MEMORY MAP

The ADSP-2106x memory map, shown in Figure 5.5, is divided into three
sections: internal memory space, multiprocessor memory space, and
external memory space. Internal memory space consists of the
ADSP-2106x’s on-chip memory and resources. Multiprocessor memory
space corresponds to the on-chip memory and resources of other
ADSP-2106x’s in a multiprocessor system. External memory space
corresponds to off-chip memory and memory-mapped 1/0 devices.

The address boundaries of each memory space are:

Internal memory 0x0000 0000 to 0x0007 FFFF
Multiprocessor memory 0x0008 0000 to O0x003F FFFF
External memory 0x0040 0000 to OxFFFF FFFF

Addresses generated by the ADSP-2106x for DM bus and PM bus accesses
are shown below in Figure 5.4. DM bus addresses are generated by DAG1,
and PM bus addresses are generated either by the ADSP-2106x’s program
sequencer (for instructions) or by DAG2 (for data).

31 21 18 16 0
E | M | S | DM Bus Addresses
(generated by DAG1)
23 21 18 16 0
| E | M | S | | PM Bus Addresses

(generated by Program Sequencer or DAG2)

Note: Off-chip PM bus addresses are MSB-extended with zeros
to create 32-bit external bus addresses (ADDRg3q_q)-

Figure 5.4 Memory Addresses (E = external, M = Multiprocessor, S = Internal)

Internal
Memory -
Space

Multiprocessor |
Memory Space

IOP Registers

Normal Word Addressing

Short Word Addressing

Internal Memory Space
of ADSP-2106x
with ID=001

Internal Memory Space
of ADSP-2106x
with ID=010

Internal Memory Space
of ADSP-2106x
with ID=011

Internal Memory Space
of ADSP-2106x
with ID=100

Internal Memory Space
of ADSP-2106x
with ID=101

Internal Memory Space
of ADSP-2106x
with ID=110

Normal Word Addressing: 32-bit Data Words

Short Word Addressing: 16-bit Data Words

5-10

Broadcast Write to
All ADSP-2106xs

0x0000 0000

0x0002 0000

0x0004 0000

0x0008 0000

0x0010 0000

0x0018 0000

0x0020 0000

0x0028 0000

0x0030 0000

0x0038 0000

0x003F FFFF

External
Memory -
Space

48-bit Instruction Words

Figure 5.5 ADSP-2106x Memory Map

0x0040 0000

Bank 0

- MS,

Bank 1

- MS;

Bank 2

- VS,

Bank 3

-—— ™S,

Bank size is selected

Non-Banked

by MSIZE bit field of
SYSCON register.

OXFFFF FFFF

The ADSP-2106x’s I/0 processor monitors the addresses of all

memory accesses and routes them to the appropriate memory space.

The E (external), M (multiprocessing), and S fields are decoded by the 1/0
processor as shown below. If the E bit field is all zeros, the M and S fields
become active and are decoded.

Field Value Meaning
E non-zero —Address in external memory
all zeros —Address in the processor’s own internal memory or in

the internal memory of another ADSP-2106x
(M and S activated)

M 000 —Address in the processor’s own internal memory
non-zero — M = ID of another ADSP-2106x
111 —Broadcast write to internal memory of all ADSP-2106xs
S 00 —Address of an IOP register
01 —Address in Normal Word Addressing space
1x —Address in Short Word Addressing space

(x = MSB of short word address)

5.2.1 ADSP-21060 Internal Memory Space

The internal memory space of the ADSP-21060 is shown in Figure 5.6.
This memory has three address regions:

= 1/0 Processor (IOP) Registers ~ 0x0000 0000 to 0x0000 00FF

« Normal Word Addresses 0x0002 0000 to 0x0003 FFFF
Interrupt Vector Table 0x0002 0000 to 0x0002 007F
« Short Word Addresses 0x0004 0000 to 0x0007 FFFF

The 170 Processor (IOP) Registers are 256 memory-mapped registers
that control the system configuration of the ADSP-2106x as well as
various 1/0 operations. The address space between the IOP registers
and normal word addresses, locations 0x0000 0100 to 0x0001 FFFF,
does not exist as usable memory and should not be written to.

Memory block 0 starts at the beginning of normal word space, at
address 0x0002 0000. Block 1 starts at the middle of normal word
space, at address 0x0003 0000.

0x0000 0000

IOP Registers
0x0000 0100
Reserved
Address

Space These represent the same
0x0001 FFFF physical memory (4 MBits)
0x0002 0000
~

-
-

Block 0 = 0x0004 0000
0x0003 0000
AN

A Block 0
Block 1 \
AN
AN
0x0003 FFFF N
Normal Word
\ AN

Addressing
128K x 32-bit Words
80K x 48-bit Words \

0x0006 0000

\
) \
When addressed as 80K x 48-bit, there are Block 1
"non-existant" addresses (addressible, but
without contents) at the end of Block 0 and \
Block 1
\
\
Normal Word Addressing: 32-bit Data . 0x0007 FEFF
48-bit Instructions
Short Word Addressing. 16-bit Data Short W(?I’d
Addressing
256K x16

Figure 5.6 ADSP-21060 Internal Memory Space

0x0000 0000 — 0x0000 00FF I0OP Registers (control/status registers)
0x0000 0100 - 0x0001 FFFF Reserved addresses

0x0002 0000 — 0x0002 FFFF Block 0 — Normal Word Addressing (32-bit, 48-bit words)
0x0003 0000 — 0x0003 FFFF Block 1 — Normal Word Addressing (32-bit, 48-bit words)

0x0004 0000 — 0x0005 FFFF Block 0 — Short Word Addressing (16-bit words)
0x0006 0000 — 0x0007 FFFF Block 1 — Short Word Addressing (16-bit words)

Table 5.1 ADSP-21060 Internal Memory Addresses

The normal word address space and short word address space actually
access the same physical memory. For example, the normal word address
0x0002 0000 represents the same locations as short word addresses
0x0004 0000 and 0x0004 0001 (for a 32-bit data access in normal word
space).

The ADSP-21060’s 4 megabits of on-chip memory can be accessed with
either normal word addressing, short word addressing, or
combinations of both. The range of normal word addresses, from
0x0002 0000 through 0x0003 FFFF, is exactly 4 megabits when each
word is 32 bits wide (128K x 32). (The normal word addressing range
also accesses 4 megabits of 48-bit wide instruction words, 80K x 48, but
with non-existant addresses at the end of Block 0 and Block 1—see
“Internal Memory Organization & Word Size” for further details on
physical mapping of 48-bit words and 32-bit words.) The range of
short word addresses, from 0x0004 0000 through 0x0007 FFFF, is also
exactly 4 megabits (256K x 16).

Using normal word addressing, each 2-Mbit block of memory contains
64K addressable locations (for 32-bit data words). Using short word
addressing, each 2-Mbit block contains 128K addressable locations.

Normal word and short word addresses can be generated on all three
on-chip buses: DM, PM, and 1/0. Short word addresses only occur on
the 170 bus when an external device is reading or writing to the
ADSP-2106x’s internal memory, and not for DMA operations.

Short word addressing increases the amount of 16-bit data that can be
stored in internal memory, and also allows MSW (most significant
word) and LSW (least significant word) addressing of 32-bit data
words. Short word addressing of 16-bit data words is useful in array
signal processing systems. The 16-bit short words are extended into
32-bit integers when they are read from memory, and may be either
sign-extended or zero-filled (as determined by the SSE bit in the
MODETI register).

The ADSP-2106x’s interrupt vector table is located at the start of
normal word addressing, 0x0002 0000 — 0x0002 007F, when the
processor is booted from an external source (EPROM, host port, or link
port booting). If the processor is in “no boot” mode, the interrupt
vector table is located in external memory, 0x0040 0000 to 0x0040 007F.
If the IIVT bit of the SYSCON register is set, the interrupt table resides
in internal memory regardless of booting mode.

5.2.2 ADSP-21062 Internal Memory Space
The ADSP-21062 is a memory-variant version of the ADSP-21060. The
two processors include the following amounts of on-chip SRAM:

Total Maximum Maximum
Processor Memory Data Memory Program Memory
ADSP-21060 4 Mbits 128K x 32 80K x 48
ADSP-21062 2 Mbits 64K x 32 40K x 48

The on-chip memory of the ADSP-21062 is divided into two equal
blocks, Block 0 and Block 1, in the same way as the ADSP-21060’s. The
ADSP-21062’s multiprocessor memory space and external memory
space are exactly the same as that of the ADSP-21060.

On the ADSP-21062, Block 0 starts at normal word address

0x0002 0000. Block 1 starts at normal word address 0x0002 8000. The
memory map for the ADSP-21062’s 2 Mbits of internal memory is
shown in Figure 5.7a and in Table 5.2a below. The Block 1 Alias address
ranges will access the actual Block 1, 0x0002 8000 — 0x0002 FFFF in
normal word address space and 0x0005 0000 — 0x0005 FFFF in short
word address space.

0x0000 0000 — 0x0000 00FF I0OP Registers (control/status registers)
0x0000 0100 - 0x0001 FFFF Reserved addresses

0x0002 0000 — 0x0002 7FFF Block 0 — Normal Word Addressing
0x0002 8000 — 0x0002 FFFF Block 1 — Normal Word Addressing
0x0003 0000 — 0x0003 7FFF Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
0x0003 8000 — 0x0003 FFFF Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing

0x0004 0000 — 0x0004 FFFF Block 0 — Short Word Addressing
0x0005 0000 — 0x0005 FFFF Block 1 — Short Word Addressing
0x0006 0000 — 0x0006 FFFF Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
0x0007 0000 — 0x0007 FFFF Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing

Table 5.2a ADSP-21062 Internal Memory Addresses

IOP Registers

Reserved
Address
Space

Block 0

Block 1

Block 1 Alias

Block 1 Alias

Normal Word

Addressing
Usable Memory (Block 0 & Block 1): 64K x 32
and/or
40K x 48

Usable Memory (Block 0 & Block 1):

0x0000 0000

0x0000 0100

0x0001 FFFF

0x0002 0000
~

~
~
~

0x0002 8000

0x0003 0000
AN

AN

0x00038000
AN

0x0003 FFFF
\
\
\

Figure 5.7a ADSP-21062 Internal Memory Space

Block 0

Block 1

Block 1
Alias

Block 1
Alias

0x0004 0000

0x0005 0000

0x0006 0000

0x0007 0000

0x0007 FFFF

Short Word
Addressing

128K x 16

5.2.3 ADSP-21061 Internal Memory Space

The ADSP-21061 is a memory-variant version of the ADSP-21060. The
two processors include the following amounts of on-chip SRAM:

Total
Processor Memory
ADSP-21060 4 Mbits
ADSP-21062 1 Mbits

Maximum Maximum

Data Memory Program Memory
128K x 32 80K x 48

32K x 32 16K x 48

The on-chip memory of the ADSP-21061 is divided into two equal
blocks, Block 0 and Block 1, in the same way as the ADSP-21060’s. The
ADSP-21061’s multiprocessor memory space and external memory
space are exactly the same as that of the ADSP-21060.

On the ADSP-21061, Block 0 starts at normal word address

0x0002 0000. Block 1 starts at normal word address 0x0002 4000. The
memory map for the ADSP-21061’s 1 Mbit of internal memory is
shown in Figure 5.7b and in Table 5.2b below. The Block 1 Alias address
ranges will access the actual Block 1, 0x0002 4000 — 0x0002 7FFF in
normal word address space and 0x0004 8000 — 0x0004 FFFF in short

word address space.

0x0000 0000 — 0x0000 OOFF
0x0000 0100 — 0x0001 FFFF

0x0002 0000 — 0x0002 3FFF
0x0002 4000 — 0x0002 7FFF
0x0002 8000 — 0x0002 BFFF
0x0002 C000 — 0x0002 FFFF
0x0003 0000 — 0x0003 3FFF
0x0003 4000 — 0x0003 7FFF
0x0003 8000 — 0x0003 BFFF
0x0003 C000 — 0x0003 FFFF

0x0004 0000 — 0x0004 7FFF
0x0004 8000 — 0x0004 FFFF
0x0005 0000 — 0x0005 7FFF
0x0005 8000 — 0x0005 FFFF
0x0006 0000 — 0x0006 7FFF
0x0006 8000 — 0x0006 FFFF
0x0007 0000 — 0x0007 7FFF
0x0007 8000 — 0x0007 FFFF

IOP Registers (control/status registers)
Reserved addresses

Block 0 — Normal Word Addressing

Block 1 — Normal Word Addressing

Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Normal Word Addressing

Block 0 — Short Word Addressing

Block 1 — Short Word Addressing

Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing
Alias of Block 1 (i.e. accesses Block 1) — Short Word Addressing

Table 5.2b ADSP-21061 Internal Memory Addresses

0x0000 0000

IOP Registers
0x0000 0100
Reserved
Address
Space
0x0001 FFFF
0x0002 0000
Block 0 =~
0x0002 4000 ™~ __ 0x0004 0000
Block 1
00002 8000 Block 0
Block 1 Alias ~ 0x0004 8000
0x0002 ©O00
Block 1 Alias > ~ Block 1
0x0003 0000 ~ 0x0005 0000
Block 1 Alias Block 1
- 0x0003 4000 Alias
Block 1 Alias 0x0005 8000
0x0003 8000 Block 1
Block 1 Alias Alias
0x0003 C000 0x0006 0000
Block 1 Alias Block 1
0x0003 FFFF Alias
0x0006 8000
Normal Word \ Block 1
Addressing \ Alias
\ 0x0007 0000
Usable Memory (Block 0 & Block 1): 32K x 32 Block 1
\ .
and/or Alias
16K x 48 \ 0x0007 8000
\ Block 1
\ Alias
0x0007 FFFF
Short Word
Addressing

Usable Memory (Block 0 & Block 1): 64K x 16

Figure 5.7b ADSP-21061 Internal Memory Space

524 Porting Code from ADSP-21060 to ADSP-21062 or ADSP-21061

To ease porting code between ADSP-2106x processor, a system for
aliasing memory Block 1 eliminates the need to re-arrange (some) code
placement. For example, memory Block 0 on the ADSP-21062 starts at
the beginning of internal memory, normal word address 0x0002 0000.
Block 1 on the ADSP-21062 starts at the end of Block 0, with
contiguous addresses. The remaining addresses in internal memory
are divided into blocks, which alias into Block 1. This aliasing allows
any code or data stored in Block 1 on the ADSP-21060 to retain the
same addresses on the ADSP-21062—these addresses will alias into the
actual Block 1 of each processor.

A similar aliasing structure is built into the ADSP-21061. For more
information on aliasing, see the memory maps for the ADSP-21061 and
ADSP-21062 processors.

5.2.5 Multiprocessor Memory Space

Multiprocessor memory space maps to the internal memory of other
ADSP-2106xs in a multiprocessor system. This allows each
ADSP-2106x to access the internal memory and memory-mapped 0P
registers of the other processors.

As shown in Figure 5.5, when the E field of an address is zero and the
M field is non-zero, the address falls within multiprocessor memory
space. The value of M specifies the processor I1D,_g of the external
ADSP-2106x being accessed, and only that processor will respond to
the read/write cycle. If M=111, however, a broadcast write is performed
to all processors. All of the processors react to this address as if their
individual 1D,_g was being used, enabling the write to their internal
memory.

Instead of directly accessing its own internal memory, an ADSP-2106x
can also access its memory through the multiprocessor memory space
by using its own ID. In this case the processor simply reads or writes to
its own internal memory and does not attempt an access on the
external system bus. (Note that these self-accesses through
multiprocessor memory space may only be accomplished with
core-processor-generated addresses, not DMA-controller-generated
addresses.)

If both the E and M fields of an address on the external bus are equal to
zero, the address will be ignored unless the processor ID is also zero

(M=ID;_g =000). Addresses with M=ID,_y =000 are only allowed in
single-processor systems.

If the ADSP-2106x attempts to access an invalid address in
multiprocessor memory space, data written will be ignored and reads
will return invalid data.

For additional information about multiprocessor memory accesses, see
“Direct Reads & Writes” and “Data Transfers Through The EPBx
Buffers” in the Multiprocessing chapter of this manual.

5.2.6 External Memory Space

External memory can be accessed over the ADSP-2106x’s DM bus,
PM bus, and EP bus, all via the external port. The processor’s DAG1,
program sequencer (and DAG?2), and IOP control these respective
buses.

32-bit addresses are generated by DAG1 and the IOP over the DM address
bus and 170 address bus, allowing addressing of the complete 4-gigaword
memory map. The program sequencer and DAG2 generate 24-bit
addresses over the PM address bus, limiting addressing to the low

12 megawords (0x0040 0000 to 0xX00FF FFFF).

5.2.7 Memory Space Access Restrictions

The ADSP-2106x’s three internal buses, PM, DM, and 170, can be used
to access the processor’s memory map according to the following rules:

= The DM bus can access all memory spaces.

= The PM bus can access only Internal Memory Space and the lowest
12 megawords of External Memory Space.

= The 170 bus can access all memory spaces except for the memory-
mapped IOP registers (in Internal Memory Space).

O Note that in silicon revision 1.0 and earlier pre-modify addressing
operations must not change the memory space of the address; for
example, pre-modification of an address in Internal Memory Space
should not generate an address in External Memory Space. The one
exception to this rule is: an indirect JUMP or CALL instruction with
pre-modify addressing can jump from internal memory to external
memory. Silicon revisions 2.x and later do not have this pre-modify
limitation.

5.3 INTERNAL MEMORY ORGANIZATION & WORD SIZE

The ADSP-2106x’s internal SRAM memory accommodates the
following word types:

e 48-bit instructions
= 32-bit floating-point data
« 16-bit short word data

40-bit extended-precision floating-point data values are also
accommodated, but are accessed in 48-bit words. The 40 bits are left-
justified in the 48-bit word (bits 47-8).

When the ADSP-2106x processor core accesses its internal memory, the
word width of the access is determined according to the following
rules:

= Instruction fetches always read 48-bit words

= Read/writes using normal word addressing are either 32-bit words or
48-bit words, depending on how the block of memory is configured in
the SYSCON register.

= Read/writes using short word addressing are always 16-bit words

= PM bus (DAG 2) read/writes of the PX register are always 48-bit words
(unless they use short word addressing)

= DM bus (DAG 1) read/writes of the PX register are always 40-bit words
(unless they use short word addressing)

An ADSP-2106x program should not attempt to access the same
physical location in memory as a 32-bit word and as a 48-bit word. The
internal SRAM employs a write-back scheme that will cause errors if
this occurs.

531 32-Bit Words & 48-Bit Words

Each 2-Mbit block of ADSP-21060 memory is physically organized as
16 columns, each 16 bits wide, with a height of 8K. (On the
ADSP-21062, each 1-Mbit block of memory is similarly organized but
with each column having a height of 4K.) 48-bit instruction words
require three columns of contiguous memory and 32-bit data words
require two contiguous columns.

When an address is applied to memory for a read or write, the
particular columns selected depends upon the word width of the
access. For 48-bit words, the 16-bit columns are selected in groups of
three. In a memory block consisting entirely of 48-bit instruction
words,

16 columns + 3 columns per group = 5 groups

there are 5 groups to select from and the 16th column is unused. Thus,
an ADSP-21060 2-Mbit memory block that consists entirely of 48-bit
words provides

8K x 5 groups = 40K words

of instruction storage. For 32-bit data words, the columns are selected
in groups of two. In a memory block consisting entirely of 32-bit
words,

16 columns =+ 2 columns per group = 8 groups

there are 8 words to select from with no columns unused. Thus, an
ADSP-21060 2-Mbit memory block that consists entirely of 32-bit
words provides

8K x 8 groups = 64K words

of data storage.

Because the memory on the ADSP-21061 is arranged in eight 16-bit
columns, a similar set of calculations for this processor yields the
following:

4K x 2 groups = 8K words (of instruction storage)

4K x 4 groups = 16K words (of data storage)

Figure 5.8 shows the ordering of 16-bit words within 48-bit words
and 32-bit words, and also shows initial addresses for each column of
ADSP-21060 memory. Figure 5.9a shows the same information for the
ADSP-21062, and Figure 5.9b shows this information for the ADSP-
21061.

ADSP-21060 (Two blocks of 8Kx16-bit columns)

Block 0
s EERRIEEEEPEEEE EESETEIEEPEEEE TR ST RIS |----1
dows I HTMIL LM R ML LT H M e L]
0x20000 0x22000 0x24000 0x26000 0x28000
. [~ | -oomee |- [~ |- RS [-----ee- | --oeeeeee |
s2/16-bit | H] L | H]L |H|L|HJ]L|H]L|H|LI|H]]L]|]H]IL|

words | ____________________________________

|
0x20000 0x22000 0x24000 0x26000 0x28000 0x2a000 0x2c000 0x2e000

Block 1
48-bit [-----mmmmmeo - [-=-m-mmmme- - [-----mmmmmo - [---m-mmmme- - [---m-mmmeeo - [----1
words | H | M | L I LI H|M|H|M]|]L|L |H|M]|H]|M]|L I I
0x30000 0x32000 0x34000 0x36000 0x38000
32/16-bit [--------- [--------- [--------- [--------- [--------- [--------- [--------- [--------- |
words [H L | H L |JHJL|H]L]H]L|IHJLIHJLI]H]]L]

I I I I I I
0x30000 0x32000 0x34000 0x36000 0x38000 0x3a000 0x3c000 0x3e000

Figure 5.8 Memory Organization vs. Address (ADSP-21060)
Notes: All addresses denote the first location of each column.

“Non-existant” 48-bit addresses occur when a block is filled with 48-bit instructions. Because there
is a set number of addresses per block (which does not vary with the size of the word at the
address), you can end up with a range of 48-bit “non-existant” addresses (addressable, but having
no contents) at the end of each block. This memory arrangement feature applies to all ADSP-2106x
processors (shown in Figures 5.8, 5.9a, and 5.9b).

ADSP-21062 (Two blocks of 4Kx16-bit columns)

Block 0
st EREEEEEEEPEREE EEEEEEEEEI T EEEEEEEEETERE | -omm e EESEEEEEEEREE |----|
dew I RIMOILIL M H ML L R MR ML
0x20000 0x21000 0x22000 0x23000 0x24000
. |- |- [~ R R - |---o--- ERREEEEE |
32116 bit | H I L |H]L |HJLI[H]JL[H]L|H]JL|HJL|]HJL
words

I I I I I
0x20000 0x21000 0x22000 0x23000 0x24000 0x25000 0x26000 0x27000

Block 1
48-bit [-----mmmmemo - |- [-----mmmmomo o [---mmmmmmeee-- [---mmmmmeee - [----1
words | H | M | L I L | H|M]|]H]|M]|]L|L |H|M]|H]|M]|L I I
0x28000 0x29000 0x2a000 0x2b000 0x2c000
s2116bi |- ERREEEEE ERREEEEE ERRREEEEE ERREEEEE ERREEEEE |---e-ee ERREEEEE |
words

I I I I
0x28000 0x29000 0x2a000 0x2b000 0x2c000 0x2d000 0x2e000 0x2f 000

Figure 5.9a Memory Organization vs. Address (ADSP-21062)
Note: All addresses denote the first location of each column.

5-22

ADSP-21061 (Two blocks of 4Kx16-bit columns)

Block 0
R R PP EEEEEEEEEIETE EEEREREEE |
48-bit
e | HAMIL] |
0x20000 0x21000 0x22000
e |--meeee ERREEEEE EERRESEEE
RAGHU | H | L [H | L IH L H]LI
words | ________._ | _________ | _________ | _________
0x20000 0x21000 0x22000 0x23000
Block 1
agbit | moommmomeo--- [== |--------- |
words | H | M | L I L | H | M I I
0x24000 0x25000 0x26000
32/16-bit | _________ | _________ | _________ | _________ |
words | H | L | H | L | H | L I H | L |

I
0x24000 0x25000 0x26000 0x27000

Figure 5.9b Memory Organization vs. Address (ADSP-21061)

Note: All addresses denote the first location of each column.

5.3.2 Mixing 32-Bit & 48-Bit Words In One Memory Block

32-bit data words and 48-bit instruction words can be stored in the
same memory block, with the restriction that all instructions must reside
at addresses lower than the data. No instruction may be stored at an
address higher than the lowest address of any data word. This
restriction is necessary to prevent addresses for 32-bit words and 48-bit
words from overlapping.

The rules for combining 48-bit instruction words and 32-bit data words
within the same block of memory are as follows:

Instruction storage must start at the lowest address in the block.
Data storage must start on an even column number

All data must be located at addresses higher than all instructions
Instructions require three contiguous 16-bit columns

Data words require two contiguous 16-bit columns

5.3.3 Basic Examples Of Mixed 32-Bit & 48-Bit Words

Each block of memory is physically organized as 16 columns, each 16
bits wide, with a height of 8K on the ADSP-21060 and 4K on the
ADSP-21062. Figure 5.10 illustrates four basic combinations of mixed
48-bit instructions and 32-bit data within a single block:

A. 3 columns for instructions, 1 unused column, and 12 columns for data.
This provides 8K of instruction storage and 48K of data storage on the
ADSP-21060 (4K of instruction storage and 24K of data storage on the
ADSP-21062). One column is unused because the 32-bit data words
must start on an even column number (in this case column 4).

{Columns one through eight on this example apply to the ADSP-
21061}

B. 6 columns for instructions and 10 columns for data. This provides 16K
of instruction storage and 40K of data storage on the ADSP-21060
(8K of instruction storage and 20K of data storage on the
ADSP-21062).

{Columns one through eight on this example apply to the ADSP-
21061.}

C. 9 columns for instructions, 1 unused column, and 6 columns for data.
This provides 24K of instruction storage and 24K of data storage on
the ADSP-21060 (12K of instruction storage and 12K of data storage
on the ADSP-21062). One column is unused because the 32-bit data
words must start on an even column number (in this case column 10).

{Because there are only eight columns on the ADSP-21061, this
example does not apply to the ADSP-21061.}

D. 12 columns for instructions and 4 columns for data. This provides 32K
of instruction storage and 16K of data storage on the ADSP-21060
(16K of instruction storage and 8K of data storage on the
ADSP-21062).

{Because there are only eight columns on the ADSP-21061, this
example does not apply to the ADSP-21061.}

32-bit data must start
on an even column

1 column=16 bits

(ADSP-21060) 8K
(ADSP-21062) 4K

®

| 1 2 f il 5 6 7 8 9 10 11 12 13 14 15 :IL6
3 c_ol_umns fgr 12 columns for 32-bit data

48-bit instructions 48K Data (ADSP-21060)

8K Instructions (ADSP-21060) 24K Data (ADSP-21062)

4K Instructions (ADSP-21062)

(ADSP-21060) 8K
(ADSP-21062) 4K

| 1 2 3 4 5 |6| 7 8 9 10 11 12 13 14 15 |16
6 columns for 48-bit instructions 10 columns for 32-bit data
16K Instructions (ADSP-21060) 40K Data (ADSP-21060)
8K Instructions (ADSP-21062) 20K Data (ADSP-21062)
(ADSP-21060) 8K
(ADSP-21062) 4K
0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
|] |]
9 columns for 48-bit instructions 6 columns for 32-bit data
24K Instructions (ADSP-21060) 24K Data (ADSP-21060)
12K Instructions (ADSP-21062) 12K Data (ADSP-21062)

32-bit data must start
on an even column

(ADSP-21060) 8K
(ADSP-21062) 4K

)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
| 1]]
12 columns for 48-bit instructions 4 columns for 32-bit data

32K Instructions (ADSP-21060) 16K Data (ADSP-21060)

16K Instructions (ADSP-21062) 8K Data (ADSP-21062)

Figure 5.10 Basic Examples of Mixed Instructions & Data In A Memory Block 5-25

Table 5.3 shows the addressing in Block 0 (beginning address =
0x0002 0000) for each of the instruction and data combinations of
Figure 5.10, on the ADSP-21060:

48-Bit Instructions

start address

end address

A 0x0002 0000
B. 0x0002 0000
C. 0x0002 0000
D. 0x0002 0000

Table 5.3 Address Ranges For Instructions & Data (ADSP-21060)

0x0002 1FFF
0x0002 3FFF
0x0002 SFFF
0x0002 7FFF

32-Bit Data

start address

end address

0x0002 4000
0x0002 6000
0x0002 A000
0x0002 C000

0x0002 FFFF
0x0002 FFFF
0x0002 FFFF
0x0002 FFFF

To determine the starting address of the 32-bit data, the following

equations are used (for the ADSP-21060):

Starting Address
of 32-Bit Data
B+8K+m+1
B+16K+m+1
B+32K+m+1
B+40K+m+1

wN R ol

B= beginning address of memory block
n= number of 48-bit instruction word locations

i= integer portion of [(n - 1) + 8192]

m= (n - 1) mod 8192

Table 5.4 shows the addressing in Block 0 (beginning address =
0x0002 0000) for each of the instruction and data combinations of
Figure 5.10, on the ADSP-21062:

48-Bit Instructions

start address

end address

A 0x0002 0000
B. 0x0002 0000
C. 0x0002 0000
D. 0x0002 0000

Table 5.4 Address Ranges For Instructions & Data (ADSP-21062)

0x0002 OFFF
0x0002 1FFF
0x0002 2FFF
0x0002 3FFF

32-Bit Data

start address

end address

0x0002 2000
0x0002 3000
0x0002 5000
0x0002 6000

0x0002 7FFF
0x0002 7FFF
0x0002 7FFF
0x0002 7FFF

To determine the starting address of the 32-bit data, the following
equations are used (for the ADSP-21062 and ADSP-21061):

Starting Address
of 32-Bit Data
B+4K+m+1
B+8K+m+1
B+16K+m+1
B+20K+m+1

wN R ol

B = beginning address of memory block

n = number of 48-bit instruction word locations
i = integer portion of [(n - 1) + 4096]

m = (n - 1) mod 4096

534 16-Bit Short Words

Normal word addressing is used for accesses of 32-bit or 48-bit words.
All instruction fetches and 32-bit data accesses are accomplished with
normal word addresses. Short word addresses can be used, however,
to access 16-bit data. Short word addressing increases the amount of
16-bit data that can be stored in internal memory, and also allows
MSW (most significant word) and LSW (least significant word)
addressing of 32-bit words. Bit 0 of the address selects between the
MSW and LSW of the 32-bit word.

A single location in memory (i.e. the lower 16 bits of a 32-bit word) can
be accessed in two ways: with a normal word address or a short word
address. The short word address is a left shift of the corresponding
normal word address. This allows easy conversion between short
word address and normal word address for the same physical location.
Figure 5.11 shows how the short word addresses are related to normal
word addresses for 32-bit words. (Figures 5.9 and 5.10 show how these
addresses are related to normal word addresses for 48-bit words.) Note
that the 16-bit data words are transferred over lines 31-16 of the
internal PM Data Bus and DM Data Bus as well as the external bus
(DATA,.)

Arithmetically shifting a short word address to the right by one bit
produces the corresponding normal word address. Arithmetically
shifting a normal word address to the left produces the short word
address of the LSW of the 32-bit normal word. To generate the short
word address of the MSW, the left shift is performed and bit 0 is then
set to 1.

32-Bit Normal Words

S —

Addr 2 | Addr5 Addr 4
Addr 1 | Addr3 Addr 2
Addr 0 | Addr1 Addr 0

16-Bit 16-Bit
Short Short
Words Words

6 |
DATA31.46 <

Figure 5.11 Short Word Addresses

16-bit short words read into ADSP-2106x registers are automatically
extended into 32-bit integers. The upper 16 bits can be zero-filled or
sign-extended, as determined by the value of the SSE bit in the MODE1
register. If SSE=0, the upper 16 bits are zero-filled. If SSE=1, the upper
16 bits are sign-extended (except when reading a short word into the
PX register, which is always zero-filled).

535 Mixing 32-Bit & 48-Bit Words With Finer Granularity

If 48-bit instructions and 32-bit data words must be mixed with a finer
granularity than the basic combinations described above, an in-depth
understanding of the ADSP-2106x’s internal memory is required. The
following sections describe in detail the low-level organization and
addressing of the internal memory blocks.

5.35.1 Low-Level Physical Mapping Of Memory Blocks

Each block of memory is organized as 16 columns. On the ADSP-21060,
each column contains 8K 16-bit words; on the ADSP-21062, each column
contains 4K 16-bit words. For reads or writes of 48-bit and 32-bit words,
the 13 LSBs of the address select a row from each column. The MSBs of
the address control which columns are selected. For reads or writes of
16-bit short words, the address is right-shifted one place before being
applied to memory (see Figure 5.12). This allows bit 0 of the address to
be used to select between the MSW and LSW of 32-bit data.

When a block is memory is accessed, how many and which columns are
selected depends upon the word width of the access. For 48-bit words,
the 16-bit columns are selected in groups of three and address bits 13-15
determine which group is selected. For 32-bit words, the columns are
selected in groups of two and address bits 13-15 also select the group.

16-bit short word accesses are handled in a slightly different fashion, in
order to provide easy access to the MSW and LSW of 32-bit data. In the
ADSP-2106x’s data address generators (DAGS), a single arithmetic right
shift of the short word address gives the physical address of the 32-bit
word being written to. If the bit shifted out is zero, the access is to the
LSW, otherwise it is to the MSW. This is implemented by selecting
columns in groups of two with address bits 13-15 and then selecting
between the two columns in the group with the short word address bit

shifted out.
31 24 171615 0
1110 0001 | | | | Short Word Address
i’ -

Block Shift Right

Select
15 1312 0 Physical Address Applied
23512;”4 Row Address | to Memory Block

High/Low

Word (16-bit) Select

Figure 5.12 Preprocessing of 16-Bit Short Word Addresses

5.3.5.2 Placement Restrictions For Mixed 32-Bit & 48-Bit Words

32-bit and 48-bit words are grouped differently within a memory block
and try to use the same address area. This may cause errors when
mixing 48-bit instructions and 32-bit data within the same block. (Since
32-bit and 16-bit words use the same grouping structure and different
addresses, they can be freely mixed within a memory block.) The
overall guideline for placement of mixed word sizes is that all 48-bit
instructions must reside at addresses lower than all 32-bit data. This
restriction is necessary to prevent addresses for instructions and data
from overlapping.

Figure 5.13 shows how the 48-bit words fill a memory block and exactly
where 32-bit words can be placed, for the ADSP-21060. Figure 5.14
shows the equivalent information for the ADSP-21062. If the number of
48-bit word locations to be allocated is n and the beginning address of
the block is B, the address where contiguous 32-bit data may begin can be
determined by Table 5.5:

Noncontiguous

Starting Address for Address Range
(n-1)+8192 Contiguous 32-Bit Data of Memory Block
0 B+8K+m+1 (B+n)to(8K-1)
1 B+16K+m+1 —
2 B+32K+m+1 (B + 24K + n) to (32K - 1)
3 B+40K+m+1 —
4 B+56K+m+1 (B + 48K + n) to (56K — 1)

m=(n - 1) mod 8192
Table 5.5 Starting Address for Contiguous 32-Bit Data (ADSP-21060)

Figure 5.13 also shows that when an odd number of 3-column groups
are allocated for 48-bit words (i.e. one, three, or five 3-column groups),
a usable but discontiguous block of 32-bit memory will exist. This is
also specified in Table 5.5.

To fully use all of the memory block, 48-bit words should be allocated
in 16K word increments (i.e. six columns). Even when all memory is
used, there will exist a range of addresses between the 48-bit word
region and the contiguous 32-bit word region that do not access any
valid word. Any 48-bit write to this non-valid region will corrupt
32-bit data, and any 32-bit write will corrupt 48-bit data.

Odd Number of 48-Bit Column Groups
(1000 48-Bit Words)

8K

Addr 8191 | Addr 8191 [Addr 16383 |Addr 16383
Usaple but
Noncontiguous

Addr 1001 | Addr 1001 JAddr 8K+1001 |Addr8K+1001

Addr 1000 | Addr 1000 JAddr 8K+1000 [Addr 8K+1000

Addr 999 | Addr999 | Addr 999

Addr 1 Addr 1 Addr 1 Addr 16385 | Addr 16385
o LAddro Addr 0 Addr 0 Addr 16384 | Addr 16384

Columns of 16-Bit Words (each column 8K in height)

Even Number of 48-Bit Column Groups

48-Bit Words

32-Bit Words

Only Accessible
From Short Word
Address Space

W][]

(9K 48-Bit Words)
8K [Rdar o101 | Adar 101 | Addr 811 Addr 24575 | Addr 24575
Addr 16K+1K | Addr 16K+1K
Addr9K | AddroK | Addr 9K
Addr 1 Addr 1 Addr 1 Addr 8193 | Addr 8193 | Addr 8103 :
o LAddro Addr 0 Addr 0 Addr 8192 | Addr 8192 | Addr 8192] Addr 24576 | Addr 24576

Columns of 16-Bit Words (each column 8K in height)

Figure 5.13 48-Bit Words & 32-Bit Words Mixed In A Memory Block (ADSP-21060)

Odd Number of 48-Bit Column Groups
(1000 48-Bit Words)

4K Addr 4095 Addr 4095 Addr 8191 |Addr 8191

Usaple but

Noncantiguous 48-Bit Words

32-Bit Words

3 3 : 3 Only Accessible
Addr 1001 | Addr 1001 JAddr 4K+1001 [Addr 4K+1001 From Short Word

Addr 1000 | Addr 1000 JAddr 4K+1000 [Addr 4K+1000 Address Space
Addr 999 | Addr 999 | Addr 999

N

Addr 1 Addr 1 Addr 1 Addr 8193 Addr 8193

0 Addr 0 Add_r 0 Addr 0 Addr 8192 Addr 8192

Columns of 16-Bit Words (each column 4K in height)

Even Number of 48-Bit Column Groups

(5K 48-Bit Words)
4K

Addr 4095 Addr 4095 Addr 4095 Addr 12K Addr 12K

Addr 8K+1K | Addr 8K+1K
Addr 5K Addr 5K Addr 5K

Addr 1 Addr 1 Addr 1 Addr 4097 | Addr 4097 | Addr 4097 : '
o LAddro Addr 0 Addr 0 Addr 4096 | Addr 4096 | Addr 4006] Addr 12K Addr 12K

Columns of 16-Bit Words (each column 4K in height)

Figure 5.14 48-Bit Words & 32-Bit Words Mixed In A Memory Block (ADSP-21062 or ADSP-21061)

5-32

To determine, however, exactly which addresses are valid again
requires an analysis of how the data is placed in memory. The simplest
solution is to think of the 16-bit words as being mapped into 32-bit
word space and allocate memory with the same method described
above for 32-bit words.

Figure 5.14 shows (for the ADSP-21062 or the ADSP-21061) how the 48-
bit words fill a memory block and exactly where 32-bit words can be
placed. If the number of 48-bit word locations to be allocated is n and the
beginning address of the block is B, the address where contiguous 32-bit
data may begin can be determined by Table 5.6:

Noncontiguous

Starting Address for Address Range
(n—1) + 4096 Contiguous 32-Bit Data of Memory Block
0 B+4K+m+1 (B+n)to(4K-1)
1 B+8K+m+1 —
2 B+16K+m+1 (B + 12K + n) to (16K - 1)
3 B+20K+m+1 —
4 B+28K+m+1 (B + 24K + n) to (28K - 1)

m=(n - 1) mod 4096
Table 5.6 Starting Address for Contiguous 32-Bit Data (ADSP-21062 or ADSP-21061)

5.3.5.3 Shadow Write FIFO

Because the ADSP-2106x’s internal memory must operate at high
speeds, writes to the memory do not go directly into the memory
array, but rather to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, data in the FIFO from
the previous write is loaded into memory and the new data goes into
the FIFO. This operation is normally transparent, since any reads of the
last two locations written are intercepted and routed to the FIFO.
There is only one case in which you need to be aware of the shadow
write FIFO: mixing 48-bit and 32-bit word accesses to the same
locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and mapping of 32-bit words. (See Figures 5.8 and 5.9.) Thus if
you write a 48-bit word to memory and then try to read the data with a
32-bit word access, the shadow FIFO will not intercept the read and
incorrect data will be returned.

If 48-bit accesses and 32-bit accesses to the same locations absolutely
must be mixed in this way, you must flush out the shadow FIFO with
two dummy writes before attempting to read the data.

5.3.6 Configuring Memory For 32-Bit or 40-Bit Data

Each block of internal memory can be configured to store either single-
precision 32-bit data or extended-precision 40-bit data. This
configuration is selected by setting or clearing the IMDWO0 and IMDW1
bits in the SYSCON register. If the IMDWX bit is equal to zero, 32-bit
data is selected; when a data access occurs, a 32-bit access is
performed. If the IMDWX bit is equal to one, 40-bit data is selected;
when a data access occurs, a 48-bit access is performed.

If an ADSP-2106x program attempts to write 40-bit data (in a 48-bit
word) to a memory block configured for 32-bit data, the lower 16 bits
(of the 48-bit word) are truncated. If a 40-bit data read is attempted, the
lower 8 bits will be zeros. The PX register is the only exception to these
rules—all read/writes of the PX register are performed as 48-bit
accesses. If any 40-bit data must be stored in a memory block
configured for 32-bit words, the PX register should be used to access
the 40-bit data in 48-bit words. For 48-bit writes of this kind, from the
PX register to 32-bit memory, be sure that the physical memory space
of the 48-bit destination does not corrupt any 32-bit data.

Changing the value of the IMDWX bits during system operation is
possible, but be aware that any kind of memory access will be affected.
This includes ADSP-2106x-to—ADSP-2106x direct read/writes, host
processor-to—ADSP-2106x direct read/writes, DMA transfers, and
interrupt data areas.

(Note that the word width of data accesses is not related to the value of
the arithmetic precision mode bit, RND32. This allows the occasional
use of 32-bit data in extended-precision 40-bit systems, without having
to toggle the value of RND32 in your program.)

Because the ADSP-2106x’s memory blocks must be configured for
either 32-bit or 40-bit data, DMA transfers automatically read or write
the proper word width. This simplifies setting up DMA channels for a
system. DMA transfers between serial ports and memory are limited to
a 32-bit word width (maximum).

(Note also that 32-bit words and 16-bit short words can be freely mixed
in the same memory block, with no restrictions.)

54 EXTERNAL MEMORY INTERFACING

In addition to its on-chip SRAM, the ADSP-2106x provides addressing of
up to 4 gigawords of off-chip memory through its external port. This
external address space includes multiprocessor memory space, the on-chip
memory of all other ADSP-2106xs connected in a multiprocessor system,
as well as external memory space, the region for standard addressing of
off-chip memory.

Table 5.7 defines the ADSP-2106x pins used for interfacing to external
memory. Memory control signals allow direct connection to fast static
RAM devices. Memory-mapped peripherals and slower memories are
also supported, with a user-defined combination of programmable wait
states and hardware acknowledge signals. The suspend bus tristate pin
(SBTS) and page boundary pin (PAGE) can be used with DRAM
memory.

External memory can hold both instructions and data. The external
data bus (DATA47.9) must be 48 bits wide to transfer instructions
and/or 40-bit extended-precision floating-point data, or 32 bits wide to
transfer single-precision floating-point data. If external memory
contains only data or packed instructions that will be transferred by
DMA, the external data bus width can be either 16 or 32 bits. In this
type of system, the ADSP-2106x’s on-chip 1/0 processor handles
unpacking operations on data coming into it and packing operations
on data going out. Figure 5.a shows how different data word sizes are
transferred over the external port.

DATA,7.0

47 40 32 24 16

o

8
I

I I | eprom
I
I

I'— 32-Bit Float or Fixed, ——m————p
D31 - DO,
| 32-Bit Packed

I‘— 40-Bit Extended Float ———————»

Figure 5.a External Port Data Alignment

Instruction Fetch

The internal 32-bit DM Address bus and the 1/0 processor can access

the entire 4-gigaword external memory space. The 24-bit PM Address

bus, however, can only access 12 megawords of external memory

because of its smaller width.

Pin Type Function

ADDR31.9 1I/0/T External Bus Address. The ADSP-2106x outputs addresses for
external memory and peripherals on these pins. In a
multiprocessor system the bus master outputs addresses for
read/writes of the internal memory or 10P registers of other
ADSP-2106xs. The ADSP-2106x inputs addresses when a host
processor or multiprocessing bus master is reading or writing
its internal memory or 10P registers.

DATA47.9 1/0/T External Bus Data. The ADSP-2106x inputs and outputs data
and instructions on these pins. 32-bit single-precision floating-
point data and 32-bit fixed-point data is transferred over bits
47-16 of the bus. 40-bit extended-precision floating-point data
is transferred over bits 47-8 of the bus. 16-bit short word data
is transferred over bits 31-16 of the bus. Pull-up resistors on
unused DATA pins are not necessary.

MS39 o/T Memory Select Lines. These lines are asserted (low) as chip
selects for the corresponding banks of external memory.
Memory bank size must be defined in the ADSP-2106x’s
system control register (SYSCON). The MS3_g lines are
decoded memory address lines that change at the same time as
the other address lines. When no external memory access is
occurring the MSg_g lines are inactive; they are active,
however, when a conditional memory access instruction is
executed, whether or not the condition is true. MSp can be
used with the PAGE signal to implement a bank of DRAM
memory (Bank 0). In a multiprocessing system the MS3_g lines
are output by the bus master.

RD I/0/T Memory Read Strobe. This pin is asserted (low) when the
ADSP-2106x reads from external memory devices or from the
internal memory of other ADSP-2106xs. External devices
(including other ADSP-2106xs) must assert RD to read from
the ADSP-2106x’s internal memory. In a multiprocessing
system RD is output by the bus master and is input by all
other ADSP-2106Xxs.

Table 5.7 External Memory Interface Signals (cont. on next page)

9
=

Type
1/0/T

<
Py

PAGE o/T

Sw 1/70/T

ACK 1/0/S

Function

Memory Write Strobe. This pin is asserted (low) when the ADSP-
2106x writes to external memory devices or to the internal memory
of other ADSP-2106xs. External devices must assert WR to write to
the ADSP-2106x’s internal memory. In a multiprocessing system
WR is output by the bus master and is input by all other ADSP-
2106xs.

DRAM Page Boundary. The ADSP-2106x asserts this pin to signal
that an external DRAM page boundary has been crossed. DRAM
page size must be defined inthe ~ ADSP-2106x’s memory control
register (WAIT). DRAM can only be implemented in external
memory Bank 0; the PAGE signal can only be activated for Bank 0
accesses. In a multiprocessing system PAGE is output by the bus
master.

Synchronous Write Select. This signal is used to interface the
ADSP-2106x to synchronous memory devices (including other
ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an
early indication of an impending write cycle, which can be aborted
if WR is not later asserted (e.g. in a conditional write instruction). In
a multiprocessing system, SW is output by the bus master and is
input by all other ADSP-2106xs to determine if the multiprocessor
memory access is a read or write. SW is asserted at the same time as
the address output. A host processor using synchronous writes
must assert this pin when writing to the ADSP-2106x(s).

Memory Acknowledge. External devices can deassert ACK (low)
to add wait states to an external memory access. ACK is used by 1/
O devices, memory controllers, or other peripherals to hold off
completion of an external memory access. The ADSP-2106x
deasserts ACK as an output to add wait states to a synchronous
access of its internal memory. In a multiprocessing system, a slave
ADSP-2106x deasserts the bus master’s ACK input to add wait
state(s) to an access of its internal memory. The bus master has a
keeper latch on its ACK pin that maintains the input at the level it
was last driven to.

I=Input S=Synchronous (0/d)=Open Drain
O=Output A=Asynchronous (a/d)=Active Drive

T=Tristate (when SBTS or HBR is asserted, or when the ADSP-2106x is a bus slave)

Table 5.7 External Memory Interface Signals

54.1 External Memory Banks

External memory is divided into four banks of equal size, each
associated with its own wait-state generator. This allows slower
peripheral devices to be memory-mapped into a bank for which a
specific number of wait states are specified. By mapping peripherals
into different banks, you can accommodate 1/0 devices with different
timing requirements.

Bank 0 starts at address 0x0040 0000 in external memory and is
followed in order by Banks 1, 2, and 3. Whenever the ADSP-2106x
generates an address located within one of the four banks, the
corresponding memory select line, MSg_q, is asserted.

The MS3_q outputs can be used as chip selects for memories or other
external devices, eliminating the need for external decoding logic. MSg
provides a select line for a bank of DRAM memory, when used in
combination with the PAGE signal (see “DRAM Page Boundary
Detection”).

The size of the memory banks can range from 8K words to 256
megawords, and must be a power of two. Selection of memory bank
size is accomplished by setting the MSIZE bit field of the SYSCON
register in the following way:

MSIZE = log, (desired bank size) — 13

The MS3_g lines are decoded memory address lines that change at the
same time as the other address lines. When no external memory access
is occurring the MSg g lines are inactive; they are active, however,
when a conditional memory access instruction is executed, whether or
not the condition is true. Systems using the SW signal that cannot abort
such accesses should not use conditional memory write instructions, to
ensure proper operation.

(Note that the ADSP-2106x’s internal memory is divided into two
blocks, called Block 0 and Block 1, while the external memory space is
divided into four banks.)

5.4.2 Unbanked Memory

The region of memory above Banks 0-3 is called unbanked external
memory space. No MS, memory select line is asserted for accesses in
this address space. Unbanked memory space accesses can also have
wait states specified, in the UBWS and UBWM fields of the WAIT
register.

5.4.3 Boot Memory Select (BMS)

The BMS memory select line is asserted (low) only when the ADSP-
2106x is configured for EPROM booting. This allows access of a
separate external memory space for booting. Unbanked memory wait
states and wait state mode are applied to BMS-selected accesses.

The BMS output is only driven by the ADSP-2106x bus master. For
details on EPROM booting, see “Booting” in the System Design chapter
of this manual.

54.4 Wait States & Acknowledge

The ADSP-2106x’s WAIT register is used to set up external memory
wait states and response to the ACK signal. The WAIT register is one
of the ADSP-2106x’s IOP control registers.

To simplify the interface to slow external memories and peripherals,
the ADSP-2106x provides a variety of methods for extending off-chip
Memory accesses:

= External. The ADSP-2106x samples its acknowledge input (ACK)
during each clock cycle. If it latches a low value, it inserts a wait state by
holding the address and strobes valid for an additional cycle. If the
value of ACK is high, the ADSP-2106x completes the cycle.

= Internal. The ADSP-2106x ignores the ACK input. Control bits in the
WAIT register specify the number of wait states for the access. You can
specify a different number of wait states for each bank of external
memory.

= Both. The ADSP-2106x samples its ACK input in each clock cycle. If it
latches a low value, it inserts a wait state. If the value of ACK is high, it
completes the cycle only if the number of wait states (specified in
WAIT) have expired. In this mode, the WAIT-programmed wait states
specify a minimum number of cycles per access, and an external device
can use the ACK pin to extend the access as necessary. The ACK signal
may be undefined (transitioning) until the internally programmed
waitstates have completed; i.e. ACK is not sampled until the
programmed waitstates have completed. No metastability problems
will occur.

= Either. The ADSP-2106x completes the cycle as soon as it samples the ACK
input as high or when the WAIT-programmed number of wait states have
expired, whichever occurs first. In this mode, a system with two different
types of peripherals could shorten the access for the faster peripheral using
ACK but use the programmed wait states for the slower peripheral.

The method selected for each bank of memory is independent of the other
banks. Thus, you can map devices of different speeds into different
memory banks for the appropriate wait state control.

54.4.1 WAIT Register

The WAIT register is defined in Table 5.8 and shown in Figure 5.15. The
bit values shown in Figure 5.15 are the default initialization; the WAIT
register is initialized to 0x21AD 6B5A after a processor reset.

A bus idle cycle is an inactive bus cycle that is automatically generated to
avoid bus driver conflicts. Such a conflict can occur when a device with a
long output disable time continues to drive after RD is deasserted while
another device begins driving in the following cycle.

To avoid this conflict, the ADSP-2106x will generate an inactive bus cycle
on a transition from a read of a memory bank with bus idle cycle enabled
to an access of any other bank or to a write in the same bank or to MMS
(multiprocessor memory space). In other words, a bus idle cycle is always
generated after a read, except in the case of consecutive reads of the same
bank. A device with a slow disable time should enable bus idle cycle
generation by using # of wait states code 001, 010, 011, or 111.

When a bus idle cycle is specified for unbanked memory, an idle cycle is
inserted after every read cycle, not just after a bank change. This allows
several external devices to be used in this region of memory. The ADSP-
2106x cannot distinguish when there is a device change so it inserts an idle
cycle after each read.

A hold time cycle is an inactive bus cycle automatically generated at the end
of a read or write to allow a longer hold time for address and data. The
address and data will remain unchanged and driven for one cycle after the
read or write strobes are deasserted.

A single idle cycle on a page boundary crossing can be enabled by setting
the PAGEIS bit of the WAIT register; the address is asserted in the same
cycle that the PAGE pin is asserted, but read/write strobe assertion is
delayed for one cycle. See “DRAM Page Boundary Detection” for further
details.

Bit(s) Name Function

1-0 EBOWM External Bank 0 wait state mode*
4-2 EBOWS External Bank 0 number of wait states**
6-5 EB1IWM External Bank 1 wait state mode*
9-7 EB1WS External Bank 1 number of wait states**

11-10 EB2WM External Bank 2 wait state mode*

14-12 EB2WS External Bank 2 number of wait states**
16-15 EB3WM External Bank 3 wait state mode*

19-17 EB3WS External Bank 3 number of wait states**
21-20 UBWM Unbanked memory wait state mode*

24-22 UBWS Unbanked memory number of wait states**

27-25 PAGSZ Page size for DRAM (only in Bank 0) T

28 PAGEIS Single idle cycle on DRAM page boundary crossing

29 MMSWS Single wait state for Multiprocessor Memory Space access
30 HIDMA Single idle cycle for DMA handshake 17

31 reserved

Table 5.8 WAIT Register Bit Definitions

* Wait state mode:
EBXWM Wait State Mode
00 External acknowledge only (ACK)
01 Internal wait states only
10 Both internal and external acknowledge required t DRAM page size:
11 Either internal or external acknowledge sufficient PAGSZ DRAM Page Size
000 256 words

** Number of wait states: 001 512 words

#of Bus Hold 010 1024 words (1K)

Wait Idle Time 011 2048 words (ZK)

2 2 100 4096 words (4K)

EBNS States Cycle? Cycle? 101 8192 words (8K)
001 1 yes no 110 16384 words (16K)
010 2 yes no 111 32768 words (32K)
011 3 yes no (See “DRAM Page Boundary Detection”
100 4 no yes for more information on DRAM control.)
101 5 no yes
110 6 no yes
111 0 yes no
Note that the bus idle cycle or hold time cycles will occur if
programmed, regardless of the waitstate mode. For example, the
ACK-only waitstate mode may have a hold time cycle
programmed for it.

tt Setting the HIDMA bit to 1 causes an idle cycle to be inserted after
every read (with DMAGXx asserted) from an external DMA latch.

This allows a device with a slow tristate time to get off the local bus before
the next ADSP-2106x access begins. The idle cycle is inserted for every read
from the DMA latch, not just for a changeover. See “DMA Hardware
Interfacing” in the “External Port DMA” section of the DMA chapter for an
example showing an external DMA latch.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17

o(ojr1|0pgo0fO0O|O|21f21(O0O|1|O0Of21|1]|O

HIDMA J \— EB3WS

Handshake Idle Cycle for DMA Ext. Bank 3 Number of Waitstates

MMSWS UBWM
Multiprocessor Memory Space Waitstate Unbanked Memory Waitstate Mode
PAGEIS UBWS
Page Boundary Crossing Idle Cycle Unbanked Memory Number of Waitstates
PAGSZ

Page Size (for DRAM)

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

igo0j1|1|og1|0fj1f(2fo0j2jO0|1Qg1|(0|1]O0

EB3WM —— — EBOWM
Ext. Bank 3 Waitstate Mode Ext. Bank 0 Waitstate Mode
EB2WS EBOWS
Ext. Bank 2 Number of Waitstates Ext. Bank 0 Number of Waitstates
EB2WM EB1IWM
Ext. Bank 2 Waitstate Mode Ext. Bank 1 Waitstate Mode
EB1WS

Ext. Bank 1 Number of Waitstates

Figure 5.15 WAIT Register

Figure 5.16 (on the following page) shows the effects of the bus idle cycle,
hold time cycle, and page idle cycle options.

The WAIT register is initialized to 0x21AD 6B5A after processor reset.
This configures the ADSP-2106x for the following:

no idle state on page boundary crossings

6 internal wait states

dependence on both software-programmed waitstates and external
acknowledge for all memory banks and for unbanked memory
multiprocessor memory space wait state enabled (see the next section)

Unbanked memory wait states and wait state mode are applied to BMS-
selected accesses.

Bus Idle CyCle Address changes here

ek _/J‘_\ 4)‘—\ | 4)‘—_)‘—_

ADDR _y
sw
MS3.o

RD

i
|

Access Bus ldle Read from different
| | Cycle | bank or unbanked,
or a write
Hold Time CyCle Address changes here
CLK q \ / ____J}____\ ____J}______
- \ \ \ \
ADDR _ :
sw X \ \ X ‘
MS3,
%0 \ \ | |
Rmﬂﬁ-_T_______L_______/\ \ ______l———————

DATA <)) >—

(for WR) ‘ T I ‘ ‘

‘ Hold Time ‘ ‘

Access cycle

Page Idle CyC|e Address changes here

A e

ADDR

swo | ‘ X \ \ \

MS3, | |

DATA ‘ ‘ ‘ | (| \

(for WR) |
| | Pace idie | | |
Cyel
‘ ‘ ‘ ycle ‘ ‘ ‘

Figure 5.16 Bus Idle Cycle, Hold Time Cycle, Page Idle Cycle

5.4.4.2 Multiprocessor Memory Space Wait States & Acknowledge
Completion of reads and writes to multiprocessor memory space depends
only on the ACK signal. This is facilitated by using the SW signal as an
early indication of whether the access is a write or a read (see Figure 5.19 at
the end of this chapter), as well as the use of the automatic wait state option
for multiprocessor memory space—the MMSWS bit of the WAIT register.

Setting the MMSWS bit (bit 29) of the WAIT register causes the insertion of

a single wait state into all multiprocessor memory space reads and writes.
This option should be used whenever the external system bus is heavily
loaded (i.e. such that the synchronous timing requirements for interprocessor
communications cannot be met; refer to the ADSP-2106x Data Sheet for these
specifications.)

The ADSP-2106x bus master inserts the wait state. The slave ADSP-2106x(s)
respond with ACK (low) in the first cycle, even if they have MMSWS=1. If
MMSWS=1 on the master ADSP-2106x, it will ignore ACK in the first cycle and
respond to it in the second cycle. This setting allows longer set up times for the
following slave SHARC's signals: ADDR, RD, WR, and DATA (written to the
slave). Also, this setting allows a longer set up time for the master SHARC'’s
ACK signal. Other hold and set up times are not influenced by MMSWS=1.
This setting does not change hold time requirements for the slave SHARC’s
RD, WR, or DATA (written to the slave). Also, this setting does not change the
master SHARC's set up or hold times for DATA (read from the slave).

All of the ADSP-2106xs in a multiprocessor system must have the same
value for the MMSWS bit.

545 DRAM Page Boundary Detection

Applications with large amounts of data may want to use DRAM memory
for bulk storage. To simplify interfacing to page-mode or static-column
DRAMs, the ADSP-2106x detects page boundary crossings and outputs

the PAGE signal to an external DRAM controller. Page boundaries are user-
defined; they must be programmed in the WAIT register.

Automatic page boundary detection is provided by the ADSP-2106x’s
PAGE signal. DRAM memory must be implemented in bank 0 of external
memory—the PAGE signal is only active within bank 0. The page size for
page boundary detection is specified in the PAGSZ field (bits 27-25) of the
WAIT register:

PAGSZ DRAM Page Size

000 256 words

001 512 words

010 1024 words (1K)
011 2048 words (2K)
100 4096 words (4K)
101 8192 words (8K)
110 16384 words (16K)
111 32768 words (32K)

The ADSP-2106x asserts its PAGE pin whenever an external access
crosses a page boundary and the address is within bank 0. The
processor detects a boundary crossing by comparing each address
output for bank 0 to the address of the last successful external access
(which is stored in the IOP register ELAST). If a memory access is
aborted, for example due to a conditional write, the PAGE pin is not
asserted and the current page is not updated in ELAST. The PAGE pin
will not be asserted nor the current page updated if the access is to
multiprocessor memory space, or to any memory space other than
bank 0 of external memory space.

The PAGE pin remains asserted as long as the access is active. It is not
asserted if no access is performed.

The current page is automatically invalidated and the PAGE pin
asserted upon the next external access if: 1) the ADSP-2106x loses
mastership of the external bus to another ADSP-2106x or to a host
processor, or 2) the processor is reset. ELAST should not be read in the
cycle immediately after it is written, as it may be in the process of
updating.

A single idle cycle on a page boundary crossing can be enabled in
order to give the DRAM controller enough time to assert the SBTS bus
tristate pin (see “Suspend Bus Tristate” below). This option is enabled
by setting the PAGEIS bit (bit 28) of the WAIT register. The address is
asserted in the same cycle that the PAGE pin is asserted, but read/
write strobe assertion is delayed for one cycle. If wait states are
enabled for the bank, they will begin after the idle cycle. The page
change applies only to Bank 0, thus allowing interleaved reads and
writes of other external memory or peripherals without always
incurring a page change to the DRAM in Bank 0. This option should be
disabled when the PAGE signal is not being used.

The host bus request pin (HBR) is disabled when the PAGE pin is
asserted. This prevents the possibility of the ADSP-2106x becoming a
bus slave (by means of the deadlock resolution functionality) while the

DRAM controller is servicing a page change. (See “Suspend Bus

Tristate” below.)

Figure 5.17 shows an example of an ADSP-2106x system with DRAM.
Different interfacing methods may be needed in some applications,

however, especially if buffers are needed for the DRAM.

[
aM
ADDRoo DRAM
DATAg1.9
OE
RAS CAS WR

Host
ADSP-2106x NN
MSy L
» HBR
HBG —
(Y7 VS um— —
REDY Ao
ADDRgy.o (———
RO [
W'R —_
5 >
» BRy, BRyg ACK
- BR, PAGE (—
. SBTS |« —
[010F > 1y -
11 >
A < >
. .
&0
£ =
ADSP-2106x 2 b=
HBR MSg — >
w1
< HBG DATA g h———— ”
< REDY
ADDRyy.g [K— >
RD .
WR — >
5 < [—
> BRys ACK N
- BR, PAGE — >
3 SBTS | —
D20 W —
AV ARV

Figure 5.17 Example DRAM Interface

Cs RAS CAS WR

ADDRyy.q

DRAM
Controller

ACK
PAGE

5.4.5.1 Suspend Bus Tristate (SBTS)

External devices can assert the ADSP-2106x’s SBTS input to place the
external bus address, data, selects, and strobes in a high-impedance
state for the following cycle. If the ADSP-2106x attempts to access
external memory while SBTS is asserted, the processor will halt and
the memory access will not be completed until SBTS is deasserted.

SBTS should only be used to recover from DRAM page faults or host
processor/ADSP-2106x deadlock. (See “Deadlock Resolution” in the
“System Bus Interfacing” section of the Host Interface chapter.) In the
case of DRAM page faults, SBTS allows the external DRAM controller
to take control of the external bus.

SBTS causes the following pins to be tristated:

ADDR3;. RD PAGE
DATA47.0 WR DMAGI
MS;.0 SW DMAG?2
BMS ADRCLK

5.4.5.2 Normal SBTS Operation: HBR Not Asserted

Asserting SBTS places the external bus address, data, selects, and
strobes in a high-impedance state for the following cycle. If an external
access is underway when SBTS is asserted, the access will be held off
(as if ACK were deasserted). If SBTS is asserted while there is no
external access occurring, the external bus pins will tristate and the
ADSP-2106x will continue running until it tries to perform an external
access (at which time it will halt). In this case, the memory access will
begin in the cycle after the deassertion of SBTS.

When SBTS is deasserted, the RD, WR, and DMAGx strobes will be
reasserted (if they had been asserted prior to SBTS) after the external
address has become valid (i.e. at their normal timing within the cycle).
The wait state counter will be reset. This applies even if the processor
is held in reset (RESET asserted).

SBTS differs from HBR in that it takes effect in the next cycle, even if an
external access is occurring (but not finished). SBTS should only be
used when the external access is to a device such as a DRAM or cache
memory, where the access must be held off in order to prepare for it.
Use of SBTS at other times—such as during ADSP-2106x-to-
ADSP-2106x accesses or when DMAGX is asserted—will result in
incorrect operation.

5.5 EXTERNAL MEMORY ACCESS TIMING

Memory access timing for external memory space and multiprocessor
memory space is described below. For exact timing specifications, refer
to the ADSP-2106x Data Sheet.

55.1 External Memory

The ADSP-2106x can interface asynchronously, without reference to
CLKIN, to external memories and and memory-mapped peripherals.
In a multiprocessing system, the ADSP-2106x must be the bus master
in order to access external memory.

Figure 5.18 shows representative timing for an asynchronous read or
write of external memory. Note that the clock signal is shown only to
indicate that the access occurs within a single cycle.

5.5.1.1 External Memory Read — Bus Master

External memory reads occur with the following sequence of events
(see Figure 5.18):

1.

The ADSP-2106x drives the read address and asserts a memory select
signal (MSs3_g) to indicate the selected bank. The memory select signal is
not deasserted between successive accesses of the same memory bank.

. The ADSP-2106x asserts the read strobe (unless the access is aborted

because of a conditional instruction).

. The ADSP-2106x checks whether wait states are needed. If so, the

memory select and read strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal (ACK), the internally programmed wait state count, or a
combination of the two.

. The ADSP-2106x latches in the data.
. The ADSP-2106x deasserts the read strobe.

. If initiating another memory access, the ADSP-2106x drives the address

and memory select for the next cycle.

CLOCK / \ /—

ADDRESS XXXXXX Read Address / Write Address XXXXXX

RD or WR \ /—

DATA

N

Read Data / Write Data)—

Ack OXXIOQOOURKKIHKIXHKXXXNX KXXXXXAXK

Figure 5.18 External Memory Access Timing

Note that if a memory read is part of a conditional instruction that is not
executed because the condition is false, the ADSP-2106x still drives the
address and memory select for the read, but does not assert the read
strobe or read any data.

5.5.1.2 External Memory Write - Bus Master
External memory writes occur with the following sequence of events
(refer again to Figure 5.18):

1. The ADSP-2106x drives the write address and asserts a memory select
signal to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.

2. The ADSP-2106x asserts the write strobe and drives the data (unless
the memory access is aborted because of a conditional instruction).

3. The ADSP-2106x checks whether wait states are needed. If so, the
memory select and write strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal, the internally programmed wait state count, or a combination
of the two.

4. The ADSP-2106x deasserts the write strobe near the end of the cycle.
5. The ADSP-2106x tristates its data outputs.

6. If initiating another memory access, the ADSP-2106x drives the
address and memory select for the next cycle.

Note that if a memory write is part of a conditional instruction that is not
executed because the condition is false, the ADSP-2106x still drives the
address and memory select for the write, but does not assert the write
strobe or drive any data.

5.5.2 Multiprocessor Memory

Timing for multiprocessor memory accesses is shown in Figure 5.19.
For complete information on multiprocessor memory accesses, see
“Direct Reads & Writes” and “Data Transfers Through The EPBx
Buffers” in the Multiprocessing chapter of this manual.

Clock Cycles ——

| |
ADDRESS XX write Address XX

|
Write‘Address

S | | \ \ \
\ \ \ \ \ \ \
wR TN\ T\ / | | |
\ \ \ \ \ \ \
_ | | | \ \ |
RD
\ \ \ \ \ | | \
\ \ \ \ \ \ \
ACK 1 \ \ | / \ | | /
(Output by slave,‘ ‘ ‘ ‘ ‘ ‘ ‘
Input to master) Slave holds ACK Slave holds ACK
‘ ‘ low for 1 cycle ‘ ‘ ‘ low for 2 cycles ‘ ‘
DATA >®< Write Data >®< Write|Data D—(XXXXXXXXXXXXXW Read Data D—
\ \ \ \ \ \ \
\ \ \ \ \ \ \
ADSP-2106x Master Master Master Master Master Master
Bus Master Write Write waits for Read waits for accepts
ACK ACK data
ADSP-2106x Slave Slave has Slave Slave has Slave
Slave accepts 1 wait state, accepts 2 wait states, outputs
data deasserts ACK data deasserts ACK data

Multiprocessor

Write

(no wait states)

T
Multiprocessor
Write
(1 wait state)

Multiprocessor

Read

(2 wait states)

Figure 5.19 Multiprocessor Memory Access Timing

Note—Minimum access time is: 1 wait state (2 cycles) for IOP register reads
3 wait states (4 cycles) for memory reads

5-51

DMA [0 6

6.1 OVERVIEW

Direct Memory Access (DMA) provides a mechanism for transferring
an entire block of data. The ADSP-2106x’s on-chip DMA controller
relieves the core processor of the burden of moving data between
internal memory and an external data source or external memory. The
fully integrated DMA controller allows the ADSP-2106x core
processor, or an external device, to specify data transfer operations and
return to normal processing while the DMA controller carries out the
data transfers independently and invisibly to the core.

Figure 6.1 shows a block diagram of the ADSP-2106x’s DMA
controller, 170 processor, external port, and internal memory. Figure
6.2 shows a more detailed block diagram of the external port, the DMA
controller, FIFO buffers, and DMA data paths and control.

The DMA controller can perform several types of data transfers:

= internal memory o external memory and memory-mapped peripherals
= internal memory o internal memory of other ADSP-2106xs

= internal memory « host processor

= internal memory « serial port 1/0

= internal memory o link port1/0*

= external memory - external peripherals

* Not applicable to the ADSP-21061.

External bus word packing is used to facilitate compatibility between
the ADSP-2106x’s internal 32/48-bit structure and external 16- and
32-bit peripheral devices. Control of bus packing is accomplished in
each of the four external port DMA Control Registers (DMACS,
DMAC7, DMACS, and DMACY9).

e Internal Memory

\

BLOCK 0
BLOCK 1

PROCESSOR PORT I/O PORT
ADDR DATA DATA ADDR

ZAY Y

Core Processor
- N
PM Address Bus (PMA) 24 ﬁ ﬁ

(External Port-

DMA Mux

PM Data Bus (PMD) 48 A4

4

HOST INTERFACE

APMP pata 48

| EPD Bus

DM Data Bus (DMD) 32/4Q

\{pmp Mux

— —
U L4 4

m
R

aol
VO

T o m
= 3T
oo ©O

CONTROLLER

I0P
REGISTERS

Control,

<—>| SERIAL PORTS

—

Status, &

Data Buffers

< L

pu—

NK PORTS

— /O Proce

SSsor

* Note that link ports are not available on the ADSP-21061.

Figure 6.1 ADSP-2106x Block Diagram

: APYA adar 32
o owadessvs oWy 33| L T ===z s (=2 aporag

DATA,7.4

Core Internal Memor
. Processor N Y

PM Address Addr
DM Address Addr
Addr Data Data Data
| ‘IOA PMD DMD 10D External Port
PMA
—
DMA
—
PMD
PM Data 9 -
DMD _
DM Data 9 -
Slave Write FIFO
EPD | — (Async writes - 4 deep)|
[—— (Sync writes - 2 deep) ADDRg;.o
I
|—» | Buffer '—» J DATA 479
1/0 Address 17 48 |} /O Data Ext. Port Ext. Port
Bus (IOA) Bus (IOD) Data Bus 448 32} Address
(EPD) Bus (EPA)
~ag—p | External Port - Ext. Port DMA
Add‘:‘e[:;ng‘egévrl;ors - - . DMA FIFOs Il ~=—— Address Generators
Grants Requests) T : EPBO EPB1 EPB2 EPB: Requests Grants
‘ — - | (6-deep FIFO Buffers)
2
T ¥ ,
10 10
~a—| Link Port FIFOs Ext. Port DMA | DMAR1
- - B | 12U LBurs Lours | > Ll peguerriortizer » DMAGL
" - L ‘(Z—HEED FIFO Buffers) 2 Grants |- — DMAR2
Internal DMA 4 » DMAG2
PrOMIZEY ests |12 ~— | Serial Port FIFOs
Grants |__[10 it - ;;g ;;g - DMA Controller
- P | (2-deep FIFO Buffers) |-l -
— 1
-
DMA Controller —— - Link Ports LxDAT3 4
= - <_> 510
il gl - Serial Ports R E————— B;?-
Direct Write FIFO | ~——1 DT1
: (6 deep) .

1/0 Processor

* Note that link ports are not available on the ADSP-21061.

Figure 6.2 DMA Data Paths & Control

For external DMA requests, the ADSP-2106x includes the DMA
request inputs DMARI and DMAR?2, along with the DMA grant
outputs DMAGI and DMAG?2, to support DMA transfers to and from
external asynchronous peripheral devices. By pulling a DMARKX line
low and waiting for the appropriate DMAGX signal to come back from
the ADSP-2106x, a simple I/0 device can transfer data to ADSP-2106x
internal memory or to external memory.

The ten DMA channels of the ADSP-21060 and ADSP-21062 are
numbered as shown in Table 6.1a, which also shows the corresponding

data buffer used with each channel.

DMA

Channel#

DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 4
DMA Channel 5
DMA Channel 6
DMA Channel 7*
DMA Channel 8*
DMA Channel 9

Data

Buffer

RX0

RX1 (or LBUFO)
TXO0

TX1 (or LBUFY)
LBUF2

LBUF3

EPBO (or LBUF4)
EPBL (or LBUF5)
EPB2

EPB3

Description
Serial Port 0 Receive

Serial Port 1 Receive (or Link Buffer 0)
Serial Port 0 Transmit

Serial Port 1 Transmit (or Link Buffer 1)
Link Buffer 2

Link Buffer 3

Ext. Port FIFO Buffer O (or Link Buffer 4)
Ext. Port FIFO Buffer 1 (or Link Buffer 5)
Ext. Port FIFO Buffer 2

Ext. Port FIFO Buffer 3

Table 6.1a ADSP-2106x DMA Channels & Data Buffers

* DMAR1 and DMAGTI1 are handshake controls for DMA Channel 7.

* DMAR2 and DMAG?2 are handshake controls for DMA Channel 8.

The six DMA channels of the ADSP-21061 are humbered as shown in
Table 6.1b, which also shows the corresponding data buffer used with

each channel.

DMA

Channel#

DMA Channel 0
DMA Channel 1
DMA Channel 2
DMA Channel 3
DMA Channel 6*
DMA Channel 7*

Data
Buffer
RX0
RX1
TXO0
TX1
EPBO
EPB1

Description
Serial Port 0 Receive

Serial Port 1 Receive
Serial Port 0 Transmit
Serial Port 1 Transmit
Ext. Port FIFO Buffer 0
Ext. Port FIFO Buffer 1

Table 6.1b ADSP-2106x DMA Channels & Data Buffers

* DMAR2 and DMAG?2 are handshake controls for DMA Channel 6.

* DMAR1 and DMAGTI1 are handshake controls for DMA Channel 7.

The following terms are used throughout this chapter, and are defined
below for reference:

external port FIFO buffers EPBO, EPB1, EPB2, and EPB3—the IOP
registers used for external port DMA
transfers and single-word data transfers
(from other ADSP-2106xs or from a host
processor); these buffers are 6-deep FIFOs

DMACX control registers the DMA control registers for the EPBx
external port buffers: DMAC6, DMACY7,
DMACS, and DMAC9 (corresponding
respectively to EPB0, EPB1, EPB2, and EPB3)

DMA parameter registers the address (11x), modifier (IMx), count (Cx),
chain pointer (CPx), etc., registers used to set
up a DMA transfer

transfer control block (TCB) a set of DMA parameter register values
stored in memory that are downloaded by
the ADSP-2106x’s DMA controller for
chained DMA operations

TCB chain loading the process in which the ADSP-2106x’s DMA
controller downloads a TCB from memory
and autoinitializes the DMA parameter
registers

6.1.1 DMA Controller Features

The ADSP-2106x’s DMA controller is designed to perform two basic
types of operations: external port block data transfers and 1/0 port
data transfers. The 1/0 ports on the ADSP-21060 and ADSP-21062 are
the link ports and serial ports. The 1/0 ports on the ADSP-21061 are
the serial ports.

External port block data transfers move data between ADSP-2106x
internal memory and external memory. The DMA controller must be
programmed with the internal memory buffer size and address, the
address increment, and the direction of transfer. Once setup
programming is complete, DMA transfers begin automatically and
continue until the entire buffer is transferred to or from internal
memory.

170 port DMA transfers handle data transmitted and received through
the ADSP-2106x’s serial ports and link ports. When performing 1/0
DMA, the same type of buffer is set up in internal memory, but instead
of accessing the external memory, the DMA controller accesses the 1/0
port. The direction of data transfer is determined by the direction of
the 170 port. When data is received at the port, it is automatically
transferred to internal memory. Likewise, when the port needs to
transmit a word, it is automatically fetched from internal memory.

An additional DMA capability allows the ADSP-2106x to support data
transfers between an external device and external memory. This
transfer does not interfere with internal ADSP-2106x operations that
do not use the external port.

External devices can participate in DMA transfers in two ways. The
external device can read or write to a DMA buffer on the ADSP-2106x,
or it can assert a DMA Request input (DMARX) to request service.

In chained DMA operations, a DMA transfer can be programmed to
autoinitialize another DMA operation upon completion.

6.1.2 Setting Up DMA Transfers

DMA operations can be programmed by the ADSP-2106x core
processor, by an external host processor, or by the (external)
ADSP-2106x bus master. The operation is programmed by writing to
the memory-mapped DMA control registers and parameter registers.
A DMA channel is set up by writing a set of memory buffer
parameters to the DMA parameter registers. The Il, IM, and C registers
must be loaded with a starting address for the buffer, an address
modifier, and a word count, respectively.

The external ports, link ports, and serial ports each have a DMA enable
bit (DEN) in their main control register. Once a DMA channel is set up
and enabled, data words received are automatically transferred to the
buffer in internal memory. Likewise, when the ADSP-2106x is ready to
transmit data, a word is automatically transferred from internal
memory to the DMA buffer register. These transfers continue until the
entire data buffer is received or transmitted.

DMA interrupts can be generated when an entire block of data has
been transferred. This occurs when the DMA channel’s count register
(C) has decremented to zero (or EC register, in master mode only).

DMA interrupts are latched and masked in the IRPTL and IMASK
registers, respectively; these registers are located in the ADSP-2106x
processor core, not in the memory-mapped IOP register space.

O TO START A NEW DMA SEQUENCE AFTER THE CURRENT ONE IS FINISHED,
YOUR PROGRAM MUST FIRST CLEAR THE DMA ENABLE BIT, WRITE NEW
PARAMETERS TO THE II, IM, AND C REGISTERS, AND THEN SET THE DMA
ENABLE BIT TO RE-ENABLE DMA.

(For chained DMA operations, however, this is not necessary; see
“DMA Chaining.”)

For further details, see the “DMA Controller Operation,” “DMA
Channel Parameter Registers,” and “DMA Interrupts” sections of this
chapter.

6.2 DMA CONTROL REGISTERS

The registers used to control and configure DMA operations are part of
the memory-mapped IOP register set. These registers are accessed by
writing to or (reading from) the appropriate address in memory.

Succeeding sections of this chapter describe the different operating
modes of the DMA controller together with the associated control
registers and bits. For complete information about the 10P registers,
see the Control/Status Registers appendix of this manual.

The DMA control registers and data buffer registers are listed in
Table 6.2. Note that the serial port and link port DMA control bits are
located in the SPORT and link port control registers, not listed in
Table 6.2—these control bits are described below under “Serial Port
DMA Control” and “Link Port DMA Control.”

Two-dimensional DMA mode is enabled by the L2ZDDMA bit in the
LCOM control register and the D2DMA bit in the SRCTLO and SRCTL1
registers. These bits should be cleared (to 0) for standard DMA
operations. Note that references to two-dimensional DMA are not
applicable to the ADSP-21061.

Register Name(s)

Width

Description

EPBO
EPB1
EPB2
EPB3
DMAC6

DMAC7

DMACS8
DMAC9
DMASTAT

110, IMO, CO, CPO
GPO, DBO, DAO

111, IM1, C1, CP1
GP1, DB1, DA1

112,1M2, C2, CP2
GP2,DB2, DA2

113, IM3, C3, CP3
GP3, DB3, DA3

114, IM4, C4, CP4
GP4, DB4, DA4

115, IM5, C5, CP5
GPS5, DB5, DAS

116, IM6, C6, CP6

GP6, EI6, EM6, EC6

17, 1IM7, C7, CP7

GP7,El7, EM7, EC7

118, IM8, C8, CP8

GP8, EI8, EM8, EC8

119, IM9, C9, CP9

GP9, EI9, EM9, EC9

48
48
48
48
16

16

16

16

32
16-18

16-18

16-18

16-18

16-18

16-18

16-32

16-32

16-32

16-32

External Port FIFO Buffer 0
External Port FIFO Buffer 1
External Port FIFO Buffer 2
External Port FIFO Buffer 3

DMA Channel 6 Control Register
(Ext. Port Buffer 0 or Link Buffer 4)*2

DMA Channel 7 Control Register (Ext. Port Buffer 1 or
Link Buffer 5)*2

DMA Channel 8 Control Register (Ext. Port Buffer 2)
DMA Channel 9 Control Register (Ext. Port Buffer 3)
DMA Channel Status Register

DMA Channel 0 Parameter Registers (SPORTO Receive)*

DMA Channel 1 Parameter Registers (SPORT1 Receive or
Link Buffer 0)-245

DMA Channel 2 Parameter Registers (SPORTO Transmit)*5

DMA Channel 3 Parameter Registers (SPORT1 Transmit or
Link Buffer 1)245

DMA Channel 4 Parameter Registers (Link Buffer 2)*°
DMA Channel 5 Parameter Registers (Link Buffer 3)°

DMA Channel 6 Parameter Registers (Ext. Port Buffer 0 or
Link Buffer 4)*2

DMA Channel 7 Parameter Registers (Ext. Port Buffer 1 or
Link Buffer 5)*2

DMA Channel 8 Parameter Registers (Ext. Port Buffer 2)°

DMA Channel 9 Parameter Registers (Ext. Port Buffer 3)*

Table 6.2 DMA Control, Buffer, & Parameter Registers

1. DMA control, buffer, and parameter registers associated with the link ports are not
applicable to the ADSP-21061.

2. There are no shared DMA channels on the ADPS-21061.

3. DMA control, buffer, and parameter registers associated wiht DMA channels 8 and 9 are
not applicalbe to the ADSP-21061.

4. The IMO, IM1, IM2, and IM3 registers contain the fixed value of 1 on the ADSP-21061.

5. The DBx and DAX registers are not available on the ADSP-21061 because there is no 2-D

DMA on the ADSP-21061.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

[ole[efeefefelefefo[e eloe]o]]

1514 13 12 11 10 9 8 7 6 5 4 3 2
O‘O‘O‘OIO‘O‘O‘OIO‘O‘O‘OIO‘O

1 0
FS \— DEN
Ext. Port FIFO Buffer Status DMA Enable for Ext. Port
00=empty, 10=partially full, 11=full 1=enable, O=disable
FLSH CHEN
Flush Ext. Port FIFO Buffer DMA Chaining Enable for Ext. Port
1=flush 1=enable, O=disable
TRAN

) EXTERN DMA Channel Direction
Ext. Devices to Ext. Memory DMA 0=read from ext. memory

1=extern mode 1=write to ext. memory

INTO —m—— ——— PS
Single-Word Interrupts for Packing Status (read-only)
Ext. Port FIFO Buffers 00=packing complete
1=enable, O=disable 01=1st stage of all pack & unpack modes
10=2nd stage of 16-to-48 bit pack/unpack,
HSHAKE or 2nd stage of 32-t0-48 pack/unpack
DMA Handshake
1=enable, O=disable DTYPE
Data Type
MASTER O=data, 1=instructions
DMA Master Mode
1=enable, O=disable PMODE
Packing Mode
MSWF 00=no packing
Most Significant Word First 01=16/32
for Packing 10=16/48
1=enable, O=disable 11=32/48

Figure 6.3 DMACx Registers

6.2.1 External Port DMA Control Registers

Each external port DMA channel has its own control register. The registers
are named DMAC6, DMAC7, DMACS, and DMACY, corresponding to
channels 6-9. Note that for the ADSP-21061 only DMA channels 6 and 7 of
the external port are applicable. Table 6.3 shows the contents of the
DMACKX registers. All bits are active high unless stated otherwise.

The control bits in the DMACX registers take effect during the second
cycle after the write to the register is completed. The exception to this rule
is the FLSH bit, which takes effect in the third cycle after the write.

To start a new DMA sequence after the current one is finished, your
program must first clear the DEN enable bit, write new parameters to the
I1, IM, and C registers, and then set the DEN bit to re-enable DMA. (For

chained DMA operations, however, this is not necessary.)

Bit(s)
0

1

2

3-4

5

6-7

8

9

10

11

12

13
14-15

16-31

Name Definition

DEN DMA Enable for External Port

CHEN DMA Chaining Enable for External Port

TRAN Transmit/Receive (1=transmit, O=receive)

PS Pack Status (read-only)

DTYPE Data Type (0=data, 1=instructions)

PMODE Packing Mode (00=none, 01=16/32, 10=16/48, 11=32/48)
MSWF Most Significant Word First during packing

MASTER Master Mode Enable
HSHAKE Handshake Mode Enable (DMARx, DMAGX)

INTIO Single-Word Interrupt Enable for external port buffers
EXTERN External Handshake Mode Enable

FLSH Flush DMA Buffers & Status

FS External port buffer status (00=empty, 11=full,

10=partially full)
reserved

Table 6.3 External Port DMA Control Registers (DMACx)

The control and status bits in the DMACKX registers are further
described below:

DEN

CHEN

Enables DMA for the external port buffers. (Note that the DMA
channels shared between the external port and link ports,
channels 6 and 7, may also become enabled by the link buffers; see
the “Selection Of Shared DMA Channels” section of this chapter.
Also note that for the ADSP-21061 there are no shared DMA
channels.)

Enables chained DMA transfers. When CHEN=1 and DEN=0, the
DMA channel is placed in chain insertion mode in which a new
DMA chain can be inserted into the current chain without
affecting the current DMA transfer. This mode of operation is
identical to CHEN=1 and DEN=1 except that automatic chaining
is disabled when the current DMA transfer ends. The complete list
of modes selected by the CHEN and DEN bits are as follows:

CHEN DEN Mode of Operation

0 0 Chaining disabled, DMA disabled

0 1 Chaining disabled, DMA enabled

1 0 Chain Insertion mode (chaining enabled, DMA
enabled, auto-chaining disabled)

1 1 Chaining enabled, DMA enabled, auto-chaining
enabled

TRAN

PS

DTYPE

PMODE

MSWF

INTIO

Transmit (1) or Receive (0). (1=read from ADSP-2106x, 0=write to
ADSP-2106x.) This bit specifies the data transfer direction as
internal-to-external when set to 1. (When EXTERN=1, setting
TRAN=1 specifies a read from external memory and TRAN=0
specifies a write to external memory.)

PS is a two-bit status field that indicates whether the packing
buffer is on its first, second, or last pack:

PS Status

00 pack complete

01 1ststage of all pack and unpack modes

10 2nd stage of 16-to-48 bit pack or unpack modes,
or 2nd stage of 32-to-48 bit pack or unpack modes

11 reserved

Specifies the type of data being transferred; this information is
used by internal memory to determine the word width. DTYPE=1
overrides the IMDW bits and forces a 48-bit (3-column) memory
transfer. DTYPE=0 defers to the data word setting of the IMDW
bits in the SYSCON register. The data word may be 32-bit or 40-
bit, as determined by the setting of the IMDW bits in the SYSCON
register.

PMODE is a two-bit value specifying the EPBx buffer packing
mode. For host processor accesses of the EPBx buffers, the HPM
bits of the SYSCON register must be set to correspond to the
external bus width specified by PMODE.

PMODE Packing Mode

00 No packing/unpacking

01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

Specifies the order in which words are packed, for 16-to-32 bit
packing and 16-to-48 bit packing. MSWF is ignored for 32-to-48 bit
packing. When MSWF=1, packing is done MSW first (most
significant 16-bit word first). When MSWF=0, packing is done
LSW first.

Used when DEN=0, to allow the external port DMA interrupts to
occur for individual words received and transmitted. Generating
DMA interrupts in this fashion is useful for implementing
interrupt-driven single-word transfers under control of the ADSP-
2106x core processor. Setting INTIO=1 causes the interrupts to
occur when an EPBx input buffer is “not empty” (for TRAN=0) or
when an output buffer is “not full” (for TRAN=1).

FLSH

FS

MASTER

HSHAKE

EXTERN

Reinitializes the state of the DMA channel, clearing the FS and PS
status bits to zero. The external port FIFO buffer and DMA
request counter are flushed and any internal DMA states are reset.
Any partially packed data words are also flushed. The entire
flushing operation has a two-cycle latency. FLSH is a self-clearing
control bit which is not latched and will always read as a 0.

The FLSH bit should only be used to clear the DMA channel when
the channel is inactive. Use of the FLSH bit while the channel is active
may cause unexpected results. The DMASTAT register can be read to
determine if the channel is active. (For a particular channel, the
channel active status bit in DMASTAT will be set if DMA is enabled
and the current DMA sequence has not completed.)

The FLSH bit should only be set to 1 at the same time the DEN
enable bit is cleared, or when the DEN bit is already equal to 0. Do
not set FLSH to 1 in the same write that sets DEN to 1.

FS is a two-bit status field that indicates whether data is present in
the EPBx FIFO buffer. When data is being transferred out from the
ADSP-2106x, these status bits indicate whether there is room in
the buffer for more data. When data is being transferred into the
ADSP-2106x, these status bits indicate whether new (unread) data
is available in the buffer.

FES Status

00 empty

01 undefined

10 partially full
11 full

Master Mode DMA Enable. The MASTER, HSHAKE, and
EXTERN bits are used in combination, as described below.

DMA Handshake Enable. The MASTER, HSHAKE, and EXTERN
bits are used in combination, as described below.

Specifies an external memory to external device DMA transfer.
HSHAKE must equal 1 and MASTER equal 0 in this mode.

The MASTER, HSHAKE, and EXTERN bits configure the DMA mode in the
following manner:

M H
0 0
0 0
0 1
0 1
1 0
1 0
11
11

E
0

1

1

DMA Mode of Operation

Slave Mode. The DMA request is generated whenever the receive
buffer is not empty or the transmit buffer is not full.1

Reserved

Handshake Mode. (For the ADSP-21060 and ADSP-21062,
applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.) The
DMA request is generated when the DMARKX line is asserted. The
transfer occurs when DMAGX is asserted.1

External Handshake Mode. (For the ADSP-21060 and ADSP-
21062, applies to EPB1, EPB2 buffers, channels 7, 8 only. For the
ADSP-21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.)
ldentical to Handshake Mode, but with data transferred between
external memory and an external device.

Master Mode. The DMA controller will attempt a transfer
whenever the receive buffer is not empty or the transmit buffer is
not full and the DMA counter is non-zero.l DMAR1 should be
kept high (inactive) if channel 7 is in master mode, and DMAR2
should be kept high if channel 8 is in master mode on the ADSP-
21060 or ADSP-21062. DMARZ2 should be kept high if channel 6 is
in master mode on the ADSP-21061.

Reserved

Paced Master Mode. (For the ADSP-21060 and ADSP-21062,
applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.) In this
mode the transfers are paced by the DMARX sighal—the DMA
request is generated when DMARX is asserted. DMARX requests
operate in the same way as in handshake mode. The bus transfer
occurs when RD or WR is asserted. The address is driven as in
normal master mode. No external gates are required to OR the
RD-DMAGx and WR-DMAG#x pairs, thus allowing the buffer
access to be zero-waitstate with no idle states. Waitstates and
acknowledge (ACK) apply to Paced Master Mode transfers; see
Section 5.4.4, “Wait States & Acknowledge” in Chapter 5,
Memory.

Reserved

1. If data is to be read from the ADSP-2106x (i.e. TRAN=1), the EPBx buffer
will be filled as soon as the DEN enable bit is set to 1.

6.2.2 Serial Port DMA Control

The ADSP-2106x’s two serial ports, SPORTO0 and SPORT1, can use
DMA transfers to handle transmit and receive data. DMA channels 0-3
are assigned to the serial ports, with channels 1 and 3 for SPORT1
being shared with link buffers 0 and 1 on the ADSP-21060 and ADSP-
21062. See Table 6.4 below. The direction of SPORT DMA transfers is
hardwired—receive channels send data to internal memory, while
transmit channels take data from internal memory.

DMA Data

Channel # Buffer Description

DMA Channel0 RXO0 Serial Port 0 Receive

DMA Channel1 RX1 (or LBUFOQ) Serial Port 1 Receive (or Link Buffer 0)*
DMA Channel 2 TXO0 Serial Port 0 Transmit

DMA Channel 3 TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)

1. There are no shared DMA channels on the ADSP-21061.
Table 6.4 Serial Port DMA Channels

32-bit words are transferred internally between the RX/TX buffers and
memory. If 16-bit serial words are being received or transmitted, they
can be transferred two at a time by using the SPORTSs’ packing
capability. See “Data Packing & Unpacking” in the “Data Word
Formats” section of the Serial Ports chapter for details.

Serial port DMA transfers must be set up in the DMA parameter
registers for channels 0-3. Table 6.2 lists these registers. The serial port
DMA enable bits are located in the SPORT transmit and receive control
registers, STCTLO, STCTL1, SRCTLO, and SRCTLL. These registers are
fully described in the Serial Ports chapter. Table 6.5 below shows the
control bits relating to serial port DMA. These bits are active high:
O=disabled, 1=enabled.

Bit Function

SDEN SPORT DMA enable

SCHEN SPORT DMA chaining enable

D2DMA 2-D DMA enable (for receive only, in SRCTLX register)

(Two -dimensional DMA is not available on the ADSP-21061.)

Table 6.5 STCTLx/SRCTLx Control Bits For Serial Port DMA

The D2DMA bit places the DMA controller in two-dimensional SPORT
DMA mode on the ADSP-21060 and ADSP-21062. Two-dimensional
SPORT DMA mode is not applicable to the ADPS-21061. This bit should
be cleared (to 0) for standard operation.

Each serial port has a transmit DMA interrupt and a receive DMA

interrupt. When serial port DMA is not enabled, a TX interrupt occurs
when the TX buffer is not full and a RX interrupt occurs when the RX
buffer is not empty.

Interrupt
Name

Interrupt

SPROI
SPR1I
SPTOI
SPT1I

SPORTO Receive DMA Channel
SPORT1 Receive DMA Channel
SPORTO Transmit DMA Channel
SPORT1 Transmit DMA Channel

Table 6.6 SPORT DMA Interrupts

6.2.3

Link Port DMA Control

HIGHEST PRIORITY

LOWEST PRIORITY

The six link ports on ADSP-21060 and ADSP-21062 DSPs can also use
DMA transfers to handle transmit and receive data. DMA channels 4 and
5 are dedicated to link buffers 2 and 3, respectively. The other link buffers
share DMA channels with the serial ports and external port. [Note that
the discussion in this section applies only to ADSP-21060 and ADSP-
21062 DSPs; the topics here do not apply to the ADSP-21061 DSP because

this DSP does not have link ports.]

DMA

Channel #

DMA Channel 1
DMA Channel 3
DMA Channel 4
DMA Channel 5
DMA Channel 6
DMA Channel 7

Data

Buffer

RX1 (or LBUFO)
TX1 (or LBUF1)
LBUF2

LBUF3

EPBO (or LBUF4)
EPBL1 (or LBUF5)

Table 6.7 Link Port DMA Channels

Description
Serial Port 1 Receive (or Link Buffer 0)

Serial Port 1 Transmit (or Link Buffer 1)
Link Buffer 2
Link Buffer 3
External Port Buffer O (or Link Buffer 4)
External Port Buffer 1 (or Link Buffer 5)

Link port DMA operations are set up in the DMA parameter registers
for each channel. Table 6.2 lists these registers. Either 32- or 48-bit
word widths can be used in link port DMA transfers.

The link buffer DMA enable and control bits are located in the LCTL
register. Table 6.8 shows these control bits, which are active high (i.e.
O=disabled, 1=enabled). The LCOM register contains the L2ZDDMA bit;
this bit places the DMA controller in two-dimensional DMA mode for
the link ports. This bit should be cleared (to 0) for standard operation.

Bit(s) Name Definition

0-3 * Link Buffer 0 controls
4-7 * Link Buffer 1 controls
8-11 * Link Buffer 2 controls
12-15 * Link Buffer 3 controls
16-19 * Link Buffer 4 controls
20-23 * Link Buffer 5 controls
24 LEXTO Extended word size**
25 LEXT1 Extended word size**
26 LEXT2 Extended word size**
27 LEXT3 Extended word size**
28 LEXT4 Extended word size**
29 LEXT5 Extended word size**

30-31 reserved

Table 6.8 LCTL Control Bits For Link Port DMA

* Each four-bit group includes the following control bits for each link buffer
(x=0,1,2,3,4,5):

Bit# Name Definition

0+4x LxEN LBUFx enable

1+4x LxDEN LBUFx DMA enable

2+4x LxCHEN LBUFx chaining enable

3+4x LxXTRAN LBUFx direction: 1=transmit, O=receive

** Extended word size: 1=48-bit link port transfers, 0=32-bit link port
transfers

Each link buffer has a DMA interrupt, listed in Table 6.9 below. When
link port DMA is not enabled, an interrupt is generated whenever a
receive buffer is not empty or a transmit buffer is not full.

Interrupt

Name Interrupt

SPR1I DMA Channel 1 - SPORT1 Rx (or Link Buffer 0)
SPT1I DMA Channel 3—- SPORT1 Tx (or Link Buffer 1)

LP2I DMA Channel 4 - Link Buffer 2

LP3I DMA Channel 5 - Link Buffer 3

EPOI DMA Channel 6 — Ext. Port Buffer 0 (or Link Buffer 4)
EP1l DMA Channel 7 — Ext. Port Buffer 1 (or Link Buffer 5)

Table 6.9 Link Buffer DMA Interrupts

6.24 Port Selection For Shared DMA Channels

DMA Channel 1 and Channel 3 are shared by Serial Port 1 and Link
Buffers 0 and 1. Similarly, DMA Channel 6 and Channel 7 are shared by
External Port Buffers 0 and 1 and Link Buffers 4 and 5. [Note that the
discussion in this section applies only to ADSP-21060 and ADSP-21062
DSPs; the topics here do not apply to the ADSP-21061 DSP because this
DSP does not have shared DMA channels.]

DMA Data

Channel # Buffer Description

DMA Channel 1 RX1 (or LBUFO) SPORT1 Receive (or Link Buffer 0)
DMA Channel 3~ TX1 (or LBUF1) SPORT1 Transmit (or Link Buffer 1)
DMA Channel 6 EPBO (or LBUF4) External Port Buffer O (or Link Buffer 4)
DMA Channel 7 EPBL1 (or LBUF5) External Port Buffer 1 (or Link Buffer 5)

Channel 1 is assigned to either the SPORT1 Receive buffer or Link Buffer
0 according the following rules:

= If the SPORT1 Receive DMA enable bit is set (SDEN=1), then Channel 1 is
assigned to it.

= If the Link Buffer 0 DMA enable bit is set (LODEN=1), then Channel 1 is
assigned to it.

= |f both enables are set, SPORT1 Receive is selected.

= If neither enable is set, then the interrupts from the two buffers are ORed
together.

Channel 3 is assigned to either SPORT1 Transmit or Link Buffer 1 in
the same way.

Channel 6 is assigned to either External Port Buffer 0 or Link Buffer 4
according the following rules:

= |f the External Port DMA enable bit is set in the DMACS6 control register
(DEN=1), then Channel 6 is assigned to EPBO.

= If the Link Buffer 4 DMA enable bit is set (LADEN=1), then Channel 6 is
assigned to it.

= If both enables are set, EPBO is selected.

= If neither enable is set, then the interrupts from the two buffers are
ORed together.

Channel 7 is assigned to either External Port Buffer 1 or Link Buffer 5
in the same way.

6.2.5 DMA Channel Status Register (DMASTAT)

The ADSP-2106x’s DMA controller maintains a 32-bit read-only status
register called DMASTAT, described in Table 6.10. Bits 0-9 of
DMASTAT indicate which DMA channels are active, with bit 0
corresponding to channel 0, and so on. Bits 10-19 indicate DMA
chaining status for each channel. [Note that bits 4, 5, 8, 9, 14, 15, 18, and
19 are not valid for the ADSP-21061.]

@
=

Definition

DMA Channel 0 Status?*

DMA Channel 1 Status*

DMA Channel 2 Status?*

DMA Channel 3 Status?*

DMA Channel 4 Status®?

DMA Channel 5 Status®-?

DMA Channel 6 Status*

DMA Channel 7 Status*

DMA Channel 8 Status®-?

DMA Channel 9 Status®?

10 DMA Channel 0 Chaining Status?
11 DMA Channel 1 Chaining Status?
12 DMA Channel 2 Chaining Status?
13 DMA Channel 3 Chaining Status?
14 DMA Channel 4 Chaining Status?3
15 DMA Channel 5 Chaining Status?3
16 DMA Channel 6 Chaining Status?
17 DMA Channel 7 Chaining Status?
18 DMA Channel 8 Chaining Status?3
19 DMA Channel 9 Chaining Status?3
20-31 reserved

Table 6.10 DMASTAT Register

1. Channel Status: 1 (active)=transferring data or waiting to transfer the current
block, and not transferring TCB. 0 (inactive)=DMA disabled, transfer complete, or
transferring TCB.

2. Channel Chaining Status: 1=transferring TCB or waiting to transfer TCB.
0=chaining disabled, or not transferring TCB.

3. Does not apply to the ADSP-21061.

LOG)\ICDUW-&OJI\)I—‘O‘

Note 1: Status does not change on the master ADSP-2106x during external port DMA
until the external portion is completed (i.e., the EPBx buffers are emptied).

Note 2: If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status
will never go to 1. Therefore, test channel status to see if it is ready so that your
program can rewrite the chain pointer (CPx register).

For a particular channel, the channel active status bit will be set if DMA
is enabled and the current DMA sequence has not completed. The
chaining status bit will be set if the channel is currently performing
chaining operations or if chaining is pending. There will be a single
cycle of latency between internal status changes and the update of the
DMASTAT register.

As an alternative to interrupt-driven DMA, polling DMASTAT can be
used to determine when a single DMA sequence has completed:

1. Read DMASTAT.

2. If both status bits for the channel are inactive, the DMA sequence
has completed.

If chaining is enabled, however, polling should not be used since the
next DMA sequence may be under way by the time the polled status is
returned.

6.3 DMA CONTROLLER OPERATION

The following sections discuss the operation of the ADSP-2106x’s
DMA controller and describe how DMA transfers occur.

In the ADSP-2106x, the DMA controller operations are centered on the
internal 170 bus. The serial ports, link ports, and external port are
connected to the internal memory via the 1/0 Data bus (I0OD), and the
DMA controller generates internal memory addresses on the 1/0
Address bus (I0A).

The DMA controller maintains 10 DMA channels that are used by the
external port, the link ports, and the serial ports. A DMA channel
consists of a set of parameter registers which specify a data buffer in
internal memory, plus the hardware required by an 1/0 port to
request DMA service.

To transfer data, the DMA controller accepts internal requests from
170 ports and sends back an internal grant when they are serviced.
The DMA controller contains priority logic to determine which
channel can drive the bus in any given cycle. The DMA transfer never
conflicts with the core for internal memory accesses because the
internal memory has separate ports for core and 1/0 accesses.

Each external port DMA channel has a control/status register which is
used to set the operating mode of the channel and to return status
information. All of the DMA control and parameter registers are
accessible to external devices. This allows a host, or another ADSP-
2106x, to set up a DMA channel and initiate transfers without local
ADSP-2106x involvement. The local ADSP-2106x can set up a DMA

channel on itself by writing to its DMA control and parameter
registers.

The external port and link port DMA channels can be configured to
transmit or receive data from internal memory. The serial port DMA
channels, however, are unidirectional, either transmit or receive only.

6.3.1 DMA Channel Parameter Registers

The DMA channels operate in a similar fashion as the ADSP-2106x’s
Data Address Generators (DAGS). Each channel has of a set of
parameter registers including an index register (11x) and modify
register (IMx) which are used to set up a data buffer in internal
memory. The index register must be initialized with a starting address
for the data buffer. The address in the index register is output onto the
ADSP-2106x’s IOA (1/0 Address) bus and applied to internal memory
during each DMA cycle. (A DMA cycle is defined as a clock cycle in
which a DMA transfer is taking place.)

All addresses in the 17-bit index registers are offset by 0x0002 0000, the
first internal RAM location, before they are used by the DMA
controller. Since the index registers are only 17 bits wide, DMA
transfers cannot be made to short word address space. (16-bit short
word data can be transferred within 32-bit words, however, using the
packing capability of the external port and serial port DMA channels.)

After each data word is transferred to or from internal memory, the
DMA controller adds the modify value to the index register to generate
the address for the next DMA transfer; the modify value is added to
the index value and written back into the index register. The modify
value in the IM register is a signed integer, to allow both incrementing
and decrementing. Note that if the index register is modified past its
maximum 17-bit value (i.e. out of the address range of internal
memory), it will wraparound to zero (offset by 0x0002 0000). The
modify value for DMA channels 0-3 is fixed to 1 on the ADSP-21061;
this DSP does not have the IMO-3 registers.

Each DMA channel has a count register (Cx) which must be initialized
with a word count to be transferred. The count register is decremented
after each DMA transfer on that channel; when the count reaches zero,
the interrupt for that channel can be generated.

Caution: If the count register is initialized with zero, DMA transfers on

that channel are not disabled. Rather, 216 transfers will be performed.
This occurs because the first transfer is started before the count value is
tested. The correct way to disable a DMA channel is to clear its DMA
enable bit in the corresponding control register.

To start a new DMA sequence after the current one is finished, your program
must first clear the DEN enable bit, write new parameters to the 11, IM, and C
registers, and then set the DEN bit to re-enable DMA.

(For chained DMA operations, however, this is not necessary.)

Each DMA channel also has a chain pointer register (CPx) and a
general-purpose register (GPx). The CP register is used in chained
DMA operations (as described below in “DMA Chaining”), and the
GP register can be used for any purpose.

The external port DMA channels each contain three additional
parameter registers, the external index register (EIx), external modify
register (EMXx), and external count register (ECx). (These registers are
not included in the serial port and link port DMA channels.) The El,
EM, and EC registers are used to generate 32-bit addresses driven out
of the external port, for master mode DMA transfers between internal
memory and external memory or devices. Master mode is configured
by the MASTER bit of each DMACXx control register. The EC register
must be loaded with the number of external bus transfers to occur (in
master mode only). (Note: This differs from the number of words
transferred by the DMA controller if word packing is used.) EIX may
not index internal memory. If DMA data is broadcast, write space data
is not written to the internal memory of the broadcaster.

Instead of the El, EM, and EC registers, the serial port and link port
DMA channels have the DA and DB registers. These registers are used
for two-dimensional array addressing in mesh multiprocessing
applications, but may also be used as general-purpose registers in
standard, one-dimensional DMA operations.

Figure 6.4 shows a block diagram of the DMA controller’s address
generator. Table 6.11 defines the DMA parameter registers, and
Table 6.12 lists the parameter registers for each DMA channel. The
parameter registers are uninitialized following a processor reset.

Parameter #of
Register Bits Function

11x 17 Internal Index (starting address for data buffer — 0x0002 0000)
IMx 16 Internal Modifier (address increment)?!

Cx 16 Internal Count (number of words to transfer)

CPx 18* Chain Pointer (address of next set of buffer parameters)?2

GPx 17 General-Purpose (or 2D DMA)3

Elx 32 External Index (Ext. Port DMA channels only)

EMx 32 External Modifier (Ext. Port DMA channels only)

ECx 32 External Count (Ext. Port DMA channels only)

DBx 16 General-Purpose or 2D DMA (Link/SPORT channels only)3
DAX 16 General-Purpose or 2D DMA (Link/SPORT channels only)3

Table 6.11 DMA Parameter Registers

1. The modify value of DMA channels 0-3 is fixed to '1' on the ADSP-21061.

2. Lower 17 bits (bits 16-0) contain memory address of the next set of parameters for chained DMA
operations. Most significant bit (bit 17) is the PCI bit (Program-Controlled Interrupts), which
determines whether the DMA interrupts occur at the completion of each DMA sequence.

3. Two-dimensional DMA is not available on the ADSP-21061; this DSP does not have the DBx or
DAX registers.

Register

Names Description

110, IMO, CO, CPO DMA Channel 0 Parameter Registers (SPORTO Receive)!

GPO, DB0O, DAO

111, IM1, C1, CP1 DMA Channel 1 Parameter Registers (SPORT1 Receive or Link Buffer 0)!
GP1, DB1, DAl

112, IM2, C2, CP2 DMA Channel 2 Parameter Registers (SPORTO Transmit)!

GP2, DB2, DA2

113, IM3, C3, CP3 DMA Channel 3 Parameter Registers (SPORT1 Transmit or Link Buffer 1)1
GP3, DB3, DA3

114, IM4, C4, CP4 DMA Channel 4 Parameter Registers (Link Buffer 2)2

GP4, DB4, DA4

115, IM5, C5, CP5 DMA Channel 5 Parameter Registers (Link Buffer 3)2

GP5, DB5, DA5

116, IM6, C6, CP6 DMA Channel 6 Parameter Registers (Ext. Port Buffer 0 or Link Buffer 4)
GPé6, El6, EM6, EC6

117, IM7, C7, CP7 DMA Channel 7 Parameter Registers (Ext. Port Buffer 1 or Link Buffer 5)
GP7, EI7, EM7, EC7

118, IM8, C8, CP8 DMA Channel 8 Parameter Registers (Ext. Port Buffer 2)2

GPS8, EI8, EM8, EC8

119, IM9, C9, CP9 DMA Channel 9 Parameter Registers (Ext. Port Buffer 3)2

GP9, EI9, EM9, EC9

Table 6.12 Parameter Registers For Each DMA Channel

1. The values in the IMO0-3 registers are fixed to '1' on the ADSP-21061; this DSP does not have DAXx
and DBXx registers.
2. These sets of registers are not available on the ADSP-21061. 6 23

local bus

External

Only for 2-D DMA

DMA - -
Address)))
Generator) ¥ ¥ ¥
‘ 1x ‘ IMXx ‘ ’ =
Index (Address) Modifier b
Internal \
Memory Only for 2-D DMA
Address Y y
©) [MUX
Post-Modify
- local bus -
DMA r r r r
Word . .
Counter I y T y ¢ y y
‘ Cx ‘ ‘ CPx ‘ ’ GPx ‘ ’ S ‘
Count Chain Pointer General Purpose ‘ X
-1—® _ _ For 2-D DMA
| |
] i ! !
e MUX
Only for External Port DMA Channels
DMA local bus
Address - y y ‘ -
Generator R
(External Memory) A ! !
Elx EMx ECx
Ext. Index (Address) Ext. Modifier Ext. Count

Memory
Address

)

d)./
Post-Modify

Figure 6.4 DMA Address Generation

6.3.2

Internal Request & Grant
The ADSP-2106x’s I1/0 ports communicate with the DMA controller by
means of an internal DMA request/grant handshake. Each 1/0 port

(link ports, serial ports, and external port) has one or more DMA
channels, with each channel having a single request and a single grant.

__']_—»@7

When a particular 1/0 port needs to write data to internal memory, it
asserts its request. This request is prioritized with all other valid DMA
requests. See Figure 6.2.

When a channel becomes the highest priority requester, its internal
grant is asserted by the DMA controller. In the next clock cycle, the
DMA transfer is started. When an 1/0 port wishes to read data from
internal memory, the sequence is the same.

If a DMA channel is disabled, no grants will be given for that channel,
regardless of whether it has data to transfer.

6.3.3 DMA Channel Prioritization

Since more than one DMA channel may have a request active in a
particular cycle, a prioritization scheme is used to select the channel to
service. Prioritization is needed to determine which channel can use
the 10D (170 Data) bus to access memory. The ADSP-2106x always
uses a fixed prioritization (except for the external port DMA channels,
as described below). Table 6.13 lists in descending order of priority the
possible 170 bus accesses including DMA channels .

— Core Accesses to DA Group Registers HIGHEST PRIORITY
Channel 0 - Serial Port 0 Receive
Channel 1 - Serial Port 1 Receive (or Link Buffer 0)
Channel 2 — Serial Port 0 Transmit
Channel 3 - Serial Port 1 Transmit (or Link Buffer 1)
— TCB Chain Loading Requests!
— External Accesses of Internal Memory (Direct Reads, Direct Writes)2
Channel 4 — Link Buffer 23
Channel 5 - Link Buffer 33
Channel 6 — Ext. Port Buffer 0 (or Link Buffer 4)4
Channel 7 — Ext. Port Buffer 1 (or Link Buffer 5)4
Channel 8 — Ext. Port Buffer 23, 4
Channel 9 — Ext. Port Buffer 33, 4 LOWEST PRIORITY

Table 6.13 Internal Memory 1/O Bus Access Priority

1. TCB chain loading uses the 1/0 bus and therefore requires prioritization. (See
“DMA Chaining” below.)

2. Direct reads and writes use the 1/0 bus and therefore require prioritization.
(See “Direct Writes” and “Direct Reads” in the Host Interface chapter.)

3. These DMA channels are not available on the ADSP-21061

4. Rotating priority can be selected for External Port Buffers.

The DMA controller determines the highest priority requesting
channel during every cycle, between each individual data transfer.
Master/slave bus request prioritization, however, occurs only when
the ADSP-2106x master gives up control of the external bus—this
occurs only after an entire DMA block transfer has completed.

Note that external direct accesses of internal memory and TCB chain
loading are prioritized along with the DMA channels. This is necessary
to prevent 170 bus contention, because these accesses are also
performed over the internal 170 bus. TCB chain loading is given a
higher priority than external port accesses to allow serial port DMA
transfers (which cannot be held off) to be chained, even when the
external port is attempting an access in every cycle. (TCB chain loading
is explained in the section “DMA Chaining” below.)

6.3.3.1 Rotating Priority For Ext. Port Channels

The DMA controller can be programmed to use a rotating priority
scheme for the four external port channels by setting the DCPR bit in
the SYSCON register:

Bit Function

DCPR Enables rotating priority for external port DMA channels 6-9
on the ADSP-21060 and ADSP-21062. Enables rotating
priority for external port DMA channels 6-7 on the ADSP-
21061. (O=disabled, 1=enabled)

When rotating priority is enabled, high priority shifts to a new channel
after each single-word transfer. The order of channel priority then
rotates. Thus, a single-word transfer is serviced, then priority rotates to
the next higher-numbered channel, and so on until all four are
serviced. Figure 6.5 illustrates this process, according to the following
example (applies to the ADSP-21060 and ADSP-21062):

1) After reset, the default priority ordering from high to low is 6, 7, 8, 9.

2) A single transfer is performed on channel 7.

3) Assuming that rotating priority is enabled (DCPR=1), the priority
ordering then changes to 8, 9, 6, 7.

For the ADSP-21061, rotating priority works in the same manner
described above, except there are only two DMA channels (6-7).

The external port channel priorities do not change relative to the serial
port and link port channel priorities. At reset, the DCPR bit is cleared
and rotating priority is disabled.

Highest Highest
Priority Priority
6 8
(\ One transfer occurs (\
Lowest 9 7 on Channel 7, which Lowest 7 9
Priority then rotates into the Priority

lowest priority slot.

8 6
Figure 6.5 Rotating Priority Example (ADSP-21060 & ADSP-21062)

Note: Even though the external port channel DMA priority can rotate,
the interrupt priorities of all DMA channels are fixed.

When using fixed priority for the external port DMA channels, the
highest priority of the four is assigned to Channel 6 and the lowest
priority is assigned to Channel 9 (as shown in Table 6.13) for the
ADSP-21060 and ADSP-21062. The lowest priority channel on the
ADSP-21061 is channel 7. This order of priority can be redefined by
assigning one of the other channels the highest priority. To change the
fixed priority sequence of the external port DMA channels, use the
following procedure:

1) Disable all external port DMA channels except the one which is to have

lowest priority.
2) Select rotating priority.
3) Cause at least one transfer to occur on the enabled channel.
4) Disable rotating priority and re-enable all of the external port DMA

channels.

The channel immediately after the selected channel will now have the
highest fixed priority, for example (ADSP-21060 & ADSP-21062):

HIGHEST LOWEST
Priority at Reset: DMA6 DMA7 DMA8 DMA9
Follow steps 1-4 above to make DMA7 the lowest priority.
New Priority Ordering: DMA8 DMA9 DMA6 DMA7

6.3.4 DMA Chaining

DMA chaining allows the ADSP-2106x’s DMA controller to
autoinitialize itself between multiple DMA transfers. Using chaining,
you can set up multiple DMA operations in which each operation can
have different attributes.

In chained DMA operations, the ADSP-2106x automatically sets up
another DMA transfer when the entire contents of the current buffer
have been transmitted or received. The chain pointer register (CP) is
used to point to the next set of DMA parameters stored in internal
memory. This new set of parameters is called a transfer control block
(TCB). The ADSP-2106x’s DMA controller automatically reads the TCB
from internal memory and loads the values into the channel parameter
registers to set up the next DMA sequence; this process is called TCB
chain loading.

A DMA sequence is defined as the sum of the DMA transfers for a
single channel, from the parameter registers initialization to when the
count register decrements to zero.

Each DMA channel has a chaining enable bit (CHEN) in the
corresponding control register. This bit must be set to 1 to enable
chaining. Writing all zeros to the address field of the chain pointer
register (CP) also disables chaining.

When chaining is enabled, DMA transfers are initiated by writing a
memory address to the CP register. This is also an easy way to start a
single DMA sequence, with no subsequent chained DMAs. The CP
register can be loaded at any time during the DMA sequence—this
allows a DMA channel to have chaining disabled (CP register address
field = 0x0000) until some event occurs that loads the CP register with
a non-zero value. DMA chaining operations may only occur within the
same channel; cross-channel chaining is not supported.

The CP register is 18 bits wide, of which the lower 17 bits are the
memory address field. The memory address field is offset by

0x0002 0000 before it is used by the DMA controller. The most
significant bit (bit 17) of the CP register is a control bit called PCI
(Program-Controlled Interrupts). The PCI bit selects whether or not an
interrupt occurs at the completion of the current DMA sequence (in
addition to the interrupt’s mask bit in IMASK). When PCI=1, the
corresponding DMA channel interrupt is enabled and will occur when
the count register reaches zero. When PCI=0, the channel’s interrupt is
disabled. Note that the PCI bit only affects DMA channels for which
chaining is enabled (i.e. CHEN bit set to 1). For non-chained DMA
operations, the IMASK register must be used to disable the interrupt.
Interrupt requests enabled by the PCI bit can still be masked out (i.e.
disabled) in the IMASK register. Figure 6.6 illustrates the PCI bit
within the CPx register.

Caution: Because the PCI bit is not part of the memory address in the
CP register, care should be taken when writing and reading addresses
to and from the register. To prevent errors, it is a good practice to
mask out the PCI bit (bit 17) when copying the address in CP to
another address register.

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

CPx

PCI bit Memory Address Field
(address of next TCB)

Figure 6.6 Chain Pointer Register & PCI Bit

The general-purpose register (GP) can be useful during chained DMA
sequences. It is loaded from memory with the other parameter
registers, and can be used to point to the last DMA sequence that was
completed. This allows a program to determine where the last full (or
empty) data buffer is located. Since it is a general-purpose register
with no dedicated functionality, it can be used for any purpose.

6.3.4.1 Transfer Control Blocks & Chain Loading

During TCB chain loading, the DMA channel parameter registers are
loaded with values retrieved from internal memory. The CP register
contains the chain pointer—the highest address of the TCB. The TCB is
stored in consecutive locations.

Table 6.14 below shows the TCB-to-register loading sequence for the
external port, link port, and serial port DMA channels (i.e. the order in
which the DMA controller reads each word of the TCB and loads it
into the corresponding register.) Figure 6.7 shows how you must set
up the TCB in memory (for an external port DMA chain), referenced to
the address pointer contained in the CP register of the previous DMA
operation of the chain.

External Port & Serial Ports &

Address Link Buffers4,5 Link Buffers 0,1,2,3

CPx + 0x0002 0000 11x 11X

CPx— 1 + 0x0002 0000 IMx IMx

CPx - 2 + 0x0002 0000 Cx Cx (and DAX for 2D DMA)

CPx— 3 + 0x0002 0000 CPx CPx

CPx— 4 + 0x0002 0000 GPx GPx

CPx - 5 + 0x0002 0000 Elx DBx (loaded during 2D DMA only)
CPx - 6 + 0x0002 0000 EMx LPATH1 (mesh multiproc. links only)
CPx - 7 + 0x0002 0000 ECx LPATH2 (mesh multiproc. links only)
CPx - 8 + 0x0002 0000 - LPATH3 (mesh multiproc. links only)

Table 6.14 TCB Chain Loading Sequence

Notes:

1. An “x” denotes the DMA channel number.

2. The DAx and DBx registers are not loaded during chaining in normal, one-
dimensional DMA. In 2D DMA operations, only DBx is loaded. The DAX register
is automatically loaded with the same value as the Cx register. (2D DMA
operations are not applicable to the ADSP-21061.)

3. The link transmit chain also downloads the LPATH1, LPATH2, and LPATH3
registers when the LMSP bit in the LCOM control register is set, enabling mesh
multiprocessing. (These registers are not available of the ADSP-21061.)

4. Link Buffers 4 and 5 use the same chaining registers as the external port. All 8
registers are always loaded when chaining on DMA channels 6-9, but Elx, EMX,
and ECx are not used when Link Buffers 4 and 5 are enabled. (Link buffers 4-5
are not available on the ADSP-21061.)

A working register is loaded from the CP register before the chain
loading sequence begins, and is decremented after each register is
loaded. The working register allows the CP register to be updated with
the new CP value without interfering with the current register loading.

When the chain loading is complete, the working register is loaded
with the new CP value. This allows chained DMA sequences to be set
up in a continuous loop. (Note: The contents of the working register
are not accessible.)

TCB chain loading is requested like all other DMA operations. A TCB
loading request is latched and held in the DMA controller until it
becomes the highest priority request. The IOP individually prioritizes
and transfers the TCB register like normal DMA. If multiple chaining
requests are present, the TCB registers for the highest priority DMA
channel are transferred first. A channel which is in the process of chain
loading cannot be interrupted by a higher priority channel. Refer to
Table 6.13 for the DMA channel request priorities.

Address
ECx CPx —7 --—— Lowest address
EMx CPx -6
Elx CPx -5
GPx CPx -4
e P P
Cx CPx —2
IMx CPx -1
I CPx --&— Highest address

Figure 6.7 TCB Setup In Memory (For External Port DMA Channel)

6.3.4.2 Setting Up & Starting The Chain
To setup and initiate a chain of DMA operations, your program should
follow this sequence:

1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, setting the DEN
enable bit to 1 and the CHEN chaining enable bit to 1.

3. Write the last address (i.e. the address of the I1x register value) of
the first TCB to the CPx register—this will start the chain.

The DMA controller will autoinitialize itself with the first TCB and
then start the first transfer. When this transfer is completed, the next
one will begin if the current chain pointer address is non-zero. This
address will be used as the pointer to the next TCB.

Remember that the address field of the CPx registers is only 17 bits
wide. If a symbolic address is written directly to CPx, bit 17 may
conflict with the PCI bit. Be sure to clear the upper bits of the address,
then AND in the PCI bit separately if needed.

6.3.4.3 Chain Insertion

A high priority DMA operation or chain can be inserted into an active
DMA chain. When CHEN=1 and DEN=0, the DMA channel is placed
in chain insertion mode in which a new DMA chain can be inserted into
the current chain without affecting the current DMA transfer. The new
chain is inserted by the ADSP-2106x core writing a TCB into the
channel parameter registers. This mode of operation is identical to that
selected by CHEN=1 and DEN=1; except that when the current DMA
transfer ends, automatic chaining is disabled and an interrupt request
occurs. This interrupt request is independent of the PCI bit state.

The following sequence should be used to insert a DMA subchain
while another chain is active:

1. Enter chain insertion mode by setting CHEN=1 and DEN=0 in the
appropriate DMA control register.

2. The DMA interrupt will indicate when the current DMA sequence has
completed.

3. Write the CPx register value into the CP position of the last TCB in the
new chain.

4. Set DEN=1 and CHEN=1.
5. Write the start address of the first TCB of the new chain into the CP
register.

Chain insertion should not be set up as an initial mode of operation; it
is intended for use only while another DMA operation is in progress.

6.3.5 DMA Interrupts

When the count register (C) of an active DMA channel decrements to
zero, an interrupt is generated. For the external port DMA channels,
both the C and EC (external count) registers must equal zero before the
interrupt is generated (EC register only in MASTER mode). The count
register(s) must be decremented to zero as a result of actual DMA
transfers in order for a DMA interrupt to be generated—writing zero
to a count register will not generate the interrupt.

Each DMA channel has its own interrupt; the DMA interrupts are
latched in the IRPTL and are enabled in the IMASK register. Table 6.15
shows the IRPTL and IMASK bits of the ten DMA channel interrupts,
in order of priority. (Note: Although the external port channel access
priority can rotate, the interrupt priorities of all DMA channels are
fixed.)

IRPTL/
IMASK Vector Interrupt
Bit # Address! Name DMA Channel Interrupt

10 0x28 SPROI DMA Channel 0 - SPORTO Receive HIGHEST
PRIORITY

11 0x2C SPR1I DMA Channel 1 - SPORT1 Receive (or Link Buffer 0)
12 0x30 SPTOI DMA Channel 2 - SPORTO0 Transmit

13 0x34 SPT1I DMA Channel 3- SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 — Link Buffer 22

15 0x3C LP3I DMA Channel 5 - Link Buffer 32

16 0x40 EPOI DMA Channel 6 — Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1l DMA Channel 7 — Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 - Ext. Port Buffer 22

19 0x4C EP3I DMA Channel 9 — Ext. Port Buffer 32 LOWEST
PRIORITY

Table 6.15 DMA Interrupt Vectors & Priority

1. Offset from base address: 0x0002 0000 for interrupt vector table in internal
memory, 0x0040 0000 for interrupt vector table in external memory

2. These locations are reserved, not used, on the ADSP-21061.

In addition to IMASK, DMA interrupts for each channel can be
enabled or disabled by the PCI bit of the CP register, when DMA
chaining is enabled. When PCl=1, DMA interrupt requests occur when
the count register reaches zero. When PCI=0, no DMA interrupts are
generated. The PCI bit is valid only when DMA chaining is enabled. If

chaining is disabled, the IMASK register must be used to disable
interrupts. Interrupt requests enabled by PCI can still be masked out
by the IMASK register.

DMA interrupts can also be generated by ADSP-2106x’s I/0 ports
without using DMA. In this case, a DMA interrupt is generated
whenever data becomes available at the receive buffer, or whenever
the transmit buffer does not have new data to transmit. Generating
DMA interrupts in this fashion is useful for implementing interrupt-
driven 170 under control of the ADSP-2106x core processor. Multiple
interrupts can occur if several 1/0 ports transmit or receive data in the
same cycle. To perform single-word, non-DMA, interrupt-driven
transfers on the external port, the INTIO bit must be set in a DMACX
control register.

The following list describes the various conditions for which an
interrupt will be generated by a DMA channel or its corresponding
170 port:

Interrupt
Condition Mask
Chaining disabled, current DMA sequence completes IMASK
Chaining enabled, current DMA sequence completes IMASK & PCI

Chain insertion mode, current DMA sequence completes ~ IMASK
DMA disabled and a buffer is accessed by the 1/0 port* IMASK

* INTIO bit must be set in DMACXx control register for external port.

If the interrupt mask is a 1 (i.e. unmasked), the interrupt is enabled and
will be acknowledged.

The IMASK register is not directly accessible to external devices, via
the external port, because it is one of the universal registers in the
ADSP-2106x processor core (and is not memory-mapped like the IOP
registers). IMASK may be read or written via the external port,
however, by using an interrupt vector to a routine set up to handle this
task. The VIRPT vector interrupt register may be used for this purpose.

As an alternative to interrupts, polling DMASTAT can be used to
determine when a single DMA sequence has completed:

1. Read DMASTAT.
2. If both status bits for the channel are inactive, the DMA sequence has
completed.

If chaining is enabled, however, polling DMASTAT should not be used
since the next DMA sequence may be under way by the time the
polled status is returned.

6.3.6 Starting & Stopping DMA Sequences

DMA sequences are started in different ways depending on whether
DMA chaining is enabled. When chaining is not enabled, only the
DMA enable bit (DEN) allows DMA transfers to occur.

A DMA sequence starts when one of the following occurs:

= Chaining is disabled and the DMA enable bit (DEN) transitions from
low to high.

= Chaining is enabled, DMA is enabled (DEN=1), and the CP register
address field is written with a non-zero value. (In this case, TCB
chain loading of the channel parameter registers occurs first.)

= Chaining is enabled, the CP register address field is non-zero, and
the current DMA sequence finishes. (Again, TCB chain loading
occurs.)

A DMA sequence ends when one of the following occurs:

= The count register decrements to zero (both C and EC for external
port channels).

= Chaining is disabled and the channel’s DEN bit transitions from
high to low. If the DEN bit goes low and chaining is enabled, the
channel enters chain insertion mode and the DMA sequence
continues. (See “Chain Insertion” for details.)

Note that whenever the DEN bit goes high again, the DMA sequence
continues from where it left off (for non-chained operations only).

To start a new DMA sequence after the current one is finished, your
program must first clear the DEN enable bit, write new parameters to
the 11, IM, and C registers, and then set the DEN bit to re-enable DMA.
(For chained DMA operations, however, this is not necessary; see
“DMA Chaining.”)

Warning: If a DMA operation completes and the count register is
rewritten before the DMA enable bit is cleared, the DMA transfer will

restart at the new count.

6.4 EXTERNAL PORT DMA

Channels 6, 7, 8, and 9 are the external port DMA channels, which are
available on the ADSP-21060 and ADSP-21062. On the ADSP-21061,
only channels 6-7 are available. These DMA channels allow efficient
data transfers between the ADSP-2106x’s internal memory and external
memory or devices.

6.41 External Port FIFO Buffers (EPBX)

DMA Channels 6, 7, 8, and 9 are associated with the external port FIFO
data buffers, EPB0, EPB1, EPB2, and EPB3. Each buffer acts as a six-
location FIFO. It has two ports, a read port and a write port. Each port
can be connected to either the EPD (External Port Data) bus or to a local
bus which in turn can connect to the IOD (1/0 Data) bus, PM Data
bus, or DM Data bus. (See Figure 6.2.) This structure allows data to be
written to the FIFO on one port while it is being read from the other
port—allowing DMA transfers at the full processor clock frequency.

The external port FIFO buffers can also be used for non-DMA, single-
word data transfers, as described in the Host Interface chapter of this
manual.

Caution: The ADSP-2106x core should not attempt to read or write an
EPBx buffer when a DMA operation using that buffer is in progress;
this will corrupt the DMA data.

Each external port buffer can be flushed (i.e. cleared) by writing a 1 to the
FLSH bit in the corresponding DMACX control register. This should only be
done when DMA is disabled for the channel. The FLSH bit is not latched
internally and will always be read as a 0. Status can change in the following
cycle. An external port buffer should not be enabled and flushed in the
same cycle.

6.4.1.1 External Port DMA Data Packing

Each external port buffer contains data packing logic to allow 16-bit or
32-bit external bus words to be packed into 32-bit or 48-bit internal
words. The packing logic is also fully reversible, depending on the
setting of the TRAN bit in the DMACX control register, so that 32-bit or
48-bit internal data can be unpacked into 16-bit or 32-bit external word

widths. The packing mode is selected by the PMODE bits in the
DMACX control register for each external port buffer.

PMODE Packing Mode

00 No packing/unpacking

01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

The external port buffer can pack data most significant word (MSW)
first or least significant word (LSW) first. Setting the MSWF bitto 1 in
the DMACXx control register selects MSW-first. When MSWF is set,
data is also unpacked MSW-first. The MSWF bit has no effect when
PMODE=11 or PMODE=00.

The packing sequence for downloading ADSP-2106x instructions from
a 32-bit bus (PMODE=11) takes 3 cycles for every 2 words, as shown
below. (Note that for host processor transfers to or from the EPBx
buffers, the HPM bits of the SYSCON register must be set to
correspond to the external bus width specified by PMODE.) 32-bit data
is transferred on data bus lines 47-16. If an odd humber of instruction
words are transferred, the packing buffer must be flushed by a dummy
access to remove the unused word.

32-Bit to 48-Bit Word Packing (External Bus « ADSP-2106x):

Data Bus Pins 47-32 Data Bus Pins 31-16
Word1 bits 47-32 Word1 bits 31-16
Word2 bits 15-0 Word1 bits 15-0
Word2 bits 47-32 Word2 bits 31-16

1st DMA transfer
2nd DMA transfer
3rd DMA transfer

The MSWF bit of the DMACX control register is ignored for 32-to-48-
bit packing.

The packing sequence for downloading ADSP-2106x instructions from
a 16-bit bus is shown below. The MSWF bit determines whether the
most significant 16-bit word or least significant 16-bit word is packed
first.

16-Bit to 48-Bit Word Packing w/MSWF=1 (External Bus - ADSP-
2106x):

Data Bus Pins 31-16
Word1 bits 47-32

1st DMA transfer

2nd DMA transfer
3rd DMA transfer

Word1 bits 31-16
Word1 bits 15-0

40-bit extended precision data may be transferred using the 48-bit
packing mode. Refer to the Memory chapter of this manual for a
description of memory allocation for different word widths.

6.4.1.2 Packing Status

Each external port DMA control register also contains a two-bit PS
field which contains the number of short words currently packed in
the EPBx buffer. During unpacking, the PS status behaves the same as
for packing. All of the packing functions are available for any type of
DMA transfer.

6.4.2 Internal & External Address Generation

DMA transfers between ADSP-2106x internal memory and external
memory require the DMA controller to generate addresses for both.
The external port DMA channels contain El (External Index) and EM
(External Modifier) registers to perform external address generation.
The EI register provides the external port address for the current DMA
cycle, and is updated with the modifier value in EM for the next
external memory access.

In order to support the wide range of data packing operations
provided for external DMA transfers, the El and EM registers are able
to generate addresses at a different rate than the internal address
registers (Il and IM). For this reason the internal and external address
generators are decoupled from each other, and the EC (External Count)
register is used as the external DMA word counter.

If, for example, a 16-bit DMA device is reading data from ADSP-2106x
internal memory, then two external 16-bit transfers will occur for each
32-bit internal memory word and the EC (external) word count should
be twice the value of the C (internal) word count.

6.4.3 External Port DMA Modes

The MASTER, HSHAKE, and EXTERN bits of each DMACXx control
register are used to select the DMA mode of operation. Each external
port DMA channel can be set up to operate in one of five DMA modes.
The master mode initiates transfers while the other modes act as
“slaves” where an external device must initiate each transfer.

The MASTER, HSHAKE, and EXTERN bits configure the DMA mode

in the following manner:

M H
0 0
0 0
0 1
0 1
1 0
1 0
11
11

1

DMA Mode of Operation?

Slave Mode. The DMA request is generated whenever the receive
buffer is not empty or the transmit buffer is not full 2

Reserved

Handshake Mode. (For the ADSP-21060 and ADSP-21062,
applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.) The
DMA request is generated when the DMARKX line is asserted. The
transfer occurs when DMAGKX is asserted.1

External Handshake Mode. (For the ADSP-21060 and ADSP-
21062, applies to EPB1, EPB2 buffers, channels 7, 8 only. For the
ADSP-21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.)
ldentical to Handshake Mode, but with data transferred between
external memory and an external device.

Master Mode. The DMA controller will attempt a transfer
whenever the receive buffer is not empty or the transmit buffer is
not full and the DMA counter is non-zero.l DMAR1 should be
kept high (inactive) if channel 7 is in master mode, and DMAR2
should be kept high if channel 8 is in master mode on the ADSP-
21060 or ADSP-21062. DMARZ2 should be kept high if channel 6 is
in master mode on the ADSP-21061.

Reserved

Paced Master Mode. (For the ADSP-21060 and ADSP-21062,
applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPBO, EPB1 buffers, channels 6, 7 only.) In this
mode the transfers are paced by the DMARX sighal—the DMA
request is generated when DMARX is asserted. DMARX requests
operate in the same way as in handshake mode. The bus transfer
occurs when RD or WR is asserted. The address is driven as in
normal master mode. No external gates are required to OR the
RD-DMAGx and WR-DMAG#x pairs, thus allowing the buffer
access to be zero-waitstate with no idle states. Waitstates and
acknowledge (ACK) apply to Paced Master Mode transfers; see
Section 5.4.4, “Wait States & Acknowledge” in Chapter 5,
Memory.

Reserved

1. When an external port DMA channel is configured for output (i.e.,
TRAN=1), the EPBx buffer will start to fill as soon as that DMA channel is
enabled. The EPBx buffer will start to fill up even if no DMAR assertions or
slave mode DMA buffer reads have been made yet.

2. If data is to be read from the ADSP-2106x (i.e. TRAN=1), the EPBx buffer
will be filled as soon as the DEN enable bit is set to 1.

6.4.3.1 Master Mode

When the DMACX bits are set such that MASTER=1,
HANDSHAKE=0, and EXTERN=0, then the corresponding DMA
channel operates in master mode. This means that the ADSP-2106x’s
DMA controller will generate internal DMA requests for that channel
until the DMA sequence is completed. Master mode can be specified
independently for each external port DMA channel.

Examples of DMA master mode operations include transfers between
internal memory and external memory and transfers from internal
memory to external devices. In both cases, the data is set up in memory
so that the ADSP-2106x can run the complete sequence without
interaction with other devices.

Note: The serial port and link port DMA channels do not have the
MASTER control bit and do not operate in master mode.

6.4.3.2 Paced Master Mode

In paced master mode, the DMARX requests operate in the same way
as in handshake mode but DMAGx is not active. The ADSP-2106x
responds to the requests only with the RD or WR strobe; this method
allows the same buffer to be shared for both DMA and core processor
170 without external gating. Paced Master Mode accesses can be
extended by the ACK pin, by waitstates programmed in the WAIT
register, and by holding the DMARX pin low.

6.4.3.3 Slave Mode

When the DMACX bits MASTER, HANDSHAKE, and EXTERN are
cleared, then the corresponding DMA channel is configured as a slave.
This means that the particular DMA channel cannot independently
initiate external memory transfers no matter what the programmed
direction of data transfer. To initiate a DMA transfer to or from an
ADSP-2106x configured in slave mode, an external device must read or
write to the appropriate EPBx buffer.

If the DMA channel is in slave mode and the direction of data transfer
is internal to external, the channel will automatically perform enough
transfers from internal memory to keep the EPBx buffer full.
(Remember that each EPBx buffer is a six-location FIFO.) On the other
hand, if the direction of data transfer is external to internal, then the
DMA channel will not initiate any internal DMA transfers until the

EPBx buffer has valid data.
The EI, EM, and EC registers are not used in slave mode DMA.

External to Internal

To explore the operation of slave mode DMA, consider the case where
an external device wishes to transfer a block of data into the ADSP-
2106x’s internal memory. First the external device would write to the
DMA channel parameter registers, I, IM, and C, and to the DMACXx
control register to initialize the channel. Then the device would begin
writing data to the EPBx buffer.

When the EPBx buffer contains a valid data word (requiring one or
more external memory cycles, depending on the packing mode
selected), it signals the ADSP-2106x’s DMA controller to request an
internal DMA cycle. When granted, the internal DMA transfer occurs
and the EPBx buffer FIFO is emptied. If the internal DMA transfer was
held off for some reason, the external device could still write to the
EPBx buffer again because of its six-deep FIFO. When the EPBx FIFO
eventually becomes full, the external device will be held off with the
ACK signal (for synchronous accesses) or with the REDY signal (for
asynchronous, host-driven accesses).

This state continues until the internal DMA transfer is completed and
space freed up in the EPBx buffer. For the buffer to operate in this
fashion, the BHD (Buffer Hang Disable) bit must be cleared (to 0) in the
SYSCON register.

Internal to External

Now consider the case where the transfer direction is from internal
memory to the external port. Immediately after the DMA channel is
enabled, it will request internal DMA transfers to fill up the EPBx FIFO
buffer. Once the buffer is filled, the request will be deasserted. When
the external device reads the buffer (one or more times depending on
the packing mode), it becomes “partially empty” and the internal
DMA request is asserted again. If the internal DMA transfers cannot
fill the EPBx FIFO buffer at the same rate as the external device
empties it (e.g. due to internal bus conflicts), the external device will be
held off with the ACK signal (for synchronous accesses) or with the
REDY signal (for asynchronous, host-driven accesses) until valid data
can be transferred to the EPBx buffer. Again, for the buffer to operate
in this fashion, the BHD (Buffer Hang Disable) bit must be cleared (to

6-42

0) in the SYSCON register.

Note that ACK (or REDY) is only deasserted during a write when the
EPBx FIFO buffer is full. ACK (or REDY) remains asserted at the end of
a completed block transfer if the EPBx buffer is not full. When reading,
the buffer will be empty at the end of the block transfer and ACK (or
REDY) will be deasserted if an additional read is attempted.

System-Level Considerations

Slave mode DMA is useful in systems with a host processor because it
allows the host to access any ADSP-2106x internal memory location
while limiting the address space the host must recognize—only the
address space of the ADSP-2106x’s IOP registers. Slave mode DMA is
also useful for ADSP-2106x to ADSP-2106x DMA transfers.

Slave mode DMA has one drawback when interfacing to a slow host—
the fact that the external bus is held up during the transfer (whether
initiated by the ADSP-2106x or the host) and no other transactions can
proceed. To overcome this, the handshake DMA mode may be used. In
handshake mode, the host does not have to master the bus in order to
make a DMA request, nor does the ADSP-2106x (in master mode) have
to wait on the bus for the transfer to complete. Instead, the host asserts
the DMARX pin. When the ADSP-2106x is ready to make the transfer,
it can complete it in one bus cycle. The following section provides
further details.

6.4.3.4 Handshake Mode

On the ADSP-21060 or ADSP-21062, DMA channels 7 and 8, for
external port buffers EPB1 and EPB2, each have a set of external
handshake controls. DMARI and DMAGL! are the request and grant
signals for EPB1 and channel 7, and DMAR2 and DMAG?2 are the
request and grant signals for EPB2 and channel 8.

On the ADSP-21061, DMA channels 7 and 6, for external port buffers
EPB1 and EPBO, each have a set of external handshake controls.
DMARI1 and DMAGTI are the request and grant signals for EPB1 and
channel 7, and DMAR2 and DMAG?2 are the request and grant signals
for EPBO and channel 6.

These signals serve as a hardware handshake to facilitate DMA
transfers between the ADSP-2106x and an external peripheral device
that does not have bus mastership capability.

O If external port DMA channel is enabled but the handshake
signals will not be used, the corresponding DMARX signal
should be kept high.

Handshake mode DMA is enabled when the HSHAKE bit is set to 1 in
the corresponding DMACX control register (DMAC7 or DMACS8 on an
ADSP-21060 or ADSP-21062; DMACTY or DMACS6 on an ADSP-21061).
If the MASTER bit is 0, the ADSP-2106x handshakes by returning
DMAGKx. If the MASTER mode bit is 1, the DMA operates in paced
master mode.

DMA handshaking operates asynchronously at up to the full clock
speed of the ADSP-2106x. The data source/destination can be selected
to be either ADSP-2106x internal memory or external memory. It is
important to load the EC external count register whenever external
DMA transfers are being made.

The MS3_g memory select lines are deasserted during DMA transfers
between an external device and an ADSP-2106x because there is no
external memory space being accessed. The MS3_g lines are, however,
asserted by the ADSP-2106x in external handshake mode because it is
providing the address and strobes for transfers between an external
DMA device and external memory.

Refer to Figure 6.8, DMA Handshake Timing with Asynchronous Requests.
The DMA handshake uses the rising and falling edges of DMARX. The
ADSP-2106x interprets a falling edge to mean “begin a DMA access”
and interprets the rising edge to mean “complete the DMA access.”

To request an access of the EPBx buffer, the external device pulls
DMARX low. The falling edge is detected by the ADSP-2106x and
synchronized to the processor’s system clock. To be recognized in a
particular cycle, the DMARX low transition must meet the setup time
specified in the data sheet; otherwise it may take effect in the following
cycle. When the ADSP-2106x recognizes the request, it begins to
arbitrate for the external bus, if it is not already the bus master or if the
buffer is not blocked (see discussion of blocked condition below). When
the ADSP-2106x becomes the bus master, it drives DMAGX low. The
ADSP-2106x will keep DMAGX asserted until it sees DMARX
deasserted. This allows the external device to hold the ADSP-2106x
until it is ready to proceed. Provided there are no pipelined requests,
DMAGXx will deassert in the cycle after DMARKX is deasserted. If the
external device does not wish to extend the grant cycle, it can deassert
DMARXx immediately after asserting it, provided it meets the minimum
pulse width timing requirements specified in the data sheet. In this
case, DMAGXx will be a short pulse and the external bus will only be
used for one cycle.

The DMA controller has a three-cycle pipeline, similar to the
fetch—decode-execute pipeline of the core processor’s program
sequencer. The DMA request and arbitration occur in the fetch cycle.
The DMA address generation and bus arbitration occur in the decode
cycle and the data transfer occurs in the execute cycle. Use of the rising
and falling edges of DMARX allows better utilization of the pipeline
and, if desired, allows data transfers at up to the full clock rate of the
ADSP-2106x.

The external device does not have to wait for the DMAGx grant signal
before making another request. The requests are stored in a working
counter maintained internally by the ADSP-2106x. The counter holds a
maximum of seven requests, so the external device can make up to
seven requests before the first one has been serviced. Note that more
than seven requests without a grant will cause unpredictable results.
DMAGXx will be asserted in response to DMARX only for the number
of transfers specified in the counter. If more requests than this are
made, DMAGXx will remain deasserted. The flush bit (FLSH) in the
DMACXx control register should be used to clear any extra requests.

The external device must make sure that when the DMAGx grant
signal arrives, the data for each write request is immediately available
(or that it can accept each word for a read). This can be accomplished
by placing the data in an external FIFO. When DMAIing data at the full
clock speed of the ADSP-2106x, a two- or three-deep data pipeline may
be needed to handle the latency between request and grant. Thus, the
external device might issue three requests rapidly and condition the
fourth request on whether a grant has been given in the meantime.
Given this caveat, handshake DMA can occur at up to the full clock
rate of the ADSP-2106x for both reads and writes. The stored requests
are cleared when a 1 is written to the flush bit (FLSH) in the DMACx
control register.

Since the external device can control the completion of a request, it
does not need to have data available before making a request. If,
however, the data is not available within two cycles and DMARX is
kept low for this time, the ADSP-2106x and the external bus may be
held inactive. The external bus is occupied for only one cycle for each
DMA transfer if the request is deasserted before the grant has been
asserted. Otherwise the external bus is held as long as DMARX is
asserted.

CLK

1st DMA ‘
Request ‘
\

DMAG has a wait state
DMAR rising because DMAR remained
edge allows 1st asserted in the cycle prior
DMAG to complete to the DMAG assertion

‘ 2nd DMA

\ \ \
request
/ \ \ \ \ \
\ \ \
| |

DATA47-0

|
/T W (R W
|
X

‘ ‘ X data valid ‘X x data valid ‘ ‘ X aﬁ data valid
‘ ‘ Bus ‘ ‘ ‘ \ ‘ ‘ ‘
Transition
‘ Cycle ‘
| (If not bus | DMA device must place data in buffer prior DMA device need not provide
master) to DMAG falling edge if no wait state data until this cycle if wait state

Figure 6.8 DMA Handshake Timing With Asynchronous Requests

Notes:

— DMA requests (DMARX) can be asynchronous. The DMARX falling edge initiates a
DMA request on the ADSP-2106x. When writing, data must be provided by the
device before DMAGX has been deasserted. If data is not available, the device may
hold DMARX asserted (low) until the data is available. When this happens, the
ADSP-2106x will attempt to service the request but will be delayed until the DMARXx
rising edge.

— There is a minimum delay of three cycles before DMAGX is asserted and the
transfer from the external DMA device to the ADSP-2106x (or to external memory)
occurs. However, the ADSP-2106x may not be able to issue a DMAGX grant for
several cycles after a DMA request if a higher priority DMA operation is requesting
service or if the bus is currently being used by another ADSP-2106x. Thus the
external DMA device must not assume that the grant will arrive within two cycles
unless higher priority DMA operations are disabled and the external bus is available
for the transfer.

— DMA requests are pipelined in the ADSP-2106x. The ADSP-2106x keeps track of up
to seven requests if it cannot service them immediately. It then services them on a
prioritized basis. The request tracking allows DMA transfers at up to the full clock
rate of the ADSP-2106x. The external DMA device is responsible for keeping track of
requests, monitoring grants, and pipelining the data when operating at full speed.

The ADSP-2106x will not begin external bus arbitration in response to
DMARKX if the EPBx buffer is full during a write or empty during a
read. This is a blocked condition. Bus arbitration will begin when the
EPBXx buffer is serviced by the DMA controller and the full or empty
state changes (i.e. becomes unblocked).

If an external port DMA channel is disabled, its corresponding
DMARx and DMAGXx pins are disabled and DMARX assertions are
ignored for a maximum of 2 cycles after the instruction that enables
DMA (setting DEN=1) in handshake mode. See Figure 6.9. DMAGX
will be held high by the ADSP-2106x.

The DMARX input must be kept high (not low or changing) during the
instruction that enables DMA in handshake mode (see Figure 6.9.)

Several ADSP-2106xs in a multiprocessing cluster may share a DMAGXx
signal. DMAGXx is only driven by the bus master and is tristated
otherwise, or when HBG is asserted. This eliminates the need for
external gating if more than one ADSP-2106x or the host needs to drive
the DMA buffer. A pullup resistor may be needed on this line if the
host is not connected to the pin and does not drive it when it acquires
the bus. DMAGX has the same timing and transitions as the RD and
WR strobes and responds to the SBTS and HBR signals in the same
way as RD and WR.

6.4.3.5 External Handshake Mode

External devices can also use the DMARx and DMAGx handshake
signals to control DMA transfers between an external device and
external memory (instead of ADSP-2106x internal memory). In this
mode, the ADSP-2106x operates as an independent DMA controller.
This mode is configured by setting the EXTERN bit in the DMACY7 or
DMACS control register; the corresponding HSHAKE bit must equal 1
and MASTER bit equal 0. External handshake mode transfers are
similar to standard DMA transfers, but with some differences.

External handshake mode transfers require the ADSP-2106x’s DMA
controller to generate external memory access cycles. DMARx and
DMAGKX retain the same functionality in this mode but instead of
simply generating DMAGYX, the ADSP-2106x also outputs addresses,
MS3_ o memory selects, and RD/WR strobes, and responds to ACK.
(DMAGx will be held low until the ACK line is released or any
waitstates complete.) The external memory access behaves exactly as if

DMARX input must be kept high during this instruction

4/—>L/—_/—_Y

DMARX T I I I
(DMARX ignored) (DMARX ignored) \—
| | | |
i | Enable DMA by setting | \ \
Insiiiction DEN=1 and HSHAKE=1
executing | inbmAC7orbmacs | | |
| | | |

control register(s)

Figure 6.9 DMARX Delay After Enabling Handshake DMA

the ADSP-2106x core had requested it. The ADSP-2106x’s EPBx buffers
do not latch or drive any data, however, and no internal memory DMA
transfers are performed. The El, EM, and EC parameter registers (of
the DMA channel) must be preloaded to generate the external memory
addresses and word count.

Since internal DMA transfers do not occur in this mode, the PCI bit of
the CP register cannot be used to disable the DMA interrupt—the
IMASK register must be used. The DMA interrupt is always enabled
and generated, unless it is masked out in IMASK. Also, because data
does not pass through the ADSP-2106x in external handshake mode it
cannot be packed or unpacked into different word widths.

6.44 System Configurations For ADSP-2106x Interprocessor DMA
Figure 6.10 shows the different ways you can set up external port
DMA transfers between two ADSP-2106xs. The advantages and
disadvantages of each configuration should be taken into account
when designing a multiprocessor system.

6.45 DMA Hardware Interfacing

Figure 6.11 shows a typical DMA interface between two
multiprocessing ADSP-2106xs and an external device. The
ADSP-2106xs are configured for handshake mode operation. The
external latches acts as a mailbox between the external device and the
ADSP-2106xs. The latch allows a DMA transfer to take only one
ADSP-2106x bus cycle, even with a slow external device. The latch is
directly controlled by the DMARx and the DMAGX signals.

If the external device is writing data to the latch, the DMAGx signal is
used as the output enable signal for the latch. If the external device is
reading from the latch, DMAGXx is used to clock the data on its rising
edge. Figure 6.12 shows the timing relationships between DMARYX,
DMAGYx, and the data transfer. Refer to the ADSP-2106x Data Sheet for
exact specifications.

6.5 DMA THROUGHPUT

This section discusses overall DMA throughput when several DMA
channels are trying to access internal or external memory at the same
time.

Internal Memory DMA

The DMA channels arbitrate for access to the ADSP-2106x’s internal
memory. The DMA controller determines, on a cycle-by-cycle basis,
which channel is allowed access to the internal 1/0 bus and
consequently which channel will read or write to internal memory.
(The priority of the DMA channels is shown in Table 6.13 in the “DMA
Channel Prioritization” section of this chapter.)

Each DMA transfer takes one clock cycle even when different DMA
channels are being allowed access on sequential cycles; i.e. there is no
overall throughput loss in switching between channels. Thus, four link
port DMA channels, each transferring one byte per cycle, would have
the same 1/0 transfer rate as one external port DMA channel
transferring data to internal memory on every cycle. Any combination
of link ports, serial ports, and external port transfers has the same
maximum transfer rate.

External Memory DMA

When the DMA transfer is between ADSP-2106x internal memory and
external memory, the external memory may have one or more wait
states. External memory wait states, however, do not reduce the
overall internal DMA transfer rate if other channels have data
available to transfer. In other words, the ADSP-2106x’s internal 1/0
data bus will not be held up by an incomplete external transfer.

6V -9

ADSP-2106x
Configuration
(Data Source)

ADSP-2106x
Configuration
(Data Destination)

Throughput™
(cycles/transfer)

Advantages,
Disadvantages

Bus Master Bus Slave 1 Advantage: Destination automatically generates
DMA Master Mode (MASTER=1) DMA Slave Mode (MASTER=0) interrupt upon completion.
TRAN=1 TRAN=0
Elx = address of EPBx buffer Disadvantage: DMA must be programmed on
in destination both source and destination.
EMx=0
Bus Master Bus Slave 1 Advantage: No programming required for destination.
DMA Master Mode (MASTER=1) Direct Write
TRAN=1 Disadvantage: No interrupt generated upon completion—
Elx = MMS address in destination * source must issue vector interrupt to
EMx=1 destination.
Bus Slave Bus Master 2 Advantage: Source automatically generates interrupt
DMA Slave Mode (MASTER=0) DMA Master Mode (MASTER=1) upon completion.
TRAN=1 TRAN=0
Elx = address of EPBx buffer Disadvantages: Slower throughput. DMA must be
in source programmed on both source and
EMx=0 destination.
Bus Slave Bus Master 4 Advantage: No programming required for source.
Direct Read DMA Master Mode (MASTER=1)
TRAN=0 Disadvantages: Slowest throughput. No interrupt
Elx = MMS address in source * generated upon completion—destination
EMx=1 must issue vector interrupt to source.

Figure 6.10 System Configurations For ADSP-2106x-To-ADSP-2106x DMA

* MMS=Multiprocessor Memory Space
** Assumes that no MMS wait state is configured in WAIT register. If the
single MMS wait state is selected, add 1 to each throughput value.

EA VRN
ADSP-2106x Latch
16,32, or 48
4—5f2 ADDRyy —— / o Q DMA Data Bus
L
>(BR, . BRy ¢ DATA470<:ﬂ o
3
[o20}-7»|ip
20 DMARI & — l| DMA Read Request
DMAGI — - P> DMA Read Grant
DMAR2 [—
»| R DMAG2 —
HBG -
RD
WR °
ACK [+ 5 e
MS30[] 8z
gl &
@ &
8| 38
ADSP-2106x
Latch
PE—) ADDRq o |¢* 16,32, 0r 48 |
5 |t S0 / Q D K=—— DMA DataBus
7 |BRyg DATA47.9 >
3 __
001 IDy.o DMARL - OE
DMAGL —
DMAR? [— DMA Write Request
DMAG2 — B DMA Write Grant
| HBR
HBG RD — —»l;oe
WR — > WE
ACK — lACK
WS, L »lcs EXTERNAL
MEMORY
< ——>loor
> pata
~ e
Figure 6.11 Example DMA Hardware Interface

Notes:

— Because DMARx and DMAGXx are tied together, only one of the ADSP-2106xs may
have DMA enabled at a time.

- DMAGKX is only driven by the ADSP-2106x bus master.

- The DMA Write Grant signal can be the combination of RD and MSx instead of DMAG2
if paced master mode is used.

- The DMA Read Grant signal can be the combination of WR and MSx instead of DMAG1
if paced master mode is used.

— DMA transfers may be to either ADSP-2106x or to external memory
(in external handshake mode).

= o

DMAGx A‘(‘%

t t
DATA,;., X valid X

Figure 6.12 DMARX/DMAGX Timing

Notes:

— DMARKX setup times relate to the use of the signal in that cycle by the ADSP-2106x.
DMA requests may be asserted asynchronously to CLKIN.

— DMAGxX drives DATA,7_q if ADSP-2106x is receiving. DMAGKX latches DATA,7.g
if ADSP-2106x is transmitting.

When data is to be transferred from internal to external memory, the
internal memory data is first placed in the external port’s EPBx buffer
by the DMA controller; the external memory access is then begun
independently. (Likewise for external-to-internal DMA, the internal
DMA request will not be made until the external memory data is in the
EPBXx buffer.) In both cases, the external DMA address generator—the
El and EM parameter registers—maintains the external address until
the data transfer is completed. The internal and external address
generators of a DMA channel are decoupled and operate
independently.

When EXTERN mode DMA transfers occur between an external device
and external memory, no internal resources of the ADSP-2106x are
utilized and internal DMA throughput is not affected.

6.6 TWO-DIMENSIONAL DMA

This section describes the changes in functionality that occur when the
ADSP-21060 or ADSP-21062 is placed in two-dimensional DMA mode.
(Note that two-dimensional DMA mode does not apply to the ADSP-
21061.) 2-D DMA mode is enabled by the L2ZDDMA bit in the LCOM
control register and the D2DMA bit in the SRCTL0O and SRCTL1
registers. If a particular mode of operation is not explicitly mentioned
below, then it is unchanged in 2-D mode.

6.6.1 2-D DMA Channel Organization

In 2-D mode, two-dimensional DMA array addressing can be
performed for the link buffers and serial ports. DMA channels 0-5
support 2-D DMA. Link buffers 4 and 5 (DMA channels 6 and 7) do
not support 2-D DMA.. Table 6.16 shows the 2-D registers and their
mapping into the DMA channel registers. For the purpose of
discussion here, the 2-D array is addressed in row-major order.

DMA

2-D Channel
Function Register
Index (address) Ix

X Increment IMXx

X Count Cx
Next Pointer CPx

Y Increment DBx

Y Count GPx

X Initial Count DAX (not part of chain; loaded by Cx)
Table 6.16 2-D Register Mapping

In Table 6.16 the DMA channel number, x, is distinguished from the
standard numbering of serial ports and link ports as follows:

Uses DMA Channel 5
Receive Link Buffer Uses DMA Channel 4
Transmit SPORT Uses DMA Channel 3or 1
Receive SPORT — Uses DMA Channel 2 or 0

Transmit Link Buffer

The Index register (1) is loaded with the first address in the data array and

maintains the current address by subtracting the X increment after each
transfer. The X Increment register (IM) contains the offset added to the
current address to point to the next element in the X dimension (next
column). The X Initial Count register (DA) contains the number of data

elements in the X dimension. This is used to reload the X count register
when it decrements to zero. The X Count register (C) contains the number
of data elements left in the current row. This initially has the same value
as X initial count. It is decremented after each transfer.

The Y Increment register (DB) contains the offset added to the current
address to point to the next element in the Y dimension (first location
in next row). When the X count register reaches zero, this register is
added to the current address on the following cycle and the Y count
register is decremented. The value of DB should be the row distance
minus the column distance since both the X and Y increments are done
on a row change. Note that two DMA cycles are required for a row
change.

The Y Count register (GP) initially contains the number of data
elements in the Y dimension (number of rows). It is decremented each
time the X count register reaches zero. When Y Count reaches zero, the
DMA block transfer is done. The Next Pointer register (CP) points to
the start of a buffer in internal memory containing the next set of DMA
parameters.

The DMA controller and the link ports communicate via the same
internal DMA request/grant handshake as is used by the other 1/0
ports. The receive link buffer uses channel 4 while the transmit link
buffer uses channel 5. For more information, refer to the Link Ports
chapter of this manual. The DMA controller and the serial port also
communicate via the same internal DMA request/grant handshake as
is used by the other 1/0 ports. For more information, refer to the Serial
Ports chapter.

6.6.2 2-D DMA Operation
A two-dimensional DMA transfer occurs in the following manner:

First cycle:

= The current address stored in the Il register is output and a DMA
memory cycle is started.

= In the same cycle, the X Increment value stored in the IM register is
added to the current address in the Il register.

= The X Count in the C register is decremented.

= If the decremented X Count is zero, do the second cycle.

Second cycle:

= The X Count is restored into the C register from the DA register.

= The Y Increment value in the DB register is added to the current
address in 1.

= The Y Count in GP is decremented.

= Ifthe Y Count is zero, the DMA sequence is ended and the channel
becomes inactive until the Next Pointer is written again.

A key point about the 2-D DMA sequence (or any DMA sequence) is
that the first DMA transfer begins before the address is modified. This
means that DMA cannot be disabled by setting either the X Count or
the Y Count to zero. To do one-dimensional DMA transfers in 2-D
mode, the Y Count must be initialized to one.

When the X Count becomes zero but the Y Count is non-zero, the

X Count must be reloaded with the original value. The C register
functions as the working count register. The DA register holds the
original count value. C is loaded from DA to restore the count. The DA
register is written automatically whenever the C register is written.

Multiprocessing 01 7

7.1 OVERVIEW

The ADSP-2106x includes functionality and features that allow the design
of multiprocessing DSP systems. These features include distributed on-chip
arbitration for bus mastership and multiprocessor accesses of the internal
memory and IOP registers of other ADSP-2106xs. The ADSP-2106x also has
the ability to lock the bus in order to perform indivisible read-modify-write
sequences for semaphores.

In a multiprocessor system with several ADSP-2106xs sharing the external
bus, any of the processors can become the bus master. The bus master has
control of the bus, which consists of the DATA47.9, ADDR3;_g, and
associated control lines. Figure 7.1 illustrates a basic multiprocessing
system.

Table 7.1 shows which pins are connected between the SHARC processors.

DATA47.0 ADDR3 g MS3.0
ACK
PAGE SBTS swW
ADRCLK BMS BRg.1
RESET HBR* HBGt
REDY CPA} CLKIN

t If Host Interface is used.
1 If Core Priority Access function is used.

Table 7.1 Pin Connections For Cluster Multiprocessor System

The internal memory and IOP registers of the system’s ADSP-2106xs is
called multiprocessor memory space. Multiprocessor memory space is
mapped into the unified address space of each ADSP-2106x.

Once an ADSP-2106x becomes the bus master, it can directly read and write
the internal memory of any other (slave) ADSP-2106x. It can also read and
write to any of the slave’s IOP registers, including their external port FIFO
data buffers. The master ADSP-2106x may write to a slave’s IOP registers to
set up DMA transfers, for example, or to send a vector interrupt.

ADSP-2106x #6
ADSP-2106x #5
z ADSP-2106x #4 Al 3
<] ul| &
= ADSP-2106x #3 ; Z
£ g 8| o
g =z % &
< = w <
3 gl 3| g %
@ ADSP-2106x T = g
#2
i »| CLKIN ADDR31.g(——— ——| [
» RESET DATA47_0<: — — ﬂ
MEMORY
CONTROL
° »| pBA N— —
-«+—» CPA
5
7| BRy BRyg
— R
3
(0104 Ip,
b0 HOST
INTERFACE —— .
8 wl| 8
= Q =4
< = =
o x o
= E O »
< P <
a ADSP-2106x gl| g B =
@ #1 T = < S
1X CLOCK |—@ > CLKIN ADDR 3 o ——— = = — —{apor
D‘ESE o »| RESE DATAg o= =] = =N K—>pATA GLOBAL
- . . MEMORY &
iy . OE pERIPHERALS
WRI< > (OPTIONAL)
ACK [—» — —— ——ACK
ERGAEIEE
MEMORY MS30 >|Cs
/1] PAGE I L
071 ° o gpga CONTROL - —{ ADDR
- - > K—>{pata BOOT
CPA S EPROM
5 ADRCLK — (OPTIONAL)
R BVS — — I —»|cs
— R
3 TS |« (N I AN AN I O
o P20 N — HOST
- HOST HEBR
INTERFACE HEG |« [iy SN S i S 'ﬁfgﬁﬁfE
REDY S [A) Y B)
> VN K =) aooR
K—>i DATA

Figure 7.1 ADSP-2106x Multiprocessor System

-2

The following terms are used throughout this chapter, and are defined

below for reference:

external bus

multiprocessor system

multiprocessor memory space

I0OP register

bus slave or slave mode

direct reads & writes

single-word data transfers

bus transition cycle (BTC)

external port FIFO buffers

DMACX control registers

DATA47.0. ADDR31.q RD, WR, mg_o, BMS,
ADRCLK, PAGE, SW, ACK, and SBTS signals

a system with multiple ADSP-2106xs, with or
without a host processor; the ADSP-2106xs are
connected by the external bus and/or link ports

portion of the ADSP-2106x’s memory map that
includes the internal memory and IOP registers
of each ADSP-2106x in a multiprocessing system;
this address space is mapped into the unified
address space of the ADSP-2106x

one of the control, status, or data buffer registers
of the ADSP-2106x’s on-chip 1/0O processor

an ADSP-2106x can be a bus slave to another
ADSP-2106x or to a host processor

a direct access of the ADSP-2106x’s internal
memory or IOP registers by another ADSP-2106x
or by a host processor

reads and writes to the EPBx external port
buffers, performed externally by the ADSP-2106x
bus master or internally by the ADSP-2106x
slave’s core; these occur when DMA is disabled
in the DMACX control register

a cycle in which control of the external bus is
passed from one ADSP-2106x to another

EPBO, EPB1, EPB2, and EPB3, the IOP registers
used for external port DMA transfers and
single-word data transfers (from other
ADSP-2106xs or from a host processor); the EPBx
buffers are 6-deep FIFOs

the DMA control registers for the EPBx external
port buffers: DMAC6, DMAC7, DMACS, and
DMACY9, corresponding respectively to EPBO,
EPB1, EPB2, and EPB3 (see the DMA chapter or
Control/Status Registers appendix of this manual
for a complete description of the DMACXx control
registers)

1.2 MULTIPROCESSING SYSTEM ARCHITECTURES

Multiprocessor systems typically use one of two schemes to
communicate between processor nodes. One scheme uses dedicated
point-to-point communication channels. In the other, nodes
communicate through a single shared global memory via a parallel
bus.

The ADSP-2106x SHARC supports the implementation of point-to-
point communication through its six link ports. It also supports an
enhanced version of shared parallel bus communication called cluster
multiprocessing. Cluster multiprocessing features of the ADSP-2106x
are described in this chapter, while point-to-point connections are
described in the Link Ports chapter of this manual.

Multiprocessing systems must overcome two problems: interprocessor
communication overhead and data bandwidth bottlenecks. The ADSP-
2106x SHARC architecture addresses these concerns in several ways,
as illustrated in the following discussion of three basic multiprocessing
topologies.

7.21 Data Flow Multiprocessing

Data flow multiprocessing is best suited for applications requiring
high computational bandwidth but only limited flexibility.
Programmers partition their algorithm sequentially across multiple
processors and pass data linearly down an “assembly line” of
processors, as shown in Figure 7.2.

ADSP-2106x ADSP-2106x ADSP-2106x
Data Link Link Link Link Link Link
— | Port Port P Port Port P Port Port

Figure 7.2 Data Flow Multiprocessing

The ADSP-2106x SHARC is ideally suited for data flow
multiprocessing applications because it eliminates the need for
interprocessor data FIFOs and external memory. The internal memory
of the SHARC is usually large enough to contain both code and data
for most applications using this topology. All a data flow system
requires are a number of SHARC processors and point-to-point signals
connecting them. This yields a substantial savings in complexity, board
space, and system cost.

7.2.2 Cluster Multiprocessing

Cluster multiprocessing is best suited for applications where a fair
amount of flexibility is required. This is especially true when a system
must be able to support a variety of different tasks, some of which may
be running concurrently. The cluster multiprocessing configuration is
shown in Figure 7.3. SHARC processors also have an on-chip host
interface that allows a cluster to be easily interfaced to a host processor
or even to another cluster.

ADSP-2106x ADSP-2106x ADSP-2106x
Link Link Link Link
Port e » Port Port [> Port
External Port External Port External Port
e -
Bulk Memory

Figure 7.3 Cluster Multiprocessing

Cluster multiprocessing systems include multiple SHARC processors
connected by a parallel bus that allows interprocessor access of on-chip
memory as well as access to shared global memory. In a typical cluster
of SHARCS, up to six processors and a host can arbitrate for the bus.
The on-chip bus arbitration logic allows these processors to share the
common bus. The SHARC's other on-chip features help eliminate the
need for any extra hardware in the cluster multiprocessor
configuration. External memory, both local and global, can frequently
be eliminated in this type of system.

Both fixed and rotating priority schemes are supported as well as bus
locking, timed release, and core processor access preemption of
background DMA transfers. The on-chip arbitration logic allows
transitions in bus mastership to take up to only one cycle of overhead.
Bus requests are generated implicitly whenever a processor accesses an
external address. Because each processor monitors all bus requests and
applies the same priority logic to the requests, each can independently
determine who will be the next bus master. With complete bus sharing
features built into the processor, designers are spared the time and risk
of developing their own shared-bus logic and timing.

Once a SHARC gains mastership of the bus, it can access not only
external memory but also the internal memory and IOP registers of all
other processors. A processor can directly transfer data to another
processor or set up a DMA channel to transfer the data. Each of the
processors are mapped into a common memory map—to identify the
address space of each processor within the unified memory map of the
system cluster, each processor has a unique ID. The SHARC’s IOP
registers, internal memory, and external memory are all part of the
unified address space. This shared on-chip memory eliminates the
need to use external memory for message passing between processors
and simplifies software communications. Processors can write directly
into each other’s memory, saving an extra transfer step. Local memory
may also no longer be needed due to the SHARC'’s large amount of on-
chip SRAM. For larger applications, however, blocks of data and code
can be stored in shared bulk memory and transparently swapped in
and out of a processor’s internal memory.

Communication between processors is also facilitated by the ability of
a processor to broadcast a write to all processors simultaneously. This
can be used to implement reflective semaphores, where a processor
polls its own internal copy of the semaphore and only uses the external
bus for a broadcast write to all other processors when it wants to
change it. This reduces communications traffic on the external bus.

The cluster configuration allows the SHARCSs to have a very fast node-
to-node data transfer rate. It also allows for a simple, efficient, software
communication model. For example, all of the required setup
operations for a DMA transfer can be accomplished by a single
SHARC on one side of the transfer. The other processor is not
interrupted until the DMA transfer is complete.

The SHARC's internal memory is designed to facilitate the 1/0 needs
of multiprocessor systems. The on-chip dual-ported RAM allows full-
speed interprocessor transfers concurrent with dual accesses by the
processor’s computational core. No cycles are stolen from the core, and
the processor’s full 40 MIPS, 120 MFLOPS performance is maintained.

7.2.2.1 Link Port Data Transfers In A Cluster

A bottleneck exists within the cluster because only two processors can
communicate over the shared bus during each cycle—other processors
are held off until the bus is released. Since the SHARC can also
perform point-to-point link port transfers within a cluster, this
bottleneck is easily eliminated. Data links between processors can be
dynamically set up and initiated over the common bus. All six link
ports can operate simultaneously on each processor.

A disadvantage of the link ports is that individual transfers occur at
only 40 Mbyte/sec (for a 40 MHz system clock), a lower rate than that
of the shared parallel bus. Since the link ports’ 4-bit data path is
smaller than the processor’s native word size, the transfer of each word
requires multiple clock cycles. Link ports may also require more
software overhead and complexity because they must be set up on
both sides of the transfers before they can occur.

7.2.3 SIMD Multiprocessing

For certain classes of applications such as radar imaging, a SIMD array
may be the most efficient topology to coordinate a large number of
processors in a single system. The SIMD array of Figure 7.3 consists of
multiple SHARCs connected in a 2-D or 3-D mesh. The data link ports
provide nearest neighbor communications as well as through-routing
of data. A single master SHARC provides the instruction stream that
the array executes. Data flow in and out the array can be managed
through multiple serial port streams.

i

!

ADSP-2106x ADSP-2106x
Link Link
Port Port
Link Link
Port Port
\ \
Y Y
Link Link
Port Port
ADSP-2106x ADSP-2106x
Link Link
Port Port

1

i

Figure 7.4 Two-Dimensional SIMD Mesh Multiprocessing

7.3 MULTIPROCESSOR BUS ARBITRATION

Multiple ADSP-2106xs can share the external bus with no additional
arbitration circuitry. Arbitration logic is included on-chip to allow the
connection of up to six ADSP-2106xs and a host processor.

Bus arbitration is accomplished with the use of the BRI-BR6, HBR, and
HBG signals. BRI-BR6 arbitrate between multiple ADSP-2106xs, and
HBR-HBG pass control of the bus from the ADSP-2106x bus master to
the host (and back). The priority scheme for bus arbitration is
determined by the setting of the RPBA pin. Table 7.2 defines the
ADSP-2106x pins used in multiprocessing systems.

Signal Type Definition
BRg-1 1/0/S Multiprocessing Bus Requests. Used by

multiprocessing ADSP-2106xs to arbitrate for bus
mastership. An ADSP-2106x only drives its own BRx
line (corresponding to the value of its ID5_g inputs) and
monitors all others. In a multiprocessor system with less
than six ADSP-2106xs, the unused BRx pins should be
tied high; the processor’s own BRx line must not be tied
high or low because it is an output.

IDy.g | Multiprocessing ID. Determines which multiprocessing
bus request (BR1 - BR6) is used by ADSP-2106x. ID=001
corresponds to BR1, ID=010 corresponds to BR2, etc.
ID=000 in single-processor systems. These lines are a
system configuration selection which should be
hardwired or only changed at reset.

RPBA /S Rotating Priority Bus Arbitration Select. When RPBA
is high, rotating priority for multiprocessor bus
arbitration is selected. When RPBA is low, fixed priority
is selected. This signal is a system configuration
selection which must be set to the same value on every
ADSP-2106x. If the value of RPBA is changed during
system operation, it must be changed in the same
CLKIN cycle on every ADSP-2106x.

PA (o/d) 1/0 Core Priority Access. Asserting its CPA pin allows the
core processor of an ADSP-2106x bus slave to interrupt
background DMA transfers and gain access to the
external bus. CPA is an open drain output that is
connected to all ADSP-2106xs in the system. The CPA
pin has an internal 5 Kohm pullup resistor. If core
access priority is not required in a system, the CPA pin
should be left unconnected.

Table 7.2 ADSP-2106x Multiprocessor Signals

I=Input S=Synchronous (o/d)=0Open Drain 7 - 9
O=Output A=Asynchronous (a/d)=Active Drive

(@)

The ID,_g pins provide a unique identity for each ADSP-2106x in a
multiprocessing system. The first ADSP-2106x should be assigned
ID=001, the second should be assigned 1D=010, and so on. One of the
ADSP-2106xs must be assigned ID=001 in order for the bus
synchronization scheme to function properly. This processor also holds
the external bus control lines stable during reset.

When the ID,_g inputs of an ADSP-2106x are equal to 001, 010, 011, 100,
101, or 110, it configures itself for a multiprocessor system and maps its
internal memory and IOP registers into the multiprocessor memory
space. ID=000 configures the ADSP-2106x for a single-processor
system. ID=111 is reserved and should not be used.

An ADSP-2106x in a multiprocessor system can determine which
processor is the current bus master, by reading the CRBM(2:0) bits of
the SYSTAT register. These bits give the value of the ID,_q inputs of the
current bus master.

Conditional instructions can be written that depend upon whether the
ADSP-2106x is the current bus master in a multiprocessor system. The
assembly language mnemonic for this condition code is BM, and its
complement is NBM (not bus master). The BM condition indicates
whether the ADSP-2106x is the current bus master. For a complete list
of condition codes, see “Conditional Instruction Execution” in the
Program Sequencer chapter of this manual. To enable the use of the bus
master condition, bits 17 and 18 of the MODEL register must both be
zeros; otherwise the condition is always evaluated as false.

7.3.1 Bus Arbitration Protocol

The BRI-BR6 pins are connected between each ADSP-2106x in a
multiprocessing system, with the number of BRx lines used equal to
the number of ADSP-2106xs in the system. Each processor drives the
BRx pin corresponding to its ID,_g inputs and monitors all others. If
less than six ADSP-2106xs are used in the system, the unused BRx pins
should be tied high.

When one of the slave ADSP-2106xs needs to become bus master, it
automatically initiates the bus arbitration process by asserting its BRx
line at the beginning of the cycle. Later in the same cycle it samples the
value of the other BRx lines.

The cycle in which mastership of the bus is passed from one
ADSP-2106x to another is called a bus transition cycle. A bus transition
cycle occurs when the current bus master’s BRx pin is deasserted and
one of the slave’s BRx pins is asserted. The bus master can therefore
retain bus mastership by keeping its BRx pin asserted. Also, the bus
master does not always lose bus mastership when it deasserts its BRx
line—another BRx line must be asserted by one of the slaves at the
same time. In this case, when no other BRx is asserted, the master will
not lose any bus cycles.

By observing all of the BRx lines, each ADSP-2106x can detect when a
bus transition cycle occurs and which processor has become the new
bus master. A bus transition cycle is the only time that bus mastership
is transferred.

Once it is determined that a bus transition cycle will occur, the priority
of each BRx line asserted within that cycle is evaluated (on every
ADSP-2106x). (Refer to the following section for a description of bus
arbitration priority.) The ADSP-2106x with the highest priority request
becomes the bus master on the following cycle, and all of the
ADSP-2106xs update their internal record of who the current bus
master is. This information can be read from the current bus master
field, CRBM, of the SYSTAT register.

Figure 7.5 shows typical timing for bus arbitration.

The actual transfer of bus mastership is accomplished by the current
bus master tristating the external bus—DATA47.g, ADDR31.,
ADRCLK, RD, WR, MS3_ g, PAGE, HBG, DMAGI, and DMAG2—at the
end of the bus transition cycle and the new bus master driving these
signals at the beginning of the next cycle. MSg_ g is driven high

(inactive) before tristating occurs. See Figure 7.6.

Execution of external accesses will be delayed during transfers of bus
mastership. When one of the slave ADSP-2106xs needs to perform an
external read or write, for example, it automatically initiates the bus
arbitration process by asserting its BRx line; the read or write is
delayed until the processor receives bus mastership. If the read or
write was generated by the ADSP-2106x’s processor core (not the DMA
controller), program execution stops until the instruction is completed.

The following steps summarize the actions a slave takes to acquire bus
mastership and perform an external read or write over the bus (see

Figure 7.6):

1. The slave determines that it is executing an instruction which
requires an off-chip access. It asserts its BRx line at the beginning of
the cycle. Extra cycles are generated by the core processor (or DMA
controller) until the slave acquires bus mastership.

2. To acquire bus mastership, the slave waits for a bus transition cycle
in which the current bus master deasserts its BRx line. If the slave
has the highest priority request in the bus transition cycle, it
becomes the bus master in the next cycle. If not, it continues

waiting.

BRx sampled at this point

\ \ \
SYSTEM CLOCK | | ¢ ‘| | ‘|

Bus Requests:
gRi — L/ \ \

BR2
| | \ /

ADSP-2106x #l‘ Bus Transition ‘

ADSP-2106x w/ ID=1:

ADSP-2106x #2

Bus Transition

ADSP-2106x #1

EXECUTION FLOW

BUS ACTIVITY

EXECUTION FLOW

BUS ACTIVITY ‘ Undriven

Perform
Access

Access

stable

Access

stable

Undriven

‘ is the Bus MaS‘eT Cycle ‘ ‘ is the Bus Master ‘ ‘ Cycle ‘ is the Bus Masler‘
| | | | | | | | |
| | | | | | | | |
Internal Internal Internal Internal
Operation Operation Operation Operation | External Access|
| | | | | | | | |
>< Hold comrol‘ signals stable >< ‘ ‘ Undriven ‘ ‘ X iig:sr': X
| | | | | | | | |
ADSP-2106x w/ ID=2: ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
Internal E iA Extermal Internal Extermal Internal Internal
Operation xterna) Access Access Operation Access Operation Operation
| | | | | | | | |
Perform Hold signals Perform Hold signals><
\

Figure 7.5 Bus Arbitration Timing

2

3

>

2

3. At the end of the bus transition cycle the current bus master releases
the bus and the new bus master starts driving.

Whenever the bus master stops using the bus its BRx line is deasserted,
allowing other ADSP-2106xs to arbitrate for mastership if they need it.
If no other ADSP-2106xs are asserting their BRx line when the master
deasserts his, the master retains control of the bus and continues to
drive the memory control signals until: 1) it needs to use the bus again,
or 2) another ADSP-2106x asserts its BRx line.

Note: An ADSP-2106x will try to become bus master whenever it
executes a conditional external access, even if the access is aborted.

| | | |
T W e W _)—_{—_)—_/—

No other requests

— \ i \ / \
BRx \ | Optional (no access | |
‘ Highest priority r‘equester becomes Pus master ‘ ‘ in this cycl‘e) ¢ ‘ ‘
No BTCi

‘ ‘ ‘ . current master
‘ Address sahpled in slave ‘ ‘ ‘

ADDR | valid valid
| | < | X | X
‘ | | MSx s driven high (inactive) before fristating | ‘ |
MSx | | / ;‘< valid ‘X valid ‘ X
‘ .

WR ‘ ‘ y \—V_\—/ ‘ Slave will‘always deassert ‘

‘ ‘ ‘ R ACK during read cycle
RD/WR strobgs sampled in slavsk ‘ ‘ ‘
|

RD / A T\ \ /
‘ ‘ ‘ ‘ ‘ Write data Iatc‘hed in ‘ Read data Iatchéﬁd in master;
| | ‘ ‘ ‘ slave on WR Wsing | slave stops drlv‘lng
' ' | /N
DATA V4 valid J valid »
‘ ‘ Bus ‘ ‘ BTC does not ‘ ‘ ‘
| Previous master drives ‘ Transition ‘ occur if no other
(prior to BTC) Cycle ‘ il?:(f\;cslzrted in | | ‘
BTo — \V/
WRITE CYCLE READ CYCLE

Figure 7.6 Bus Request & Read/Write Timing

7-13

While a slave waits to be a master for a DMA transfer, it asserts BRXx. If
that slave’s core accesses the DA group regsiters, the BRx will be
deasserted during that access..

7.3.2 Bus Arbitration Priority (RPBA)

Two different priority schemes are available to resolve competing bus
requests, fixed and rotating. The RPBA pin selects which scheme is
used: when RPBA is high, rotating priority bus arbitration is selected
and when RPBA is low, fixed priority is selected.

The RPBA pin must be set to the same value on each ADSP-2106x in a
multiprocessing system. If the value of RPBA is changed during
system operation, it must be changed synchronously to CLKIN and
must meet a setup time (specified in the data sheet) to allow all
ADSP-2106xs to recognize the change in the same cycle. The priority
scheme will change in that (same) cycle.

In the fixed priority scheme, the ADSP-2106x with the lowest ID
number among the competing bus requests becomes the bus master. If,
for example, the processor with ID=010 and the processor with ID=100
request the bus simultaneously, the processor with ID=010 becomes
bus master in the following cycle. Each ADSP-2106x knows the ID of
the other processor(s) requesting the bus because their ID corresponds
to the BRx line being used.

The rotating priority scheme gives roughly equal priority to each
ADSP-2106x. When rotating priority is selected, the priority of each
processor is reassigned after every transfer of bus mastership. Highest
priority is rotated from processor to processor as if they were arranged
in a circle—the ADSP-2106x located next to (one place down from) the
current bus master is the one that receives highest priority. Table 7.3
shows an example of how rotating priority changes on a cycle-by-cycle
basis.

Hardwired Processor IDs:
Cycle# ID1 ID2 1D3 ID4 ID5 1ID6

1 M 1 2BR 3 4 5 Initial priority assignments
2 4 5BR M-BR 1 2 3

3 4 5BR M 1 2 3

4 5BR M 1 2 3 4BR

5 1BR 2 3 4 5 M Final priority assignments

1-5 = assigned priority
M = bus mastership (in that cycle)
BR = requesting bus mastership with BRx

Table 7.3 Rotating Priority Arbitration Example

7.3.3 Bus Mastership Timeout

In either bus arbitration priority scheme, it may be desirable to limit
how long a bus master can own the bus. This is accomplished by
forcing the bus master to deassert its BRx line after a specified number
of cycles, giving the other processors a chance to acquire bus
mastership.

To setup a bus master timeout, your program must load the BMAX
register with the maximum number of cycles (minus 2) for which the
ADSP-2106x can retain bus mastership:

BMAX = (maximum # of bus mastership cycles) — 2

The minumum value that BMAX can be set to is 2, which lets the
processor retain bus mastership for 4 cycles. Setting BMAX=1 is not
allowed. To disable the bus master timeout function, set BMAX=0.

Each time an ADSP-2106x acquires bus mastership, its BCNT register
is loaded with the value in BMAX. BCNT is then decremented in every
cycle that the master performs a read or write over the bus and any
other (slave) ADSP-2106xs are requesting the bus. Any time the bus
master deasserts its BRx line, BCNT is reloaded from BMAX.

When BCNT decrements to zero, the bus master first completes its
off-chip read/write and then deasserts its own BRx (any new off-chip
accesses are delayed)—this allows transfer of bus mastership. If none
of the slave processors has its BRx request asserted when the master’s
BCNT reaches zero, the master’s BRx is not deasserted and BCNT is
reloaded from BMAX. If the ACK signal is holding off an access when
BCNT reaches zero, bus mastership will not be relinquished until the
access can complete.

If BCNT reaches zero while bus lock is active, the bus master will not
deasserts its BRx line until bus lock is removed. (Bus lock is enabled by
the BUSLK bit in the MODE?2 register; see “Bus Lock & Semaphores”
later in this chapter.)

If HBR is being serviced, BCNT stops decrementing and continues
only after HBR is deasserted.

7.34 Core Priority Access

The Core Priority Access signal, CPA, allows external bus accesses by
the core processor of a slave ADSP-2106x to take priority over ongoing
DMA transfers. Normally when external port DMA transfers are in
progress, the core processors of the slave ADSP-2106xs cannot use the
external bus until the DMA transfer is finished. By asserting its CPA
pin, the core processor of a slave ADSP-2106x can acquire the bus
without waiting for the DMA operation to complete.

If the CPA signal is not used in a multiprocessor system, the
ADSP-2106x bus master will not give up the bus to another
ADSP-2106x until either: 1) a cycle in which it does not perform an
external bus access, or 2) a bus timeout. If a slave ADSP-2106x needs to
send a high priority message or perform an important data transfer, it
normally must wait until any DMA operation completes. Using the
CPA signal allows the slave to perform its higher priority bus access
with less delay.

A slave ADSP-2106x core with a pending access to the bus will assert
the CPA pin at the same time as its bus request pin (BRx). CPA is an
open-drain output which is connected to all ADSP-2106xs in the
system. Each ADSP-2106x has a 5 Kohm pull-up resistor on this pin,
allowing it to be shared among all ADSP-2106xs in the system. Any
ADSP-2106x may assert CPA low, and the internal resistors (or an
additional external resistor for faster pull-up) will pull it high when it
is released. Multiple ADSP-2106xs can be asserting this line at the same
time.

When CPA is asserted, the current ADSP-2106x bus master will
deassert its BRx and give up the bus, provided its core does not have
an external access pending. In addition, any ADSP-2106x cores that do
not have an external access pending will remove their BRx pins in the
next cycle. Note that the current bus master never asserts CPA because
it already has control of the bus.

In the cycle after CPA has been asserted, only the ADSP-2106x cores
with a pending external access have their bus requests asserted. Bus
arbitration now proceeds as usual, with the highest priority device
becoming the master (when the previous bus master releases its BRx
line). The ADSP-2106x that becomes bus master releases CPA
immediately on becoming master. If there are no other ADSP-2106x
cores that need to perform an external access, the CPA signal will be
pulled high by the pull-up resistors and arbitration will proceed
normally. ADSP-2106xs that have deasserted their BRx in response to
CPA will reassert it in the cycle after CPA is sampled as high.

If there are lower priority ADSP-2106xs that still require access to the
bus, they will continue to assert their CPA. In this case, when the bus
master core has completed its bus access (or accesses), it will release its
BRx even if it has DMA accesses pending. When this happens, the bus
is acquired by the ADSP-2106x with the highest priority BRx.

The overall sequence of events that takes place when an ADSP-2106x
uses its CPA signal is as follows (Figure 7.7 shows timing for this
sequence):

1. The core processor of an ADSP-2106x bus slave asserts its CPA pin
(with the same timing as BRx) when it has a pending external bus
access.

2. When the common CPA line is asserted, the ADSP-2106x cores with
no pending external accesses will deassert their BRx in the next
cycle. If the current ADSP-2106x bus master core does not have a
pending access, it will proceed to give up the bus (i.e. deassert its
BRX) after completing its current access.

3. In the cycle after CPA is asserted, arbitration occurs normally among
the ADSP-2106xs that have their BRx asserted. The highest priority
device becomes bus master when the previous bus master releases
its BRx.

4. The new bus master releases CPA after acquiring the bus.

All ADSP-2106xs arbitrate as usual while CPA is asserted, but only
assert their BRx if their core processor needs to make an access over
the external bus.

When CPA is released, all ADSP-2106xs resume normal BRx assertion
one cycle after CPA is sampled as high.

After releasing its CPA, the bus master will ignore the CPA pin for two
cycles. This reduces the possibility of the bus master unnecessarily
losing bus mastership while the CPA signal is pulled high by the
common pullup resistors.

Because CPA is pulled up by a resistor and may have a time constant
greater than one cycle, it may not be recognized as high by all
ADSP-2106xs in the same cycle. In some very rare cases this may result
in a lower priority ADSP-2106x temporarily gaining control of the bus,
but the correct prioritization will be implemented eventually.

If core access priority is not required in a system, the CPA pin should
be left unconnected and the ADSP-2106xs will arbitrate normally.

All ADSP-2106xs

that do not have

a core access

pending remove
i their BRx

DMA requests only

| I
	! ! ! ‘ ‘
	! ! ! ‘ ‘
	\ ! ! ! !
	! ! ! ‘ ‘ ‘
! ‘ . , ,	L L
o ‘ ‘ y !]]
BRx	I X Core: access requests‘ only : ! X
	! ‘
	: ‘ ‘ ? ?
	! ! ! ‘ ‘
	! ! ! ‘ ‘
! ‘ i \	
	! ! ! ‘ ‘
	! ! ~DA ' ‘ ‘ ‘
CPA resistive pull- . -	
‘	
CPA	
! \ i \ [—	!
! ‘ - " I 1 CPA detected	!
/	——— Busmaster
.. performsits ! cycle ! ‘
. Bus Transition core access ' |
A core access is Cycle (BTC) | 1 |
requested by any (unless bus ‘ ,
ADSP-2106x master has a Vo
core access) New bus master ignores

CPA pin for first 2 cycles

Figure 7.7 Core Priority Access Timing

7.3.5 Bus Synchronization After Reset

When a multiprocessing system is reset by the RESET pin, the bus
arbitration logic on each processor must synchronize to insure that only
one ADSP-2106x will drive the external bus. One ADSP-2106x must
become the bus master, and all other processors must recognize which one
it is before actively arbitrating for the bus. The bus synchronization
scheme also allows the system to safely bring individual ADSP-2106xs
into and out of reset.

A soft reset (SRST) does not resynchronize ADSP-21062 silicon revision 1.x
parts or ADSP-21060/62 silicon revision 2.x (or later) parts.

Note that a soft reset (SRST) does resynchronize ADSP-21062 silicon
revision 0.x parts and ADSP-21060 silicon revision 1.x parts.

One of the ADSP-2106xs in the system must be assigned ID=001 in order
for the bus synchronization scheme to function properly. This processor
also holds the external bus control lines stable during reset. Bus arbitration
synchronization is disabled if the ADSP-2106x is in a single-processor
system (ID=000).

To synchronize their bus arbitration logic and define the bus master after a
system reset, the multiple ADSP-2106xs obey the following rules:

= All ADSP-2106xs except the one with ID=001 will deassert their BRx line
during reset. They will keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is synchronized.

= After reset, an ADSP-2106x will consider itself synchronized when it sees a
cycle in which only one BRx line is asserted. The ADSP-2106x will identify
the bus master by recognizing which BRXx is asserted, and will update its
internal record of who the current master is (in the current bus master field,
CRBM, of the SYSTAT register).

« The ADSP-2106x with ID=001 will assert its BRx (BRI) during reset and for
at least two cycles after reset. If no other BRx lines are asserted during these
cycles, the ADSP-2106x with 1D=001 will drive the memory control signals
to prevent them from glitching. (Although it is asserting its BRx and
driving the memory control signals during these cycles, this processor does
not perform reads or writes over the bus.)

If the ADSP-2106x with ID=001 is synchronized by the end of the two
cycles following reset, it becomes the bus master. If it is not synchronized at
this time, it will deassert its BRx (BRI) and wait until it is.

7-19

When an ADSP-2106x has synchronized itself, it sets the BSYN bit in
the SYSTAT register.

If one ADSP-2106x comes out of reset after the others have
synchronized and started program execution, that processor may not
be able to synchronize immediately (e.g. if it sees more than one BRx
line asserted). If the unsynchronized processor tries to execute an
instruction with an off-chip read or write, it cannot assert its BRx line
to request the bus and execution is delayed until it can synchronize
and correctly arbitrate for the bus.

Synchronization cannot occur while HBG is asserted, because bus
arbitration is suspended while the bus is controlled by a host. If HBR is
asserted immediately after reset and no bus arbitration has taken place,
the ADSP-2106x with ID=001 is considered to be the last bus master.

As mentioned above, the ADSP-2106x with ID=001 maintains correct
logic levels on the RD, WR, MS3 o, PAGE, and HBG signals during
reset.

Because the “001” processor can be accidently reset by an erroneous
write to the soft reset bit (SRST) of the SYSCON register, it behaves in
the following manner during reset:

= While it is in reset, the ADSP-2106x with ID=001 attempts to gain
control of the bus by asserting BR1.

= While it is in reset, the ADSP-2106x with ID=001 will drive the RD,
WR, MS3_o, DMAGI, DMAGZ2, PAGE, and HBG signals only if it
determines that it has control of the bus. For the processor to decide
it has control of the bus, two conditions must be true: 1) BRI was
asserted and no other BRx lines were asserted in the previous cycle,
and 2) HBG was deasserted in the previous cycle.

The ADSP-2106x with ID=001 will continue to drive the RD, WR,
MS3 o, DMAGI, DMAG?2, PAGE, and HBG signals for two cycles after
reset, as long as neither HBG nor any other BRx lines are asserted. At
the end of the second cycle it assumes bus mastership (if it is
synchronized), and normal bus arbitration begins in the following
cycle. If it is not synchronized, it deasserts BR1, stops driving the
memory control signals, and does not arbitrate for the bus until it
becomes synchronized.

Although the bus synchronization scheme allows individual
processors to be reset, the ADSP-2106x with ID=001 may fail to drive
the memory control signals if it is in reset while any other processors
are asserting their BRx line.

If the ADSP-2106x with ID=001 has asserted HBG while it is in reset, it
will be synchronized when RESET is deasserted. This allows the host
to start using the bus while the ADSP-2106xs are still in reset.

If a host processor attempts to reset the ADSP-2106x bus master (which
is driving the HBG output), the host will immediately lose control of
the bus.

During reset, the ACK line is pulled high internally by the ADSP-2106x
bus master (with a 2 kQ equivalent resistor).

7.4 SLAVE DIRECT READS & WRITES

The ADSP-2106x bus master can directly access the internal memory
and IOP registers of a slave ADSP-2106x by simply reading or writing
to the appropriate address in multiprocessor memory space—this is
called a direct read or direct write. Each ADSP-2106x bus slave monitors
addresses driven on the external bus and responds to any that fall
within its region of multiprocessor memory space.

These accesses are invisible to the slave ADSP-2106x’s core processor
because they are performed through the external port and via the
on-chip 1/0 bus—not the DM bus or PM bus. (See Figure 8.1 in the
Host Interface chapter.)

This is an important distinction, because it allows the slave’s core
processor to continue program execution uninterrupted.

The ADSP-2106x bus master can directly read and write the slave’s
IOP registers to send a vector interrupt, for example, or to set up a
DMA transfer.

To read or write 48-bit instruction words, the IWT (Instruction Word
Transfer) bit of the SYSCON register must be set to 1. To read or write
32-bit data words, the IWT bit must be cleared to 0. When this bit is set,
it overrides the IMDWHX (Internal Memory Data Width) bit of each
memory block.

For heavily loaded buses, or when external data buffers are used, a
single wait state can be added to all multiprocessor memory accesses.
This option is selected by the MMSWS bit of the WAIT register.

7.4.1 Direct Writes

When a direct write to a slave ADSP-2106x occurs, the address and
data are latched on-chip by the 1/0 processor. The 1/0 processor
buffers the address and data in a special set of FIFO buffers. If
additional direct writes are attempted when the FIFO buffer is full, the
slave ADSP-2106x deasserts its ACK line until the buffer is no longer
full. Up to six direct writes can be performed before another is delayed.
(The direct write buffer itself may be held off for up to four cycles if all
of the serial port DMA channels are active or for up to nine cycles per
chain if DMA chaining is occurring.)

7.4.1.1 Direct Write Latency

When data is written to an ADSP-2106x bus slave, the data and
address are latched at the 1/0 pins in a four-level FIFO buffer; this
buffer is called the slave write FIFO (see again Figure 8.1 in the

Host Interface chapter). In the following cycle, the slave write FIFO
attempts to complete the write internally. This allows the master
ADSP-2106x to perform writes at the full clock rate. The slave write
FIFO cannot be explicitly read by the slave ADSP-2106x’s core
processor, nor can its status be determined.

Writes to the 10P registers will usually occur in the following one or
two cycles, or when any current DMA transfer is completed. The write
will take more than two cycles only if a direct write in the previous
cycle was held off by a full buffer.

If the buffer is full when a write is attempted, the slave ADSP-2106x
will deassert its ACK line until the buffer is not full. The buffer will
usually flush out within one cycle, thus creating a write latency, unless
higher priority on-chip DMA transfers are occurring.

Slave reads will be held off when there is data in the write FIFO—this
prevents false data reads and out-of-sequence operations.

The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending in the 1/0
processor’s direct write FIFO or data is pending in the slave write FIFO
(at the external port 1/0 pins). Direct writes and 1OP register accesses
may be completed in different sequences. If, for example, the
ADSP-2106x master performs a direct memory write and then writes to
an IOP register on a slave, the IOP register write may complete before
the direct write.

7.4.2 Direct Reads

When a direct read of a slave ADSP-2106x occurs, the address is
latched on-chip by the 1/0 processor and ACK is deasserted. When the
corresponding location in memory is read internally, the ADSP-2106x
drives the data off-chip and asserts its ACK line. Direct reads cannot be
pipelined like direct writes—they only occur one at a time.

Note that while direct writes have a maximum pipelined throughput
of one per cycle, direct reads have a maximum throughput of one per
every two cycles (for synchronous IOP register reads) or one per every
four cycles (for synchronous internal memory reads). See Table 11.5,
“Data Delays & Throughputs”, in Chapter 11. Because of this low
bandwidth, direct reads are not the most efficient method of
transferring data out of a slave ADSP-2106x—setting up a master
mode DMA channel on the slave to perform writes is more efficient,
although it requires additional programming. The advantage of direct
reads is that no programming of the DMA controller is required.

74.3 Broadcast Writes

Broadcast writes allow simultaneous transmission of data to all of the
ADSP-2106xs in a multiprocessing system. The master ADSP-2106x
can perform broadcast writes to the same memory location or IOP
register on all of the slaves. During broadcast writes, the master also
writes to itself unless the broadcast is a DMA write. Broadcast writes
can be used to implement reflective semaphores in a multiprocessing
system (see “Bus Lock & Semaphores” later in this chapter). Broadcast
writes can also be used to simultaneously download code or data to
multiple processors.

The highest region of multiprocessor memory space, addresses

0x0038 0000 to 0x003F FFFF, is used for broadcast writes. When a write
address falls within this region, each ADSP-2106x slave responds by
accepting the access; the master ADSP-2106x also accepts its own
broadcast write. A read cycle generated in the broadcast write region
reads the corresponding location in that processor’s internal memory
and does not assert the processor’s BRy.

Figure 7.8 shows the timing for a typical broadcast write for
MMSWS=0. In this example, the first broadcast write completes
without a wait state. In the second broadcast write, one or more of the
slaves have 3 wait states and are deasserting ACK for 3 cycles. Note
that ACK is sampled by the master on odd cycles (wrt WR asserted). If
the multiprocessor memory space wait state is enabled, the master
does not sample or pre-charge ACK for the first two cycles.

\
ax /TN N\

Proadcast Address=111

|
/

A

| !

ADDR :X M field=111 ‘ X_ ‘ ‘ Mfield:‘lll ‘ ‘ X ‘ ‘
S 1st broa‘dcastm Zn& broadcast write ‘ | \ | ‘ |
| cycle|begins | cycle begins | | | { ‘ ‘

DATA T { | X | | Data valid ‘ :

‘ ‘ \ \ \ 1 \ \
| ‘ 1t broadcast write | ‘ ‘ ‘ | |
WR _\ cycle complete
‘ | | | ! (
sample | | | | sample \ 2nd broacjcast write ‘
| ACK ‘ sample \ | sample ‘ | ACK | cycle c?mplete |
| here * ACK ACK here *
m | | ‘ ‘
ACK
\ \ \ \ \ \ \
\ Master Master Master Master Master Master
\ | \
tristates tristates pre-charges tristates pre-charges tristates
\ ACK | ACK \ ACK \ ACK | ACK | ACK |
I No Slave(s) ‘ Slave(s) may \ Slaves | Slave(s) may | Slaves | No Slave(s) |
drive ACK, drive ACK low tristate ACK drive ACK low tristate ACK drive ACK,
| access | ‘ ‘ \ | access |
| completes | ‘ completes |

Figure 7.8 Broadcast Write Timing Example

Because the master ADSP-2106x must wait for a broadcast write to
complete on all of the slaves, the acknowledge signal is handled
differently to prevent drive conflicts on the ACK line. A wired-OR
acknowledge signal is implemented to respond to broadcast writes.
This signal operates as follows:

1. In the first cycle of the broadcast write (and in all succeeding odd
cycles), a slave ADSP-2106x will pull ACK low if it is not ready to
accept the data. If it is ready, it will not drive the ACK line.

If the master ADSP-2106x sees that ACK is high, indicating that all
slaves are accepting the broadcast write, it completes the write.

2. During all succeeding even cycles in which the broadcast write is not
finished, the slave ADSP-2106xs will not drive ACK. Instead, the
master ADSP-2106x drives (i.e. pre-charges) ACK high and must
continue the write. (Go to Step 1.)

In most cases the ACK signal will be high and the ADSP-2106x slaves
will be ready to accept data at the start of the broadcast write—the
write completes in one cycle. If the ACK signal is low, however, or one
of the slaves is not ready to accept the data, the broadcast write will
take a minimum of three cycles.

When the wait state for multiprocessor memory space is enabled (with
the MMSWS bit of the WAIT register), none of the ADSP-2106xs will

drive ACK in the first cycle, the master pre-charges ACK in the second
cycle, and the slaves may drive ACK in the third cycle. In this case the
broadcast write will again take a minimum of three cycles to complete.

(Note: The ADSP-2106x bus master enables a keeper latch on the ACK
line to prevent the signal from drifting. This eliminates any power
consumption caused by the signal drifting to the switching point and
improves the robustness of broadcast writes. Multiprocessor systems
that use broadcast writes should keep the ACK signal line as free of
noise as possible.)

7.4.4 Shadow Write FIFO

Because the ADSP-2106x’s internal memory must operate at high
speeds, writes to the memory do not go directly into the memory
array, but rather to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, data in the FIFO from
the previous write is loaded into memory and the new data goes into
the FIFO. This operation is normally transparent, since any reads of the
last two locations written are intercepted and routed to the FIFO.
There is only one case in which you need to be aware of the shadow
write FIFO: mixing 48-bit and 32-bit word accesses to the same
locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and mapping of 32-bit words. (See Figures 5.8 and 5.9 in the
Memory chapter.) Thus if you write a 48-bit word to memory and then
try to read the data with a 32-bit word access, the shadow FIFO will
not intercept the read and incorrect data will be returned.

If 48-bit accesses and 32-bit accesses to the same locations absolutely
must be mixed in this way, you must flush out the shadow FIFO with
two dummy writes before attempting to read the data.

7.5 DATA TRANSFERS THROUGH THE EPBx BUFFERS

In addition to direct reads and writes, the ADSP-2106x bus master can
transfer data to and from the slave ADSP-2106xs through the external
port FIFO buffers, EPBO, EPB1, EPB2, and EPB3. Each of these buffers,
which are part of the IOP register set, is a six-location FIFO. Both
single-word transfers and DMA transfers can be performed through
the EPBx buffers. DMA transfers are handled internally by the
ADSP-2106x’s DMA controller, but single-word transfers must be
handled by the ADSP-2106x core.

Each EPBx buffer has a read port and a write port, both of which can
connect internally to either the EPD (External Port Data) bus or to a
local bus which in turn can connect to the IOD (1/0 Data) bus, PM
Data bus, or DM Data bus. This is shown in Figure 8.1 in the

Host Interface chapter. Note that direct reads and writes bypass the
EPBx buffers and go directly to internal memory.

751 Single-Word Transfers

When the ADSP-2106x master writes a single data word to a slave’s
EPBXx buffers, the slave core’s program must read the data. Conversely,
when the slave’s core writes a single piece of data to one of its EPBx
buffers, the master must perform an external bus read cycle to obtain
it. Because the EPBx buffers are six-deep FIFOs (in both directions), the
master and the slave’s core are allowed extra time to read the data—
efficient, continuous, single-word transfers can thus be performed in
real-time, with low latency and without using DMA.

If the ADSP-2106x master attempts a read from an empty EPBx buffer
on a slave, the access will be held off with the ACK signal until the
buffer receives data from the slave’s core. If the slave’s core attempts to
write to a full EPBx buffer, the access is also delayed and the core will
hang until the buffer is externally read by the master. To prevent this
from happening, the BHD (Buffer Hang Disable) bit should be set to 1
in the SYSCON register. The full or empty status of a particular EPBx
buffer can be determined by reading the appropriate DMACX control/
status register.

Similarly, if the ADSP-2106x master attempts a write to a full EPBx
buffer on a slave, the access will be held off with ACK until the buffer
is read by the slave’s core. If the slave’s core attempts to read from an
empty buffer, the access is also held off and the core will hang until the
buffer is externally written from the bus master. The BHD bit can also
be used to prevent a hang condition in this case.

Each EPBx buffer can be flushed (i.e. cleared) by writing a 1 to the
FLSH bit in the corresponding DMACX control register. This bit is not
latched internally and will always be read as a 0. Status can change in
the following cycle. An EPBx buffer should not be enabled and flushed
in the same cycle.

Note: To perform single-word, non-DMA transfers through the EPBx
buffers, the DMA enable bit (DEN) must be cleared in the appropriate
DMACX control register.

7.5.1.1 Interrupts For Single-Word Transfers

The interrupts for the four external port DMA channels can be used to
control single-word data transfers between the ADSP-2106x bus master
and a slave. To do this, the DMACXx control register must have the
following bit settings: DEN=0 and INTIO=1. This disables DMA
(DEN=0) and enables interrupt-driven 1/0 (INTIO=1). See the DMA
chapter or Control/Status Registers appendix of this manual for a
complete description of the DMACX control registers.

In this case the interrupt is generated whenever data becomes available
in the read port of the EPBx buffer, or whenever the write port does
not have new data to transmit. The EPBx buffer can then be read or
written, either internally by the ADSP-2106x slave’s core or externally
by the master. Generating interrupts in this fashion is useful for
implementing interrupt-driven 1/0 controlled by the ADSP-2106x core
processor.

This interrupt may be masked out (i.e. disabled) in the IMASK register.
If the interrupt is later enabled in IMASK, the corresponding IRPTL
latch bit must be cleared to clear any interrupt request that may have
occurred.

75.2 DMA Transfers

The ADSP-2106x bus master can also set up DMA transfers to and
from a slave ADSP-2106x. The master can write to the slave’s DMA
control and parameter registers to set up an external port DMA
operation. This is the most efficient way to transfer blocks of data
between two ADSP-2106xs.

< DMA Transfers to Internal Memory. The ADSP-2106x master can set
up external port DMA channels to transfer data to and from a slave’s
internal memory.

< DMA Transfers to External Memory. The ADSP-2106x master can set
up an external port DMA channel to transfer data directly to external
memory using the DMA request and grant lines (DMARx, DMAGKX).

Refer to the DMA chapter of this manual for details on setting up DMA
operations. Figure 6.9 in the “System Configurations For ADSP-2106x
Interprocessor DMA?” section of the DMA chapter shows the different
ways you can set up external port DMA transfers between two
ADSP-2106xs, as well as the advantages and disadvantages of each.

7.5.2.1 DMA Transfers To Internal Memory

The ADSP-2106x master can set up external port DMA channels to
transfer blocks of data to and from a slave’s internal memory. To set
up the DMA transfer, the master must initialize the slave’s control and
parameter registers for that channel. Once the DMA channel is set up,
the master may simply read from (or write to) the corresponding EPBx
buffer on the slave, or it may set up its own DMA controller to perform
the transfers. If the slave’s buffer is empty (or full), the access is
extended until data is available (or stored). This method allows fast
and efficient data transfers.

Packing and unpacking of DMA data words is selected by the PMODE
bits in the external port DMA control registers (DMAC6, DMACY7,
DMACS, and DMACD9). Either 16-to-32, 16-to-48, or 32-to-48 bit
packing/Zunpacking can be selected.

The ADSP-2106x master may also use the DMARx/DMAGXx
handshake signals to control a DMA transfer, but not when a host
processor has gained control of the bus.

7.5.2.2 DMA Transfers To External Memory

The ADSP-2106x’s DMA controller can also be used to transfer data
directly to external memory. The external handshake mode for external
port DMA channel 7 or 8 will provide the DMARX/DMAGx
handshaking for this type of transfer. Again, this is not possible when
a host processor has gained control of the bus.

7.6 BUS LOCK & SEMAPHORES

Semaphores can be used in multiprocessor systems to allow the
processors to share resources such as memory or 1/0. A semaphore is
a flag that can be read and written by any of the processors sharing the
resource. The value of the semaphore tells the processor when it can
access the resource. Semaphores are also useful for synchronizing the
tasks being performed by different processors in a multiprocessing
system.

With the use of its bus lock feature, the ADSP-2106x has the ability to
read and modify a semaphore in a single indivisible operation—a key
requirement of multiprocessing systems.

Because both external memory and each ADSP-2106x’s internal
memory (and IOP registers) are accessible by every other ADSP-2106x,
semaphores can be located almost anywhere. Read-modify-write
operations on semaphores can be performed if all of the ADSP-2106xs
obey two simple rules:

1. An ADSP-2106x must not write to a semaphore unless it is the bus
master. This is especially important if the semaphore is located in
the ADSP-2106x’s own internal memory or IOP registers.

2. When attempting a read-modify-write operation on a semaphore,
the ADSP-2106x must have bus mastership for the duration of the
operation.

Both of these rules are adhered to when an ADSP-2106x uses its bus
lock feature, which “locks in” its mastership of the bus and prevents
the other processors from simultaneously accessing the semaphore.

Bus lock is requested by setting the BUSLK bit in the MODE2 register.
When this happens, the ADSP-2106x initiates the bus arbitration
process in the usual fashion, by asserting its BRx line. When it becomes
bus master, it locks the bus (i.e. retains bus mastership) by keeping its
BRXx line asserted even when it is not performing an external read or
write. Host bus request (HBR) is also ignored during a bus lock. When
the BUSLK bit is cleared, the ADSP-2106x gives up the bus by
deasserting its BRx line.

While the BUSLK bit is set, the ADSP-2106x can determine if it has
acquired bus mastership by executing a conditional instruction with
the BM or NOT BM condition codes, for example:

I F NOT BM JUWP(PC, 0); /* wait for bus mastership */

If it has become the bus master, the ADSP-2106x can proceed with the
external read or write. If not, it can clear its BUSLK bit and try again
later.

A read-modify-write operation is accomplished with the following steps:

1. Request bus lock by setting the BUSLK bit in MODE2.
2. Wait for bus mastership to be acquired.

3. Wait until Direct Write Pending (DWPD) is zero.

4. Read the semaphore, test it, and then write to it.

Locking the bus prevents other processors from writing to the
semaphore while the read-modify-write is occurring. (Note: If the
semaphore is reflective, located in the ADSP-2106x’s internal memory
or an IOP register, the processor must write to it only when it has bus
lock.) After bus mastership is aquired, the Direct Write Pending status
in SYSTAT must be checked to ensure that a semaphore write by
another processor is not pending.

Bus lock can be used in combination with broadcast writes to
implement reflective semaphores in a multiprocessing system. The
reflective semaphore should be located at the same address in internal
memory (or 10P register) of each ADSP-2106x. To check the
semaphore, each ADSP-2106x simply reads from its own internal
memory. To modify the semaphore, an ADSP-2106x requests bus lock
and then performs a broadcast write to the semaphore address on
every ADSP-2106x, including itself. Before modifying the semaphore,
though, the ADSP-2106x must re-check it to verify that another
processor has not changed it. With reflective semaphores, the external
bus is used only for updating the semaphore, not for reading it. This
greatly reduces bus traffic.

7.6.1 Example: Sharing A DMA Channel With Reflective Semaphores
A single DMA channel can be shared by more than one ADSP-2106x

by using the channel’s control register as a reflective semaphore. The
DMA channel control register is a memory-mapped IOP register on

each ADSP-2106x. If the control register is equal to zero, the channel is
disabled and is not being used by any processor. If the control register

is non-zero, the DMA channel is in use.

Before an ADSP-2106x can use the DMA channel, it must read the
semaphore to determine if the channel is in use. If not, the ADSP-2106x
can request bus lock and then execute a read-modify-write operation
to set the semaphore on each of the processors sharing the DMA
channel. Before performing the read-modify-write, though, the
ADSP-2106x should recheck the semaphore to assure that the DMA
channel is still free. Once this is done, the ADSP-2106x should clear the
BUSLK bit to unlock the bus and can proceed with the DMA
transfer(s). When the transfer(s) are completed, this ADSP-2106x must
clear the semaphore to tell the other processors that the channel is
available for use.

The following code performs the read-modify-write operation
described above:

#defi ne semaphore 0x0038001C /* Broadcast wite to */
/* DMAC6 control register */
/* on all ADSP-2106xs. */
BI T SET MODE2 BUSLK; /* Request bus | ock */
I F NOT BM JUMP(PC, 0) ; /* Wit for bus mastership */
USTAT1=DM SYSTAT) ; /* Check Direct Wite Pending */
BI T TST USTAT1 0X1000; /* Status to ensure no
writes happen */
IF NE JUW (PC, -2); /* After bus |ock */
RO=DM semaphor e) ; /* Read semmphore */
RO=PASS RO /* Set condition codes */
I F NE JUVMP(PC, 3); /* Test semmphore - don't wite
if resource is unavail able.*/
RO=RO+1; /* Modify senmaphore */
DM semaphor e) =R0; /* Wite semaphore */
BI T CLR MODE2 BUSLK; /* Rel ease bus | ock */
Notes:

1)The I F NOT BM JUMP(PC, 0) instruction throughthel F NE JUMP (PC, -2)
instruction is only necessary for internal semaphores.

2.) The RO=DM semaphor e) instruction will not be executed until bus mastership is
acquired and locked.

3.) The DM senmmphor e) =R0 instruction is a broadcast write.

7.7 INTERPROCESSOR MESSAGES & VECTOR INTERRUPTS
The ADSP-2106x bus master can communicate with slave
ADSP-2106xs by writing messages to their IOP registers. The
MSGRO-MSGRY registers are general-purpose registers which can be
used for convenient message passing between ADSP-2106xs. They are
also useful for semaphores and resource sharing between multiple
ADSP-2106xs. The MSGRx and VIRPT registers can be used for
message passing in the following ways:

= Message Passing. The master ADSP-2106x can communicate with a
slave ADSP-2106x by writing and/or reading any of the 8 message
registers, MSGRO-MSGRY7, on the slave.

= Vector Interrupts. The master ADSP-2106x can issue a vector interrupt
to a slave by writing the address of an interrupt service routine to the
slave’s VIRPT register. This causes an immediate high-priority interrupt
on the slave which, when serviced, will cause it to branch to the
specified service routine.

The MSGRx and VIRPT registers also support the host processor
interface. Since these registers may be shared resources within a single
ADSP-2106x, conflicts may occur—your system software must prevent
this. For further discussion of IOP register access conflicts, refer to the
Control/Status Registers appendix of this manual.

7.7.1 Message Passing (MSGRX)

There are three methods by which the ADSP-2106x bus master can
communicate with a slave through the MSGRx message registers:
1) vector-interrupt-driven, 2) register handshake, and 3) register write-back.

For the vector-interrupt-driven method, the master fills predetermined
MSGRXx registers on the slave with data and triggers a vector interrupt
by writing the address of the service routine to the slave’s VIRPT
register. The slave’s service routine should read the data from the
MSGRX registers and then write “0” into VIRPT to tell the master it is
done. The service routine could also use one of the slave’s FLAG3_ g
pins to tell the master it has finished.

For the register handshake method, four of the MSGRx registers should
be designated as follows: a receive register (R), a receive handshake
register (RH), a transmit register (T), and a transmit handshake register
(TH). To pass data to the slave ADSP-2106x, the master would write
data into T and then write a “1” into TH. When the slave sees a “1” in
TH, it reads the data from T and then writes back a “0” into TH. When

the master sees a “0” in TH, it knows that the transfer is complete. A
similar sequence of events occurs when the slave passes data to the
master through R and RH.

The register write-back method is similar to register handshaking, but
uses only the T and R data registers. The master writes data to T. When
the slave sees a non-zero value in T, it retrieves it and writes back a “0”
to T. A similar sequence occurs when the master is receiving data. This
simpler method works well as long as the data to be passed does not
include “0.”

7.7.2 Vector Interrupts (VIRPT)

Vector interrupts are used for interprocessor commands between two
ADSP-2106xs or between a host and the ADSP-2106x. When the
external processor writes an address to the ADSP-2106x’s VIRPT
register, a vector interrupt is caused.

When the vector interrupt is serviced, the ADSP-2106x automatically
pushes the status stack and begins executing the service routine
located at the address specified in VIRPT. The lower 24 bits of VIRPT
contain the address; the upper 8 bits may be optionally used as data to
be read by the interrupt service routine. At reset, VIRPT is initialized to
its standard address in the ADSP-2106x’s interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which
are NOPs. When the RTI (return from interrupt) instruction is reached
in the service routine, the ADSP-2106x automatically pops the status
stack.

The VIPD bit in the SYSTAT register reflects the status of the VIRPT
register. If VIRPT is written while a previous vector interrupt is
pending, the new vector address replaces the pending one. If VIRPT is
written while a previous vector interrupt is being serviced, the new
vector address is ignored and no new interrupt is triggered. If the
ADSP-2106x writes to its own VIRPT register it is ignored.

To use the slave ADSP-2106x’s vector interrupt feature, the master
ADSP-2106x should perform the following sequence of actions:

1. Poll the slave’s VIRPT register until it reads a certain token value
(i.e. zero).

2. Write the vector interrupt service routine address to VIRPT.

3. When the service routine is finished, the slave ADSP-2106x should
write the token back into VIRPT to indicate that it is finished and
that another vector interrupt can be initiated.

The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending. Pending direct
writes may occur in different sequences. If, for example, the master
ADSP-2106x performs a direct write to a slave and then writes to an
IOP register on the slave, the IOP register write may complete before
the direct write. Because of this, direct writes performed just before
vector interrupt writes (to VIRPT) may be delayed until after the
branch to the interrupt vector:

1. The master ADSP-2106x performs a direct write to the internal
memory of a slave.

2. The master ADSP-2106x writes to the VIRPT register of the slave to
initiate a vector interrupt. This causes the direct write to be delayed.

3. The slave ADSP-2106x jumps to the vector interrupt service routine.

4. The direct write is completed after the interrupt service routine is
underway.

To prevent this from happening, the master ADSP-2106x should check
that all direct writes have completed before writing to the slave’s
VIRPT register. This can be done by polling the slave’s DWPD bit (in
SYSTAT) after performing a direct write, waiting for it to become
cleared, and then proceeding with the write to VIRPT.

7.8 SYSTAT REGISTER STATUS BITS
The SYSTAT register provides status information, primarily for
multiprocessor systems. Table 7.4 shows the status bits in this register.

Bit(s)

Name Definition

HSTM Host Mastership

BSYN Bus Synchronization

CRBM Current Bus Master (ID,_g of ADSP-2106x bus master)
IDC ID Code (ID,_g of this ADSP-2106x)

DWPD Direct Write Pending

VIPD Vector Interrupt Pending

HPS Host Packing Status

Table 7.4 SYSTAT Status Bits

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

o|o|joj(O0OfJoO|O|jO|jOfJO|jO|O|JOfO|O|O0O]|O

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

o|jo0|O0|O0OfO 0Ooj0]|O 0|0 |O0]|O

L 1 L 1 L 1

L—HsTM
Host Mastership

BSYN
Bus Synchronization

CRBM
Current Bus Master

IDC
ID Code

DWPD
Direct Write Pending

VIPD
Vector Interrupt Pending

—HPS
Host Packing Status
00 = packing complete
01 = first stage of all packing and unpacking modes
10 = second stage of 16-t0-48 bit packing/unpacking or 32-to-48 bit packing/unpacking

Figure 7.9 SYSTAT Register

HSTM

BSYN

CRBM

IDC

DWPD

VIPD

HPS

Host Mastership. Indicates whether the host processor is has been granted
control of the bus.

1=Host is bus master
0=Host is not bus master

Bus Synchronization. Indicates when the ADSP-2106x’s bus arbitration
logic is synchronized after reset. (See “Bus Synchronization After Reset.”)

1=Bus arbitration logic is synchronized
0=Bus arbitration logic is not synchronized

Current Bus Master. Indicates the ID code of the ADSP-2106x that is the
current bus master. If CRBM is equal to the ID of this ADSP-2106x then it is
the current bus master. CRBM is only valid for ID,_g > 0 (greater than zero).
When ID,_5=000, CRBM is always 1.

ID Code. Indicates the 1D,_g inputs of this ADSP-2106x.

Direct Write Pending. Indicates when a direct write to the ADSP-2106x’s
internal memory is pending. The DWPD bit is cleared when the direct write
has been completed. (Direct writes may be delayed for several cycles is
DMA chaining is underway or if higher priority DMA requests occur.
Maximum delay is 12 cycles.)

1=Direct write pending
0=No direct write pending

Vector Interrupt Pending. Indicates that a pending vector interrupt has not
yet been serviced. The VIPD bit is set when the VIRPT register is written to
and is cleared upon return from the interrupt service routine. The master
ADSP-2106x (or host processor) that issued the vector interrupt should
monitor this bit to determine when the service routine has been completed,
and when a new vector interrupt may be issued.

1=Vector interrupt pending
0=No vector interrupt pending

Host Packing Status. Indicates when host word packing is completed or,
if not, what stage of the process is taking place.

00=Packing complete

01=1st stage of all packing and unpacking modes.

10=2nd stage of 16-to0-48 bit packing/unpacking or 32-to-48 bit packing/
unpacking

Host Interface

8.1 OVERVIEW

The ADSP-2106x’s host interface allows easy connection to standard
microprocessor buses, both 16-bit and 32-bit, with little additional
hardware required. The ADSP-2106x accommodates either
synchronous or asynchronous data transfers, allowing the host to use a
different clock frequency. Asynchronous transfers at speeds up to the
full clock rate of the processor are supported. The host accesses the
ADSP-2106x through its external port, via the external bus (DATA47.9
and ADDR31.g). The host interface is memory-mapped into the unified
address space of the ADSP-2106x. Figure 8.1 shows a block diagram of
the external port, 1/0 processor, and FIFO data buffers, illustrating the
on-chip data paths for host-driven transfers. The four external port
DMA channels are available for use by the host—DMA transfers of
code and data can be performed with low software overhead.

The host processor requests and controls the ADSP-2106x’s external
bus with the host bus request (HBR), host bus grant (HBG), and ready
(REDY) signals. Once it has gained control of the bus, the host can can
directly read and write the internal memory of the ADSP-2106x. It can
also read and write to any of the ADSP-2106x’s IOP registers,
including the EPBx FIFO buffers. The host uses certain 10P registers to
control and configure the ADSP-2106x, SYSCON and SYSTAT for
example, and to set up DMA transfers. DMA transfers are controlled
by the ADSP-2106x’s on-chip DMA controller once they have been set
up by the host (or by the ADSP-2106x core). In a multiprocessor
system, the host can access the internal memory and IOP registers of
every ADSP-2106x. Vector interrupts provide efficient execution of
host commands.

Any host microprocessor with a standard memory interface can easily
connect to the ADSP-2106x bus through buffers. By providing an
address, a dat