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Introduction

1.1 OVERVIEW
The ADSP-2106x SHARC—Super Harvard Architecture Computer—is a
high-performance 32-bit digital signal processor for speech, sound, graphics,
and imaging applications. The SHARC builds on the ADSP-21000 Family
DSP core to form a complete system-on-a-chip, adding a dual-ported on-chip
SRAM and integrated I/O peripherals supported by a dedicated I/O bus.
With its on-chip instruction cache, the processor can execute every
instruction in a single cycle. Four independent buses for dual data,
instructions, and I/O, plus crossbar switch memory connections, comprise
the Super Harvard Architecture of the ADSP-2106x.

The ADSP-2106x SHARC represents a new standard of integration for digital
signal processors, combining a high-performance floating-point DSP core
with integrated, on-chip features including a host processor interface, DMA
controller, serial ports, and link port and shared bus connectivity for glueless
DSP multiprocessing.

Figure 1.1 illustrates the Super Harvard Architecture of the ADSP-2106x:
a crossbar bus switch connecting the core numeric processor to an
independent I/O processor, dual-ported memory, and parallel system bus
port. Figure 1.2 shows a detailed block diagram of the processor, illustrating
the following architectural features:

• 32-Bit IEEE Floating-Point Computation Units—Multiplier, ALU, and Shifter
• Data Register File
• Data Address Generators (DAG1, DAG2)
• Program Sequencer with Instruction Cache
• Interval Timer
• Dual-Ported SRAM
• External Port for Interfacing to Off-Chip Memory & Peripherals
• Host Port & Multiprocessor Interface
• DMA Controller
• Serial Ports
• Link Ports
• JTAG Test Access Port
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Figure 1.2 also shows the three on-chip buses of the ADSP-2106x:
the PM bus (program memory), DM bus (data memory), and I/O bus.
The PM bus is used to access either instructions or data. During a
single cycle the processor can access two data operands, one over the
PM bus and one over the DM bus, an instruction (from the cache), and
perform a DMA transfer.

The ADSP-2106x’s external port provides the processor’s interface to
external memory, memory-mapped I/O, a host processor, and
additional multiprocessing ADSP-2106xs. The external port performs
internal and external bus arbitration as well as supplying control
signals to shared, global memory and I/O devices.

Figure 1.3 illustrates a typical single-processor system. A
multiprocessor system is shown in Chapter 7, Multiprocessing.

Figure 1.1  Super Harvard Architecture
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Figure 1.2  ADSP-2106x SHARC Block Diagram
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instruction set description required for the design and programming of
ADSP-2106x-based systems. In addition to this manual, hardware
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ADSP-21061 Data Sheet for timing, electrical, and package
specifications.
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This manual covers three ADSP-2106x processors: the ADSP-21060, 
ADSP-21062, and ADSP-21061. The ADSP-21060 contains 4 megabits of on-
chip SRAM, the ADSP-21062 contains 2 megabits, and the ADSP-21061
contains 1 megabit. The Memory chapter of this manual describes the
differences in memory architecture and programming considerations of the
three processors. All three processors are code- and function-compatible
with the ADSP-21020 processor. With the exception of memory size, the
ADSP-21060 and ADSP-21062 are identical in all other aspects as well.
Besides memory size, there are four differences between these two
processors and the ADSP-21061:

• No link ports on the ADSP-21061
• 6 DMA channels — 4 for serial port and 2 for external port (instead of 4)
• Additional features and changes in DMA for the serial port
• New idle 16 instruction for a further reduced power mode

These differences are described in detail in the DMA, Serial Port, and
Program Sequencer chapters.

Figure 1.3  ADSP-2106x System
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1.2 ADSP-21000 FAMILY FEATURES & BENEFITS
The ADSP-2106x SHARC processors belong to the ADSP-21000 Family of
floating-point digital signal processors (DSPs). The ADSP-21000
Family architecture further addresses the five central requirements for
DSPs established in the ADSP-2100 Family of 16-bit fixed-point DSPs:

• Fast, flexible arithmetic computation units
• Unconstrained data flow to and from the computation units
• Extended precision and dynamic range in the computation units
• Dual address generators
• Efficient program sequencing

Fast, Flexible Arithmetic. The ADSP-21000 Family processors execute
all instructions in a single cycle. They provide both fast cycle times and
a complete set of arithmetic operations including Seed 1/X, Seed 1/√X,
Min, Max, Clip, Shift, and Rotate, in addition to the traditional
multiplication, addition, subtraction, and combined multiplication/
addition. The processors are IEEE floating-point compatible and allow
either interrupt on arithmetic exception or latched status exception
handling.

Unconstrained Data Flow. The ADSP-2106x has an enhanced Harvard
architecture combined with a 10-port data register file. In every cycle:

• Two operands can be read or written to or from the register file,
• Two operands can be supplied to the ALU,
• Two operands can be supplied to the multiplier, and
• Two results can be received from the ALU and multiplier.

The processor’s 48-bit orthogonal instruction word supports fully
parallel data transfer and arithmetic operations in the same instruction.

40-Bit Extended Precision. The ADSP-21000 Family processors handle
32-bit IEEE floating-point format, 32-bit integer and fractional formats
(twos-complement and unsigned), and extended-precision 40-bit IEEE
floating-point format. The processors carry extended precision
throughout their computation units, limiting intermediate data
truncation errors. When working with data on-chip, the
extended-precision 32-bit mantissa can be transferred to and from all
computation units. The 40-bit data bus may be extended off-chip if
desired. The fixed-point formats have an 80-bit accumulator for true
32-bit fixed-point computations.
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Dual Address Generators. The ADSP-21000 Family processors have
two data address generators (DAGs) that provide immediate or
indirect (pre- and post-modify) addressing. Modulus and bit-reverse
operations are supported with no constraints on data buffer placement.

Efficient Program Sequencing. In addition to zero-overhead loops, the
ADSP-21000 Family processors support single-cycle setup and exit for
loops. Loops are both nestable (six levels in hardware) and
interruptable. The processors support both delayed and non-delayed
branches.

1.2.1 System-Level Enhancements
The ADSP-21000 Family processors include several enhancements that
simplify system development. The enhancements occur in three key
areas:

• Architectural features supporting high-level languages and operating
systems

• IEEE 1149.1 JTAG serial scan path and on-chip emulation features
• Support of IEEE floating-point formats

High Level Languages. The ADSP-21000 Family architecture has
several features that directly support high-level language compilers
and operating systems:

• General purpose data and address register files
• 32-bit native data types
• Large address space
• Pre- and post-modify addressing
• Unconstrained circular data buffer placement
• On-chip program, loop, and interrupt stacks

Additionally, the ADSP-21000 Family architecture is designed
specifically to support ANSI-standard Numerical C extensions—the
first compiled language to support vector data types and operators for
numeric and signal processing.

Serial Scan and Emulation Features. The ADSP-21000 Family
processors support the IEEE standard P1149.1 Joint Test Action Group
(JTAG) standard for system test. This standard defines a method for
serially scanning the I/O status of each component in a system. The
JTAG serial port is also used by the ADSP-2106x EZ-ICE to gain access
to the processor’s on-chip emulation features.
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IEEE Formats. The ADSP-21000 Family processors support IEEE
floating-point data formats. This means that algorithms developed on
IEEE-compatible processors and workstations are portable across
processors without concern for possible instability introduced by
biased rounding or inconsistent error handling.

1.2.2 Why Floating-Point DSP?
A digital signal processor’s data format determines its ability to handle
signals of differing precision, dynamic range, and signal-to-noise
ratios. However, ease-of-use and time-to-market considerations are
often equally important.

Precision. The number of bits of precision of A/D converters has
continued to increase, and the trend is for both precision and sampling
rates to increase.

Dynamic Range. Compression and decompression algorithms have
traditionally operated on signals of known bandwidth. These
algorithms were developed to behave regularly, to keep costs down
and implementations easy. Increasingly, however, the trend in
algorithm development is not to constrain the regularity and dynamic
range of intermediate results. Adaptive filtering and imaging are two
applications requiring wide dynamic range.

Signal-to-Noise Ratio. Radar, sonar and even commercial applications
like speech recognition require wide dynamic range in order to discern
selected signals from noisy environments.

Ease-of-Use. In general, 32-bit floating-point DSPs are easier to use
and allow a quicker time-to-market than 16-bit fixed-point processors.
The extent to which this is true depends on the floating-point
processor’s architecture. Consistency with IEEE workstation
simulations and the elimination of scaling are two clear ease-of-use
advantages. High-level language programmability, large address
spaces, and wide dynamic range allow system development time to be
spent on algorithms and signal processing concerns rather than
assembly language coding, code paging, and error handling.
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1.3 ADSP-2106X ARCHITECTURE
The following sections summarize the features of the ADSP-2106x
SHARC architecture. These features are described in greater detail in
succeeding chapters.

1.3.1 Core Processor
The core processor of the ADSP-2106x consists of three computation
units, a program sequencer, two data address generators, timer,
instruction cache, and data register file.

1.3.1.1 Computation Units
The ADSP-2106x core processor contains three independent
computation units: an ALU, a multiplier with a fixed-point
accumulator, and a shifter. For meeting a wide variety of processing
needs, the computation units process data in three formats: 32-bit
fixed-point, 32-bit floating-point and 40-bit floating-point. The floating-
point operations are single-precision IEEE-compatible. The 32-bit
floating-point format is the standard IEEE format, whereas the 40-bit
IEEE extended-precision format has eight additional LSBs of mantissa
for greater accuracy.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply/add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and
extraction and exponent derivation operations on 32-bit operands.

The computation units perform single-cycle operations; there is no
computation pipeline. The units are connected in parallel rather than
serially. The output of any unit may be the input of any unit on the
next cycle. In a multifunction computation, the ALU and multiplier
perform independent, simultaneous operations.

1.3.1.2 Data Register File
A general-purpose data register file is used for transferring data
between the computation units and the data buses, and for storing
intermediate results. The register file has two sets (primary and
alternate) of sixteen registers each, for fast context switching. All of the
registers are 40 bits wide. The register file, combined with the core
processor’s Harvard architecture, allows unconstrained data flow
between computation units and internal memory.
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1.3.1.3 Program Sequencer & Data Address Generators
Two dedicated address generators and a program sequencer supply
addresses for memory accesses. Together the sequencer and data
address generators allow computational operations to execute with
maximum efficiency since the computation units can be devoted
exclusively to processing data. With its instruction cache, the
ADSP-2106x can simultaneously fetch an instruction (from the cache)
and access two data operands (from memory). The data address
generators implement circular data buffers in hardware.

The program sequencer supplies instruction addresses to program
memory. It controls loop iterations and evaluates conditional
instructions. With an internal loop counter and loop stack, the
ADSP-2106x executes looped code with zero overhead. No explicit
jump instructions are required to loop or to decrement and test the
counter.

The ADSP-2106x achieves its fast execution rate by means of pipelined
fetch, decode and execute cycles. If external memories are used, they are
allowed more time to complete an access than if there were no decode
cycle.

The data address generators (DAGs) provide memory addresses when
data is transferred between memory and registers. Dual data address
generators enable the processor to output simultaneous addresses for
two operand reads or writes. DAG1 supplies 32-bit addresses to data
memory. DAG2 supplies 24-bit addresses to program memory for
program memory data accesses.

Each DAG keeps track of up to eight address pointers, eight modifiers
and eight length values. A pointer used for indirect addressing can be
modified by a value in a specified register, either before (pre-modify)
or after (post-modify) the access. A length value may be associated
with each pointer to perform automatic modulo addressing for circular
data buffers; the circular buffers can be located at arbitrary boundaries
in memory. Each DAG register has an alternate register that can be
activated for fast context switching.

Circular buffers allow efficient implementation of delay lines and other
data structures required in digital signal processing, and are
commonly used in digital filters and Fourier transforms. The DAGs
automatically handle address pointer wraparound, reducing overhead,
increasing performance, and simplifying implementation.
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1.3.1.4 Instruction Cache
The program sequencer includes a 32-word instruction cache that
enables three-bus operation for fetching an instruction and two data
values. The cache is selective—only instructions whose fetches conflict
with program memory data accesses are cached. This allows full-speed
execution of core, looped operations such as digital filter
multiply-accumulates and FFT butterfly processing.

1.3.1.5 Interrupts
The ADSP-2106x has four external hardware interrupts: three
general-purpose interrupts, IRQ2-0, and a special interrupt for reset.
The processor also has internally generated interrupts for the timer,
DMA controller operations, circular buffer overflow, stack overflows,
arithmetic exceptions, multiprocessor vector interrupts, and
user-defined software interrupts.

For the general-purpose external interrupts and the internal timer
interrupt, the ADSP-2106x automatically stacks the arithmetic status
and mode (MODE1) registers in parallel with the interrupt servicing,
allowing four nesting levels of very fast service for these interrupts.

1.3.1.6 Timer
The programmable interval timer provides periodic interrupt
generation. When enabled, the timer decrements a 32-bit count register
every cycle. When this count register reaches zero, the ADSP-2106x
generates an interrupt and asserts its TIMEXP output. The count
register is automatically reloaded from a 32-bit period register and the
count resumes immediately.

1.3.1.7 Core Processor Buses
The processor core has four buses: Program Memory Address, Data
Memory Address, Program Memory Data, and Data Memory Data.
On the ADSP-2106x processors, data memory stores data operands
while program memory is used to store both instructions and data
(filter coefficients, for example)—this allows dual data fetches, when
the instruction is supplied by the cache.
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The PM Address bus and DM Address bus are used to transfer the
addresses for instructions and data. The PM Data bus and DM Data
bus are used to transfer the data or instructions stored in each type of
memory. The PM Address bus is 24 bits wide allowing access of up to
16M words of mixed instructions and data. The PM Data bus is 48 bits
wide to accommodate the 48-bit instruction width. Fixed-point and
single-precision floating-point data is aligned to the upper 32 bits of
the PM Data bus.

The DM Address bus is 32 bits wide allowing direct access of up to
4G words of data. The DM Data bus is 40 bits wide. Fixed-point and
single-precision floating-point data is aligned to the upper 32 bits of
the DM Data bus. The DM Data bus provides a path for the contents of
any register in the processor to be transferred to any other register or
to any data memory location in a single cycle. The data memory
address comes from one of two sources: an absolute value specified in
the instruction code (direct addressing) or the output of a data address
generator (indirect addressing).

1.3.1.8 Internal Data Transfers
Nearly every register in the core processor of the ADSP-2106x is
classified as a universal register. Instructions are provided for
transferring data between any two universal registers or between a
universal register and memory. This includes control registers and
status registers, as well as the data registers in the register file.

The PX bus connect registers permit data to be passed between the
48-bit PM Data bus and the 40-bit DM Data bus or between the 40-bit
register file and the PM Data bus. These registers contain hardware to
handle the 8-bit width difference.

1.3.1.9 Context Switching
Many of the processor’s registers have alternate registers that can be
activated during interrupt servicing to facilitate a fast context switch.
The data registers in the register file, the DAG registers, and the
multiplier result register all have alternates. Registers active at reset
are called primary registers, while the others are called alternate (or
secondary) registers. Control bits in a mode control register determine
which set of registers is active at any particular time.
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1.3.1.10 Instruction Set
The ADSP-21000 Family instruction set provides a wide variety of
programming capabilities. Multifunction instructions enable
computations in parallel with data transfers, as well as simultaneous
multiplier and ALU operations. The addressing power of the
ADSP-2106x gives you flexibility in moving data both internally and
externally. Every instruction can be executed in a single processor
cycle. The ADSP-21000 Family assembly language uses an algebraic
syntax for ease of coding and readability. A comprehensive set of
development tools supports program development.

1.3.2 Dual-Ported Internal Memory
The ADSP-21060 contains 4 megabits of on-chip SRAM, organized as
two blocks of 2 Mbits each, which can be configured for different
combinations of code and data storage. The ADSP-21062 includes a
2 Mbit SRAM, organized as two 1 Mbit blocks. Each memory block is
dual-ported for single-cycle, independent accesses by the core
processor and I/O processor or DMA controller. The dual-ported
memory and separate on-chip buses allow two data transfers from the
core and one from I/O, all in a single cycle.

 All of the memory can be accessed as 16-bit, 32-bit, or 48-bit words.
On the ADSP-21060, the memory can be configured as a maximum of
128K words of 32-bit data, 256K words of 16-bit data, 80K words of
48-bit instructions (and 40-bit data), or combinations of different word
sizes up to 4 megabits. On the ADSP-21062, the memory can be
configured as a maximum of 64K words of 32-bit data, 128K words of
16-bit data, 40K words of 48-bit instructions (and 40-bit data), or
combinations of different word sizes up to 2 megabits. On the ADSP-
21061, the memory can be configured as a maximum of 32K words of
32-bit data, 64K words of 16-bit data, 16K words of 48-bit instructions
(and 40-bit data), or combinations of different word sizes up to 1
megabit.

A 16-bit floating-point storage format is supported which effectively
doubles the amount of data that may be stored on chip. Conversion
between the 32-bit floating-point and 16-bit floating-point formats is
done in a single instruction.
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While each memory block can store combinations of code and data,
accesses are most efficient when one block stores data, using the
DM bus for transfers, and the other block stores instructions and data,
using the PM bus for transfers. Using the DM bus and PM bus in this
way, with one dedicated to each memory block, assures single-cycle
execution with two data transfers. In this case, the instruction must be
available in the cache. Single-cycle execution is also maintained when
one of the data operands is transferred to or from off-chip, via the
ADSP-2106x’s external port.

1.3.3 External Memory & Peripherals Interface
The ADSP-2106x’s external port provides the processor’s interface to
off-chip memory and peripherals. The 4-gigaword off-chip address
space is included in the ADSP-2106x’s unified address space. The
separate on-chip buses—for PM addresses, PM data, DM addresses,
DM data, I/O addresses, and I/O data—are multiplexed at the
external port to create an external system bus with a single 32-bit
address bus and a single 48-bit data bus. External SRAM can be either
16, 32, or 48 bits wide; the ADSP-2106x’s on-chip DMA controller
automatically packs external data into the appropriate word width,
either 48-bit instructions or 32-bit data.

Addressing of external memory devices is facilitated by on-chip
decoding of high-order address lines to generate memory bank select
signals. Separate control lines are also generated for simplified
addressing of page-mode DRAM. The ADSP-2106x provides
programmable memory wait states and external memory acknowledge
controls to allow interfacing to DRAM and peripherals with variable
access, hold, and disable time requirements.

1.3.4 Host Processor Interface
The ADSP-2106x’s host interface allows easy connection to standard
microprocessor buses, both 16-bit and 32-bit, with little additional
hardware required. Asynchronous transfers at speeds up to the full
clock rate of the ADSP-2106x are supported. The host interface is
accessed through the ADSP-2106x’s external port and is memory-
mapped into the unified address space. Four channels of DMA are
available for the host interface; code and data transfers are
accomplished with low software overhead. The host can directly read
and write the internal memory of the ADSP-2106x, and can access the
DMA channel setup and mailbox registers. Vector interrupt support is
provided for efficient execution of host commands.
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1.3.5 Multiprocessing
The ADSP-2106x offers powerful features tailored to multiprocessing
DSP systems. The unified address space allows direct interprocessor
accesses of each ADSP-2106x’s internal memory. Distributed bus
arbitration logic is included on-chip for simple, glueless connection of
systems containing up to six ADSP-2106xs and a host processor.
Master processor changeover incurs only one cycle of overhead. Bus
arbitration is selectable as either fixed or rotating priority. Processor
bus lock allows indivisible read-modify-write sequences for semaphores.
A vector interrupt capability is provided for interprocessor commands.
Maximum throughput for interprocessor data transfer is
240 Mbytes/sec over the link ports or external port. Broadcast writes
allow simultaneous transmission of data to all ADSP-2106xs and can
be used to implement reflective semaphores.

1.3.6 I/O Processor
The ADSP-2106x’s I/O Processor (IOP) includes two serial ports, six
4-bit link ports, and a DMA controller.

1.3.6.1 Serial Ports
The ADSP-2106x features two synchronous serial ports that provide an
inexpensive interface to a wide variety of digital and mixed-signal
peripheral devices. The serial ports can operate at the full clock rate of
the processor, providing each with a maximum data rate of 40 Mbit/s.
Independent transmit and receive functions provide greater flexibility
for serial communications. Serial port data can be automatically
transferred to and from on-chip memory via DMA. Each of the serial
ports offers a TDM multichannel mode.

The serial ports can operate with little-endian or big-endian
transmission formats, with word lengths selectable from 3 to 32 bits.
They offer selectable synchronization and transmit modes as well as
optional µ-law or A-law companding. Serial port clocks and frame
syncs can be internally or externally generated.



1Introduction

1 – 15

1.3.6.2 Link Ports
The ADSP-21062 and ADSP-21060 feature six 4-bit link ports that
provide additional I/O capabilities. The link ports can be clocked twice
per cycle, allowing each to transfer 8 bits per cycle. Link port I/O is
especially useful for point-to-point interprocessor communication in
multiprocessing systems.

The link ports can operate independently and simultaneously, with a
maximum data throughput of 240 Mbytes/s. Link port data is packed
into 32-bit or 48-bit words, and can be directly read by the core
processor or DMA-transferred to on-chip memory. Each link port has
its own double-buffered input and output registers.
Clock/acknowledge handshaking controls link port transfers.
Transfers are programmable as either transmit or receive.

There are no link ports on the ADSP-21061.

1.3.6.3 DMA Controller
The ADSP-2106x’s on-chip DMA controller allows zero-overhead data
transfers without processor intervention. The DMA controller operates
independently and invisibly to the processor core, allowing DMA
operations to occur while the core is simultaneously executing its
program. Both code and data can be downloaded to the ADSP-2106x
using DMA transfers.

DMA transfers can occur between the ADSP-2106x’s internal memory
and external memory, external peripherals, or a host processor. DMA
transfers can also occur between the ADSP-2106x’s internal memory
and its serial ports or link ports. DMA transfers between external
memory and external peripheral devices are another option. External
bus packing to 16, 32, or 48-bit words is automatically performed
during DMA transfers.

Ten channels of DMA are available on the ADSP-21060 and
ADSP-21062—two via the link ports, four via the serial ports, and four
via the processor’s external port (for either host processor, other
ADSP-2106xs, memory or I/O transfers). Four additional link port
DMA channels are shared with serial port 1 and the external port.
There are six channels of DMA available on the ADSP-21061—four via
the serial ports and two via the external port. Asynchronous off-chip
peripherals can control two DMA channels using DMA Request/Grant
lines (DMAR1-2 , DMAG1-2). Other DMA features include interrupt
generation upon completion of DMA transfers and DMA chaining for
automatic linked DMA transfers.
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The ten DMA channels of the ADSP-21060 and ADSP-21062 are
numbered as shown below:

DMA Data
Channel# Buffer Description
DMA Channel 0 RX0 Serial Port 0 Receive
DMA Channel 1 RX1 (or LBUF0) Serial Port 1 Receive (or Link Buffer 0)
DMA Channel 2 TX0 Serial Port 0 Transmit
DMA Channel 3 TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)
DMA Channel 4 LBUF2 Link Buffer 2
DMA Channel 5 LBUF3 Link Buffer 3
DMA Channel 6 EPB0 (or LBUF4) Ext. Port FIFO Buffer 0 (or Link Buffer 4)
DMA Channel 7 * EPB1 (or LBUF5) Ext. Port FIFO Buffer 1 (or Link Buffer 5)
DMA Channel 8 * EPB2 Ext. Port FIFO Buffer 2
DMA Channel 9 EPB3 Ext. Port FIFO Buffer 3

* DMAR1 and DMAG1 are handshake controls for DMA Channel 7.
DMAR2 and DMAG2 are handshake controls for DMA Channel 8.

1.3.6.4 Booting
The internal memory of the ADSP-2106x can be booted at system
powerup from an 8-bit EPROM or a host processor. Additionally, the
ADSP-21060 and the ADSP-21062 can also be booted through one of
the link ports. Selection of the boot source is controlled by the BMS,
EBOOT, and LBOOT pins. Both 32-bit and 16-bit host processors can
be used for booting.

1.4 DEVELOPMENT TOOLS
The ADSP-2106x is supported with a complete set of software and
hardware development tools, including an EZ-LAB Evaluation
Board, EZ-ICE In-Circuit Emulator, and development software. The
development software provides tools for programming and debugging
applications in both assembly language and C. The  EZ-ICE emulator
allows system integration and hardware/software debugging. Figure
1.4 shows the process of developing an application using the
development tools.

The development software includes an ANSI C Compiler. The
compiler includes Numerical C extensions based on the work of the
ANSI NCEG committee (Numerical C Extensions Group).
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 Numerical C provides extensions to the C language for array selection,
vector math operations, complex data types, circular pointers, and
variably-dimensioned arrays. Other components of the development
software include a C Runtime Library with custom DSP functions, C
and assembly language Debugger, Assembler, Assembly Library/
Librarian, Linker, and Simulator.

Step 1:
DESCRIBE ARCHITECTURE

System
Architecture

File

Step 2:
GENERATE CODE

LINKER Executable
File

Assembler
Source File ASSEMBLER

ANSI
C COMPILER

C Source
File

EZ-ICE EMULATOR

Step 3:
DEBUG SOFTWARE

Step 4:
DEBUG IN TARGET SYSTEM

EZ-LAB EVALUATION BOARD
or

3RD-PARTY PC PLUG-IN CARD

 SOFTWARE 
SIMULATOR

Target
Board

Step 5:
MANUFACTURE FINAL SYSTEM

 BOOT LOADER
Tested &

Debugged
DSP System

=  User File or Hardware =  Software Development Tools =  Hardware Development Tools

EPROM/Host/
Link Boot File

Figure 1.4  System Design and Development Process
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The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG test
access port of the ADSP-2106x processor to monitor and control the
target board processor during emulation. The EZ-ICE provides full-
speed emulation, allowing inspection and modification of memory,
registers, and processor stacks. Non-intrusive in-circuit emulation is
assured by the use of the processor’s JTAG interface—the emulator
does not affect target system loading or timing.

Further details and ordering information are available in the
ADSP-21000 Family Hardware & Software Development Tools data sheet.
This data sheet can be requested from any Analog Devices sales office
or distributor.

1.5 MESH MULTIPROCESSING
Mesh multiprocessing is a parallel processing system architecture that
offers high throughput, system flexibility, and software simplicity. The
ADSP-21060 and ADSP-21062 SHARC processors include features
which specifically support this system architecture. Mesh
multiprocessing systems are suited to a wide variety of applications
including wide-area airborne radar systems, interactive medical
imaging, virtual reality, high-speed engineering simulations, neural
networks, and solutions of large systems of linear equations.

1.6 ADDITIONAL LITERATURE
The following publications can be ordered from any Analog Devices
sales office.

ADSP-21060/62 SHARC Data Sheet
ADSP-21061 SHARC Data Sheet
ADSP-21000 Family Hardware & Software Development Tools Data Sheet
ADSP-21000 Family Assembler Tools & Simulator Manual
ADSP-21000 Family C Tools Manual
ADSP-21000 Family C Runtime Library Manual
ADSP-21000 Family Applications Handbook, Vol. 1



2Computation Units

2.1 OVERVIEW
The computation units of the ADSP-2106x provide the numeric processing
power for performing DSP algorithms. The ADSP-2106x contains three
computation units: an arithmetic/logic unit (ALU), a multiplier and a
shifter. Both fixed-point and floating-point operations are supported by
the processor. Each computation unit executes instructions in a single
cycle.

The ALU performs a standard set of arithmetic and logic operations in
both fixed-point and floating-point formats. The multiplier performs
floating-point and fixed-point multiplication as well as fixed-point
multiply/add and multiply/subtract operations. The shifter performs
logical and arithmetic shifts, bit manipulation, field deposit and extraction
operations on 32-bit operands and can derive exponents as well.

The computation units are architecturally arranged in parallel, as shown
in Figure 2.1 on the next page. The output of any computation unit may be
the input of any computation unit on the next cycle. The computation
units input data from and output data to a 10-port register file that
consists of sixteen primary registers and sixteen alternate registers. The
register file is accessible to the ADSP-2106x program and data memory
data buses for transferring data between the computation units and
external memory or other parts of the processor.

The individual registers of the register file are prefixed with an “F” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “R” when used in fixed-point
computations. The following instructions, for example, use the same
registers:

F0=F1 * F2; floating-point multiply
R0=R1 * R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer; they
only determine how the ALU, multiplier, or shifter treat the data. The F or
R may be either uppercase or lowercase; the assembler is case-insensitive.

2 – 1
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This chapter covers the following topics:

• Data Formats and Rounding
• ALU Architecture and Functions
• Multiplier Architecture and Functions
• Shifter Architecture and Functions
• Multifunction Computations
• Register File and Data Transfers

2.2 IEEE FLOATING-POINT OPERATIONS
The ADSP-2106x multiplier and ALU support the single-precision
floating-point format specified in the IEEE 754/854 standard. This
standard is described in Appendix C, Numeric Formats. The ADSP-2106x is
IEEE 754/854 compatible for single-precision floating-point operations in
all respects except that:

• The ADSP-2106x does not provide inexact flags.

• NAN (“Not-A-Number”) inputs generate an invalid exception and
return a quiet NAN (all 1s).

Figure 2.1  Computation Units
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FILE

MULTIPLIER ALUSHIFTER

16 x 40-bit
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• Denormal operands are flushed to zero when input to a computation unit
and do not generate an underflow exception. Any denormal or
underflow result from an arithmetic operation is flushed to zero and an
underflow exception is generated.

• Round-to-nearest and round-toward-zero modes are supported.
Rounding to +Infinity and rounding to –Infinity are not supported.

In addition, the ADSP-2106x supports a 40-bit extended precision floating-
point mode, which has eight additional LSBs of the mantissa and is
compliant with the 754/854 standards; however, results in this format are
more precise than the IEEE single-precision standard specifies.

2.2.1 Extended Floating-Point Precision
Floating-point data can be either 32 or 40 bits wide on the ADSP-2106x.
Extended precision floating-point format (8 bits of exponent and 32 bits of
mantissa) is selected if the RND32 bit in the MODE1 register is cleared (0).
If this bit is set (1), then normal IEEE precision is used (8 bits exponent and
24 bits of mantissa). In this case, the computation unit sets the eight LSBs of
floating-point inputs to zeros before performing the operation. The
mantissa of a result is rounded to 23 bits (not including the hidden bit) and
the 8 LSBs of the 40-bit result are set to zeros to form a 32-bit number that is
equivalent to the IEEE standard result.

2.2.2 Short Word Floating-Point Format
The ADSP-2106x supports a 16-bit floating-point data type and provides
conversion instructions for it. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

Two shifter instructions, FPACK and FUNPACK, perform the packing
and unpacking conversions between 32-bit floating-point words and 16-bit
floating-point words. The FPACK instruction converts a 32-bit IEEE
floating-point number to a 16-bit floating-point number. FUNPACK
converts the 16-bit floating-point numbers back to 32-bit IEEE floating-
point. Each instruction executes in a single cycle.

The short float type supports gradual underflow. This method sacrifices
precision for dynamic range. When packing a number which would have
underflowed, the exponent is set to zero and the mantissa (including
“hidden” 1) is right-shifted the appropriate amount. The packed result is a
denormal which can be unpacked into a normal IEEE floating-point
number.
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2.2.3 Floating-Point Exceptions
The multiplier and ALU each provide exception information when
executing floating-point operations. Each unit updates overflow,
underflow and invalid operation flags in the arithmetic status (ASTAT)
register and in the sticky status (STKY) register. An underflow, overflow
or invalid operation from any unit also generates a maskable interrupt.
Thus, there are three ways to handle floating-point exceptions:

• Interrupts. The exception condition is handled immediately in an
interrupt service routine. You would use this method if it was important
to correct all exceptions as they happen.

• ASTAT register. The exception flags in the ASTAT register pertaining
to a particular arithmetic operation are tested after the operation is
performed. You would use this method to monitor a particular floating-
point operation.

• STKY register. Exception flags in the STKY register are examined at the
end of a series of operations. If any flags are set, some of the results are
incorrect. You would use this method if exception handling was not
critical.

2.3 FIXED-POINT OPERATIONS
Fixed-point numbers are always represented in 32 bits and are left-
justified (occupy the 32 MSBs) in the 40-bit data fields of the ADSP-2106x.
They may be treated as fractional or integer numbers and as unsigned or
twos-complement. Each computation unit has its own limitations on how
these formats may be mixed for a given operation. The computation units
read 32-bit operands from 40-bit registers, ignoring the 8 LSBs, and write
32-bit results, zeroing the 8 LSBs.

2.4 ROUNDING
Two modes of rounding are supported in the ADSP-2106x: round-toward-
zero and round-toward-nearest. The rounding modes follow the IEEE 754
standard definitions, which are briefly stated as follows:

Round-Toward-Zero. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to zero. This is equivalent to truncation.
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Round-Toward-Nearest. If the result before rounding is not exactly
representable in the destination format, the rounded result is that number
which is nearer to the result before rounding. If the result before rounding is
exactly halfway between two numbers in the destination format (differing by
an LSB), the rounded result is that number which has an LSB equal to zero.
Statistically, rounding up occurs as often as rounding down, so there is no
large sample bias. Because the maximum floating-point value is one LSB less
than the value that represents Infinity, a result that is halfway between the
maximum floating-point value and Infinity rounds to Infinity in this mode.

The rounding mode for all ALU operations and for floating-point multiplier
operations is determined by the TRUNC bit in the MODE1 register. If the
TRUNC bit is set, the round-to-zero mode is selected; otherwise, the round-
to-nearest mode is used.

For fixed-point multiplier operations on fractional data, the same two
rounding modes are supported, but only the round-to-nearest operation is
actually performed by the multiplier. Because the multiplier has a local result
register for fixed-point operations, rounding-to-zero is accomplished
implicitly by reading only the upper bits of the result and discarding the
lower bits.

2.5 ALU
The ALU performs arithmetic operations on fixed-point or floating-point data
and logical operations on fixed-point data. ALU fixed-point instructions
operate on 32-bit fixed-point operands and output 32-bit fixed-point results.
ALU floating-point instructions operate on 32-bit or 40-bit floating-point
operands and output 32-bit or 40-bit floating-point results.

ALU instructions include:

• Floating-point addition, subtraction, add/subtract, average
• Fixed-point addition, subtraction, add/subtract, average
• Floating-point manipulation: binary log, scale, mantissa
• Fixed-point add with carry, subtract with borrow, increment, decrement
• Logical AND, OR, XOR, NOT
• Functions: Absolute value, pass, min, max, clip, compare
• Format conversion
• Reciprocal and reciprocal square root primitives

Dual add/subtract and parallel ALU and multiplier operations are described
under “Multifunction Computations,” later in this chapter.
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2.5.1 ALU Operation
The ALU takes one or two input operands, called the X input and the Y
input, which can be any data registers in the register file. It usually returns
one result; in add/subtract operations it returns two results, and in
compare operations it returns no result (only flags are updated). ALU
results can be returned to any location in the register file.

Input operands are transferred from the register file during the first half of
the cycle. Results are transferred to the register file during the second half
of the cycle. Thus the ALU can read and write the same register file
location in a single cycle.

If the ALU operation is fixed-point, the X input and Y input are each
treated as a 32-bit fixed-point operand. The upper 32 bits from the source
location in the register file are transferred. For fixed-point operations, the
result(s) are always 32-bit fixed-point values. Some floating-point
operations (LOGB, MANT and FIX) can also yield fixed-point results.
Fixed-point results are transferred to the upper 32 bits of register file. The
lower eight bits of the register file destination are cleared.

The format of fixed-point operands and results depends on the operation.
In most arithmetic operations, there is no need to distinguish between
integer and fractional formats. Fixed-point inputs to operations such as
scaling a floating-point value are treated as integers. For purposes of
determining status such as overflow, fixed-point arithmetic operands and
results are treated as twos-complement numbers.

2.5.2 ALU Operating Modes
The ALU is affected by three bits in the MODE1 register; the ALU
saturation bit affects ALU operations that yield fixed-point results, and the
rounding mode and rounding boundary bits affect floating-point
operations in both the ALU and multiplier.

MODE1
Bit Name Function
13 ALUSAT 1=Enable ALU saturation (full scale in fixed-point)

0=Disable ALU saturation
15 TRUNC 1=Truncation; 0=Round to nearest
16 RND32 1=Round to 32 bits; 0=Round to 40 bits
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2.5.2.1 Saturation Mode
In saturation mode, all positive fixed-point overflows cause the maximum
positive fixed-point number (0x7FFF FFFF) to be returned, and all
negative overflows cause the maximum negative number (0x8000 0000) to
be returned. If the ALUSAT bit is set, fixed-point results that overflow are
saturated. If the ALUSAT bit is cleared, fixed-point results that overflow
are not saturated; the upper 32 bits of the result are returned unaltered.
The ALU overflow flag reflects the ALU result before saturation.

2.5.2.2 Floating-Point Rounding Modes
The ALU supports two IEEE rounding modes. If the TRUNC bit is set, the
ALU rounds a result to zero (truncation). If the TRUNC bit is cleared, the
ALU rounds to nearest.

2.5.2.3 Floating-Point Rounding Boundary
The results of floating-point ALU operations can be either 32-bit or 40-bit
floating-point data on the ADSP-2106x. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before the ALU operation
is performed (except for the RND operation), and ALU floating-point
results are output in the 32-bit IEEE format. The lower eight bits of the
result are cleared. If the RND32 bit is cleared, the ALU inputs 40-bit
operands unchanged and outputs 40-bit results from floating-point
operations, and all 40 bits are written to the specified register file location.

In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

2.5.3 ALU Status Flags
The ALU updates seven status flags in the ASTAT register, shown below,
at the end of each operation. The states of these flags reflect the result of
the most recent ALU operation. The ALU updates the Compare
Accumulation bits in ASTAT at the end of every Compare operation. The
ALU also updates four “sticky” status flags in the STKY register. Once set,
a sticky flag remains high until explicitly cleared.

ASTAT
Bit Name Definition
0 AZ ALU result zero or floating-point underflow
1 AV ALU overflow
2 AN ALU result negative
3 AC ALU fixed-point carry
4 AS ALU X input sign (ABS, MANT operations)
5 AI ALU floating-point invalid operation
10 AF Last ALU operation was a floating-point operation
31-24 CACC Compare Accumulation register (results of last 8 compare

operations)
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STKY
Bit Name Definition
0 AUS ALU floating-point underflow
1 AVS ALU floating-point overflow
2 AOS ALU fixed-point overflow
5 AIS ALU floating-point invalid operation

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the ALU is performing
an operation, the explicit write to ASTAT or STKY supersedes any flag
update from the ALU operation.

2.5.3.1 ALU Zero Flag (AZ)
The zero flag is determined for all fixed-point and floating-point ALU
operations. AZ is set whenever the result of an ALU operation is zero.
AZ also signifies floating-point underflow; see the next section. It is
otherwise cleared.

2.5.3.2 ALU Underflow Flag (AZ, AUS)
Underflow is determined for all ALU operations that return a floating-
point result and for floating-point to fixed-point conversion. AUS is set
whenever the result of an ALU operation is smaller than the smallest
number representable in the output format. AZ is set whenever a
floating-point result is smaller than the smallest number representable in
the output format.

2.5.3.3 ALU Negative Flag (AN)
The negative flag is determined for all ALU operations. It is set whenever
the result of an ALU operation is negative. It is otherwise cleared.

2.5.3.4 ALU Overflow Flag (AV, AOS, AVS)
Overflow is determined for all fixed-point and floating-point ALU
operations. For fixed-point results, AV and AOS are set whenever the
XOR of the two most significant bits is a 1; otherwise AV is cleared. For
floating-point results AV and AVS are set whenever the post-rounded
result overflows (unbiased exponent > 127); otherwise AV is cleared.
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2.5.3.5 ALU Fixed-Point Carry Flag (AC)
The carry flag is determined for all fixed-point ALU operations. For
fixed-point arithmetic operations, AC is set if there is a carry out of most
significant bit of the result, and is otherwise cleared. AC is cleared for
fixed-point logic, PASS, MIN, MAX, COMP, ABS, and CLIP operations.
The ALU reads the AC flag in fixed-point addition with carry and
fixed-point subtraction with carry operations.

2.5.3.6 ALU Sign Flag (AS)
The sign flag is determined for only the fixed-point and floating-point
ABS operations and the MANT operation. AS is set if the input operand is
negative. It is otherwise cleared. The ALU clears AS for all operations
other than ABS and MANT operations; this is different from the operation
of ADSP-2100 family processors, which do not update the AS flag on
operations other than ABS.

2.5.3.7 ALU Invalid Flag (AI)
The invalid flag is determined for all floating-point ALU operations.
 AI and AIS are set whenever

• an input operand is a NAN
• an addition of opposite-signed Infinities is attempted
• a subtraction of like-signed Infinities is attempted
• when saturation mode is not set, a floating-point to fixed-point

conversion results in an overflow or operates on an Infinity.

AI is otherwise cleared.

2.5.3.8 ALU Floating-Point Flag (AF)
AF is determined for all fixed-point and floating-point ALU operations. It
is set if the last operation was a floating-point operation; it is otherwise
cleared.

2.5.3.9 Compare Accumulation
Bits 31-24 in the ASTAT register store the flag results of up to eight ALU
compare operations. These bits form a right-shift register. When an ALU
compare operation is executed, the eight bits are shifted toward the LSB
(bit 24 is lost). The MSB, bit 31, is then written with the result of the
compare operation. If the X operand is greater than the Y operand in the
compare instruction, bit 31 is set; it is cleared otherwise. The accumulated
compare flags can be used to implement 2- and 3-dimensional clipping
operations for graphics applications.
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2.5.4 ALU Instruction Summary

Fixed-point: AZ AV AN AC AS AI AF CACC AUS AVS AOS AIS
c Rn = Rx + Ry * * * * 0 0 0 – – – ** –
c Rn = Rx – Ry * * * * 0 0 0 – – – ** –
c Rn = Rx + Ry + CI * * * * 0 0 0 – – – ** –
c Rn = Rx – Ry + CI – 1 * * * * 0 0 0 – – – ** –

Rn = (Rx + Ry)/2 * 0 * * 0 0 0 – – – – –
COMP(Rx, Ry) * 0 * 0 0 0 0 * – – – –
Rn = Rx + CI * * * * 0 0 0 – – – ** –
Rn = Rx + CI – 1 * * * * 0 0 0 – – – ** –
Rn = Rx + 1 * * * * 0 0 0 – – – ** –
Rn = Rx – 1 * * * * 0 0 0 – – – ** –

c Rn = –Rx * * * * 0 0 0 – – – ** –
c Rn = ABS Rx * * 0 0 * 0 0 – – – ** –

Rn = PASS Rx * 0 * 0 0 0 0 – – – – –
c Rn = Rx AND Ry * 0 * 0 0 0 0 – – – – –
c Rn = Rx OR Ry * 0 * 0 0 0 0 – – – – –
c Rn = Rx XOR Ry * 0 * 0 0 0 0 – – – – –
c Rn = NOT Rx * 0 * 0 0 0 0 – – – – –

Rn = MIN(Rx, Ry) * 0 * 0 0 0 0 – – – – –
Rn = MAX(Rx, Ry) * 0 * 0 0 0 0 – – – – –
Rn = CLIP Rx BY Ry * 0 * 0 0 0 0 – – – – –

Floating–point:
Fn = Fx + Fy * * * 0 0 * 1 – ** ** – **
Fn = Fx – Fy * * * 0 0 * 1 – ** ** – **
Fn = ABS (Fx + Fy) * * 0 0 0 * 1 – ** ** – **
Fn = ABS (Fx – Fy) * * 0 0 0 * 1 – ** ** – **
Fn = (Fx + Fy)/2 * 0 * 0 0 * 1 – ** – – **
COMP(Fx, Fy) * 0 * 0 0 * 1 * – – – **
Fn = –Fx * * * 0 0 * 1 – – ** – **
Fn = ABS Fx * * 0 0 * * 1 – – ** – **
Fn = PASS Fx * 0 * 0 0 * 1 – – – – **
Fn = RND Fx * * * 0 0 * 1 – – ** – **
Fn = SCALB Fx BY Ry * * * 0 0 * 1 – ** ** – **
Rn = MANT Fx * * 0 0 * * 1 – – ** – **
Rn = LOGB Fx * * * 0 0 * 1 – – ** – **
Rn = FIX Fx BY Ry * * * 0 0 * 1 – ** ** – **
Rn = FIX Fx * * * 0 0 * 1 – ** ** – **
Fn = FLOAT Rx BY Ry * * * 0 0 0 1 – ** ** – –
Fn = FLOAT Rx * 0 * 0 0 0 1 – – – – –
Fn = RECIPS Fx * * * 0 0 * 1 – ** ** – **
Fn = RSQRTS Fx * * * 0 0 * 1 – – ** – **
Fn = Fx COPYSIGN Fy * 0 * 0 0 * 1 – – – – **
Fn = MIN(Fx, Fy) * 0 * 0 0 * 1 – – – – **
Fn = MAX(Fx, Fy) * 0 * 0 0 * 1 – – – – **
Fn = CLIP Fx BY Fy * 0 * 0 0 * 1 – – – – **

Rn, Rx, Ry = Any register file location; treated as fixed-point
Fn, Fx, Fy = Any register file location; treated as floating-point
c = ADSP-21xx-compatible instruction

*  set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction
–  no effect

Instruction ASTAT Status Flags STKY Status Flags
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2.6 MULTIPLIER
The multiplier performs fixed-point or floating-point multiplication and fixed-
point multiply/accumulate operations. Fixed-point multiply/accumulates may
be performed with either cumulative addition or cumulative subtraction.
Floating-point multiply/accumulates can be accomplished through parallel
operation of the ALU and multiplier, using multifunction instructions. See
“Multifunction Computations” later in this chapter.

Multiplier floating-point instructions operate on 32-bit or 40-bit floating-point
operands and output 32-bit or 40-bit floating-point results. Multiplier fixed-point
instructions operate on 32-bit fixed-point data and produce 80-bit results. Inputs
are treated as fractional or integer, unsigned or twos-complement.

Multiplier instructions include:

• Floating-point multiplication
• Fixed-point multiplication
• Fixed-point multiply/accumulate with addition, rounding optional
• Fixed-point multiply/accumulate with subtraction, rounding optional
• Rounding result register
• Saturating result register
• Clearing result register

2.6.1 Multiplier Operation
The multiplier takes two input operands, called the X input and the Y input,
which can be any data registers in the register file. Fixed-point operations can
accumulate fixed-point results in either of two local multiplier result registers
(MR) or write results back to the register file. Results stored in the MR registers
can also be rounded or saturated in separate operations. Floating-point
operations yield floating-point results, which are always written directly back
to the register file.

Input operands are transferred during the first half of the cycle. Results are
transferred during the second half of the cycle. Thus the multiplier can read
and write the same register file location in a single cycle.

If the multiplier operation is fixed-point, inputs taken from the register file are
read from the upper 32 bits of the source location. Fixed-point operands may be
treated as both in integer format or both in fractional format. The format of the
result is the same as the format of the inputs. Each fixed-point operand may be
treated as either an unsigned or a twos-complement number. If both inputs are
fractional and signed, the multiplier automatically shifts the result left one bit to
remove the redundant sign bit. The input data type is specified within the
multiplier instruction.
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2.6.2 Fixed-Point Results
Fixed-point operations yield 80-bit results in the MR register. The location
of a result in the 80-bit field depends on whether the result is in fractional or
integer format, as shown in Figure 2.2. If the result is sent directly to the
register file, the 32 bits that have the same format as the input data are
transferred, i.e. bits 63-32 for a fractional result or bits 31-0 for an integer
result. The eight LSBs of the 40-bit register file location are zero-filled.
Fractional results can be rounded-to-nearest before being sent to the register
file, as explained later in this chapter. If rounding is not specified,
discarding bits 31-0 effectively truncates a fractional result (rounds to zero).

0316379

FRACTIONAL RESULT

INTEGER RESULTOVERFLOW

OVERFLOW UNDERFLOW

OVERFLOW

MR2 MR1 MR0

Figure 2.2  Multiplier Fixed-Point Result Placement

2.6.2.1 MR Registers
The entire result can be sent to one of two dedicated 80-bit result registers
(MR). The MR registers have identical format; each is divided into MR2,
MR1 and MR0 registers that can be individually read from or written to
the register file. When data is read from MR2, it is sign-extended to 32 bits
(see Figure 2.3). The eight LSBs of the 40-bit register file location are zero-
filled when data is read from MR2, MR1 or MR0 to the register file. Data is
written into MR2, MR1 or MR0 from the 32 MSBs of a register file location;
the eight LSBs are ignored. Data written to MR1 is sign-extended to MR2,
i.e. the MSB of MR1 is repeated in the 16 bits of MR2. Data written to MR0,
however, is not sign-extended.

The two MR registers are designated MRF (foreground) and MRB
(background); foreground refers to those registers currently activated by
the SRCU bit in the MODE1 register, and background refers to those that
are not. In the case that only one MR register is used at a time, the SRCU
bit activates one or the other to facilitate context switching. However,
unlike other registers for which alternate sets exist, both MR register sets
are accessible at the same time. All (fixed-point) accumulation instructions

MR Register
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16 bits

MR2

MR1

MR0

SIGN EXTEND

8 bits

ZEROS

ZEROS

ZEROS

16 bits

8 bits32 bits

8 bits32 bits

Figure 2.3  MR Transfer Formats

may specify either result register for accumulation, regardless of the state of
the SRCU bit. Thus, instead of using the MR registers as a primary and an
alternate, you can use them as two parallel accumulators. This feature
facilitates complex math.

Transfers between MR registers and the register file are considered
computation unit operations, since they involve the multiplier. Thus,
although the syntax for the transfer is the same as for any other transfer to or
from the register file, an MR transfer is placed in an instruction where a
computation is normally specified. For example, the ADSP-2106x can perform
a multiply/accumulate in parallel with a read of data memory, as in:

MRF=MRF-R5*R0, R6=DM(I1,M2);

or it can perform an MR transfer instead of the computation, as in:

R5=MR1F, R6=DM(I1,M2);

2.6.3 Fixed-Point Operations
In addition to multiplication, fixed-point operations include accumulation,
rounding and saturation of fixed-point data. There are three MR register
operations: Clear, Round and Saturate.

2.6.3.1 Clear MR Register
The clear operation resets the specified MR register to zero. This operation is
performed at the start of a multiply/accumulate operation to remove results
left over from the previous operation.
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2.6.3.2 Round MR Register
Rounding of a fixed-point result occurs either as part of a multiply or
multiply/accumulate operation or as an explicit operation on the MR
register. The rounding operation applies only to fractional results (integer
results are not affected) and rounds the 80-bit MR value to nearest at bit
32, i.e. at the MR1-MR0 boundary. The rounded result in MR1 can be sent
either to the register file or back to the same MR register. To round a
fractional result to zero (truncation) instead of to nearest, you would
simply transfer the unrounded result from MR1, discarding the lower 32
bits in MR0.

2.6.3.3 Saturate MR Register On Overflow
The saturate operation sets MR to a maximum value if the MR value has
overflowed. Overflow occurs when the MR value is greater than the
maximum value for the data format (unsigned or twos-complement and
integer or fractional) that is specified in the saturate instruction. There are
six possible maximum values (shown in hexadecimal):

MR2 MR1 MR0
Maximum twos-complement fractional number
0000 7FFF FFFF FFFF FFFF positive
FFFF 8000 0000 0000 0000 negative

Maximum twos-complement integer number
0000 0000 0000 7FFF FFFF positive
FFFF FFFF FFFF 8000 0000 negative

Maximum unsigned fractional number
0000 FFFF FFFF FFFF FFFF

Maximum unsigned integer number
0000 0000 0000 FFFF FFFF

The result from MR saturation can be sent either to the register file or back
to the same MR register.
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2.6.4 Floating-Point Operating Modes
The multiplier is affected by two mode status bits in the MODE1 register:
the rounding mode and rounding boundary bits, which affect operations
in both the multiplier and the ALU.

MODE1
Bit Name Function
15 TRUNC 1=Truncation; 0=Round to nearest
16 RND32 1=Round to 32 bits; 0=Round to 40 bits

2.6.4.1 Floating-Point Rounding Modes
The multiplier supports two IEEE rounding modes for floating-point
operations. If the TRUNC bit is set, the multiplier rounds a floating-point
result to zero (truncation). If the TRUNC bit is cleared, the multiplier
rounds to nearest.

2.6.4.2 Floating-Point Rounding Boundary
Floating-point multiplier inputs and results can be either 32-bit or 40-bit
floating-point data on the ADSP-2106x. If the RND32 bit is set, the eight
LSBs of each input operand are flushed to zeros before multiplication, and
floating-point results are output in the 32-bit IEEE format, with the lower
eight bits of the 40-bit register file location cleared. The mantissa of the
result is rounded to 23 bits (not including the hidden bit). If the RND32 bit
is cleared, the multiplier inputs full 40-bit values from the register file and
outputs results in the 40-bit extended IEEE format, with the mantissa
rounded to 31 bits not including the hidden bit.

2.6.5 Multiplier Status Flags
The multiplier updates four status flags at the end of each operation. All
of these flags appear in the ASTAT register. The states of these flags reflect
the result of the most recent multiplier operation. The multiplier also
updates four “sticky” status flags in the STKY register. Once set, a sticky
flag remains high until explicitly cleared.

ASTAT
Bit Name Definition
6 MN Multiplier result negative
7 MV Multiplier overflow
8 MU Multiplier underflow
9 MI Multiplier floating-point invalid operation
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STKY
Bit Name Definition
6 MOS Multiplier fixed-point overflow
7 MVS Multiplier floating-point overflow
8 MUS Multiplier underflow
9 MIS Multiplier floating-point invalid operation

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
or STKY register explicitly in the same cycle that the multiplier is
performing an operation, the explicit write to ASTAT or STKY supersedes
any flag update from the multiplier operation.

2.6.5.1 Multiplier Underflow Flag (MU)
Underflow is determined for all fixed-point and floating-point multiplier
operations. It is set whenever the result of a multiplier operation is smaller
than the smallest number representable in the output format. It is
otherwise cleared.

For floating-point results, MU and MUS are set whenever the post-
rounded result underflows (unbiased exponent < –126). Denormal
operands are treated as Zeros, therefore they never cause underflows.

For fixed-point results, MU and MUS depend on the data format and are
set under the following conditions:

Twos-complement:
Fractional: upper 48 bits all zeros or all ones, lower 32 bits not all zeros
Integer: not possible

Unsigned:
Fractional: upper 48 bits all zeros, lower 32 bits not all zeros
Integer: not possible

If the fixed-point result is sent to an MR register, the underflowed portion
of the result is available in MR0 (fractional result only).
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2.6.5.2 Multiplier Negative Flag (MN)
The negative flag is determined for all multiplier operations. MN is set
whenever the result of a multiplier operation is negative. It is otherwise cleared.

2.6.5.3 Multiplier Overflow Flag (MV)
Overflow is determined for all fixed-point and floating-point multiplier
operations.

For floating-point results, MV and MVS are set whenever the post-rounded
result overflows (unbiased exponent > 127).

For fixed-point results, MV and MOS depend on the data format and are set
under the following conditions:

Twos-complement:
Fractional: upper 17 bits of MR not all zeros or all ones
Integer: upper 49 bits of MR not all zeros or all ones

Unsigned:
Fractional: upper 16 bits of MR not all zeros
Integer: upper 48 bits of MR not all zeros

If the fixed-point result is sent to an MR register, the overflowed portion of
the result is available in MR1 and MR2 (integer result) or MR2 only (fractional
result).

2.6.5.4 Multiplier Invalid Flag (MI)
The invalid flag is determined for floating-point multiplication. MI is set
whenever:

• an input operand is a NAN.
• the inputs are Infinity and Zero (note: denormal inputs are treated as Zeros.)

MI is otherwise cleared.
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2.6.6 Multiplier Instruction Summary
Instruction ASTAT Flags    STKY Flags

MU MN MV MI MUS MOS MVS MIS
Fixed-Point:

Rn =  Rx * Ry ( S S F ) * * * 0 – ** – –
MRF U U I
MRB FR

Rn =  MRF +  Rx * Ry ( S S F     ) * * * 0 – ** – –
Rn =  MRB U U I
MRF =  MRF FR
MRB =  MRB

Rn =  MRF –  Rx * Ry ( S S F     ) * * * 0 – ** – –
Rn =  MRB U U I
MRF =  MRF FR
MRB =  MRB

Rn =  SAT MRF (SI) * * * 0 – ** – –
Rn =  SAT MRB (UI)
MRF =  SAT MRF (SF)
MRB =  SAT MRB (UF)

Rn =  RND MRF (SF) * * * 0 – ** – –
Rn =  RND MRB (UF)
MRF =  RND MRF
MRB =  RND MRB

MRF =  0 0 0 0 0 – – – –
MRB

MRxF  =  Rn 0 0 0 0 – – – –
MRxB

Rn =  MRxF 0 0 0 0 – – – –
    MRxB

Floating-Point:

Fn = Fx * Fy * * * * ** – ** **

Note: For floating-point multiply/accumulates, see “Multifunction Computations"

*  set or cleared, depending on results of instruction
** may be set (but not cleared), depending on results of instruction
–  no effect

Rn, Rx, Ry = R15-R0; register file location, treated as fixed-point
Fn, Fx, Fy = F15-F0; register file location, treated as floating-point
MRxF = MR2F, MR1F, MR0F; multiplier result accumulators, foreground
MRxB = MR2B, MR1B, MR0B; multiplier result accumulators, background
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Multiplier Instruction Summary, cont.
Optional Modifiers for Fixed-Point:

( ❑ ❑ ❑   ) S Signed input
U Unsigned input
I Integer input(s)
F Fractional input(s)
FR Fractional inputs, Rounded output
(SF) Default format for 1-input operations
(SSF) Default format for 2-input operations

2.7 SHIFTER
The shifter operates on 32-bit fixed-point operands. Shifter operations
include:

• shifts and rotates from off-scale left to off-scale right
• bit manipulation operations, including bit set, clear, toggle, and test
• bit field manipulation operations including extract and deposit
• support for ADSP-2100 family compatible fixed-point/floating-point

conversion operations (exponent extract, number of leading 1s or 0s)

2.7.1 Shifter Operation
The shifter takes from one to three input operands: the X-input, which is
operated upon; the Y-input, which specifies shift magnitudes, bit field
lengths or bit positions; and the Z-input, which is operated on and
updated (as in, for example, Rn = Rn OR LSHIFT Rx BY Ry). The shifter
returns one output to the register file.

Input operands are fetched from the upper 32 bits of a register file location
(bits 39-8, as shown in Figure 2.4 on the following page) or from an
immediate value in the instruction. The operands are transferred during
the first half of the cycle. The result is transferred to the upper 32 bits of a
register (with the eight LSBs zero-filled) during the second half of the
cycle. Thus the shifter can read and write the same register file location in
a single cycle.
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The X-input and Z-input are always 32-bit fixed-point values. The Y-input
is a 32-bit fixed-point value or an 8-bit field (shf8), positioned in the
register file as shown in Figure 2.4 below.

Some shifter operations produce 8-bit or 6-bit results. These results are
placed in either the shf8 field or the bit6 field (see Figure 2.5) and are sign-
extended to 32 bits. Thus the shifter always returns a 32-bit result.

shf8

715 039

039 7

32-Bit Y-Input or Result

8-Bit Y-Input or Result

Figure 2.4  Register File Fields For Shifter Instructions

2.7.2 Bit Field Deposit & Extract Instructions
The shifter’s bit field deposit and bit field extract instructions allow the
manipulation of groups of bits within a 32-bit fixed-point integer word.

The Y-input for these instructions specifies two 6-bit values, bit6 and len6,
positioned in the Ry register as shown in Figure 2.5. Bit6 and len6 are
interpreted as positive integers. Bit6 is the starting bit position for the
deposit or extract. Len6 is the bit field length, which specifies how many
bits are deposited or extracted.

039

len6

719

bit6

13

12-Bit Y-Input

Figure 2.5  Register File Fields For FDEP, FEXT Instructions
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The FDEP (field deposit) instructions take a group of bits from the input
register Rx (starting at the LSB of the 32-bit integer field) and deposit them
anywhere within the result register Rn. The bit6 value specifies the
starting bit position for the deposit. See Figure 2.6.

The FEXT (field extract) instructions extract a group of bits from anywhere
within the input register Rx and place them in the result register Rn
(aligned with the LSB of the 32-bit integer field). The bit6 value specifies
the starting bit position for the extract.

039

len6

719

bit6

13

Ry determines length of bit field to take from Rx and starting bit position for deposit in Rn

Ry

039 7

Rx

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

039 7

Rn

bit6 = starting bit position for deposit, referenced from LSB of 32-bit field

Rn=FDEP Rx BY Ry

deposit field

bit6 reference point

Figure 2.6  Bit Field Deposit Instruction
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The following field deposit instruction example is pictured in Figure 2.7:

R0=FDEP R1 BY R2;

R2

R0=FDEP R1 BY R2;

0x0000 0210 0000000000 00000000 00000010 00010000 00000000

bit6len6
len6 = 8
bit6 = 16

39 08162432

8 bits are taken from R1 and deposited in R0, starting at bit 16.
("Bit 16" is relative to reference point, the LSB of 32-bit integer field.)

R0 0x00FF 0000 00

39 08162432

00000000 11111111 00000000 00000000 00000000

reference 
point

starting bit
position for
deposit

081624

R1=0x000000FF00
R2=0x0000021000

R1 0x0000 00FF 0000000000 00000000 00000000 11111111 00000000

39 08162432

Figure 2.7  Bit Field Deposit Example
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The following field extract instruction example is pictured in Figure 2.8:

R3=FEXT R4 BY R5;

R5

R4

R3

R3=FEXT R4 BY R5;

0x8788 0000 00

0x0000 000F 00

0x0000 0217 0000000000 00000000 00000010 00010111 00000000

10000111 10000000 00000000 00000000 00000000

39 08162432

00000000 00000000 00000000 00001111 00000000

len6 = 8
bit6 = 23

8 bits are extracted from R4 and placed in R3, aligned to the LSB of the 32-bit integer field.

reference 
point

starting bit position
for extract

39 08162432

39 08162432

0816

R4=0x8788000000
R5=0x0000021700

bit6len6

Figure 2.8  Bit Field Extract Example
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2.7.3 Shifter Status Flags
The shifter returns three status flags at the end of the operation. All of
these flags appear in the ASTAT register. The SZ flag indicates if the
output is zero, the SV flag indicates an overflow, and the SS flag indicates
the sign bit in exponent extract operations.

ASTAT
Bit Name Definition
11 SV Shifter overflow of bits to left of MSB
12 SZ Shifter result zero
13 SS Shifter input sign (for exponent extract only)

Flag update occurs at the end of the cycle in which the status is generated
and is available on the next cycle. If a program writes the ASTAT register
explicitly in the same cycle that the shifter is performing an operation, the
explicit write to ASTAT supersedes any flag update caused by the shift
operation.

2.7.3.1 Shifter Zero Flag (SZ)
SZ is affected by all shifter operations. It is set whenever:

• the result of a shifter operation is zero, or
• a bit test instruction specifies a bit outside of the 32-bit fixed-point field.

SZ is otherwise cleared.

2.7.3.2 Shifter Overflow Flag (SV)
SV is affected by all shifter operations. It is set whenever:

• significant bits are shifted to the left of the 32-bit fixed-point field,
• a bit outside of the 32-bit fixed-point field is tested, set or cleared,
• a field that is partially or wholly to the left of the 32-bit fixed-point field

is extracted, or
• a LEFTZ or LEFTO operation returns a result of 32.

SV is otherwise cleared.

2.7.3.3 Shifter Sign Flag (SS)
SS is affected by all shifter operations. For the two EXP (exponent
extract) operations, it is set if the fixed-point input operand is negative
and cleared if it is positive. For all other shifter operations, SS is
cleared.
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2.7.4 Shifter Instruction Summary

Instruction Flags
SZ SV SS

c Rn = LSHIFT Rx BY Ry * * 0
c Rn = LSHIFT Rx BY <data8> * * 0
c Rn = Rn OR LSHIFT Rx BY Ry * * 0
c Rn = Rn OR LSHIFT Rx BY <data8> * * 0
c Rn = ASHIFT Rx BY Ry * * 0
c Rn = ASHIFT Rx BY<data8> * * 0
c Rn = Rn OR ASHIFT Rx BY Ry * * 0
c Rn = Rn OR ASHIFT Rx BY <data8> * * 0

Rn = ROT Rx BY RY * 0 0
Rn = ROT Rx BY <data8> * 0 0
Rn = BCLR Rx BY Ry * * 0
Rn = BCLR Rx BY <data8> * * 0
Rn = BSET Rx BY Ry * * 0
Rn = BSET Rx BY <data8> * * 0
Rn = BTGL Rx BY Ry * * 0
Rn = BTGL Rx BY <data8> * * 0
BTST Rx BY Ry * * 0
BTST Rx BY <data8> * * 0
Rn = FDEP Rx BY Ry * * 0
Rn = FDEP Rx BY <bit6>:<len6> * * 0
Rn = Rn OR FDEP Rx BY Ry * * 0
Rn = Rn OR FDEP Rx BY <bit6>:<len6> * * 0
Rn = FDEP Rx BY Ry (SE) * * 0
Rn = FDEP Rx BY <bit6>:<len6> (SE) * * 0
Rn = Rn OR FDEP Rx BY Ry (SE) * * 0
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE) * * 0
Rn = FEXT Rx BY Ry * * 0
Rn = FEXT Rx BY <bit6>:<len6> * * 0
Rn = FEXT Rx BY Ry (SE) * * 0
Rn = FEXT Rx BY <bit6>:<len6> (SE) * * 0

c Rn = EXP Rx (EX) * 0 *
c Rn = EXP Rx * 0 *

Rn = LEFTZ Rx * * 0
Rn = LEFTO Rx * * 0
Rn = FPACK Fx 0 * 0
Fn = FUNPACK Rx 0 0 0

* = Depends on data
Rn, Rx, Ry = Any register file location; bit fields used depend on instruction
Fn, Fx = Any register file location; floating-point word
c = ADSP-2100-compatible instruction
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2.8 MULTIFUNCTION COMPUTATIONS
In addition to the computations performed by each computation unit, the
ADSP-2106x also provides multifunction computations that combine
parallel operation of the multiplier and the ALU, or dual functions in the
ALU. The two operations are performed in the same way as they are in
corresponding single-function computations. Flags are also determined in
the same way as for the same single-function computations, except that in
the dual add/subtract computation the ALU flags from the two
operations are ORed together.

Each of the four input operands for computations that use both the ALU
and multiplier are constrained to a different set of four register file
locations, as summarized below and shown in Figure 2.9. For example, the
X-input to the ALU can only be R8, R9, R10 or R11. In all other operations,
the input operands may be any register file locations.

Dual Add/Subtract

Ra = Rx + Ry ,  Rs = Rx – Ry
Fa = Fx + Fy ,  Fs = Fx – Fy

Fixed-Point Multiply/Accumulate and Add, Subtract or Average

  Rm=R3-0 * R7-4 (SSFR)  , Ra=R11-8 + R15-12
  MRF=MRF + R3-0 * R7-4 (SSF)  , Ra=R11-8 – R15-12
  Rm=MRF + R3-0 * R7-4 (SSFR)  , Ra=(R11-8 + R15-12)/2
  MRF=MRF – R3-0 * R7-4 (SSF) ,
  Rm=MRF – R3-0 * R7-4 (SSFR) ,

Floating-Point Multiplication and ALU Operation

Fm=F3-0 * F7-4 , Fa=F11-8 + F15-12
Fa=F11-8 – F15-12
Fa=FLOAT R11-8 by R15-12
Ra=FIX F11-8 by R15-12
Fa=(F11-8 + F15-12)/2
Fa=ABS F11-8
Fa=MAX (F11-8, F15-12)
Fa=MIN (F11-8, F15-12)

Multiplication and Dual Add/Subtract

Rm = R3-0 * R7-4 (SSFR) , Ra = R11-8 + R15-12 , Rs = R11-8 – R15-12
Fm = F3-0 * F7-4 , Fa = F11-8 + F15-12 , Fs = F11-8 – F15-12

Rm, Ra, Rs, Rx, Ry –Any register file location; fixed-point
Fm, Fa, Fs, Fx, Fy –Any register file location; floating-point

R3-0 –R3, R2, R1, R0 F3-0 –F3, F2, F1, F0
R7-4 –R7, R6, R5, R4 F7-4 –F7, F6, F5, F4
R11-8 –R11, R10, R9, R8 F11-8 –F11, F10, F9, F8
R15-12 –R15, R14, R13, R12 F15-12 –F15, F14, F13, F12

SSFR –X-input signed, Y-input signed, Fractional input, Rounded-to-nearest output
SSF –X-input signed, Y-input signed, Fractional input
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R0 - F0

R1 - F1

R2 - F2

R3 - F3

R4 - F4

R5 - F5

R6 - F6

R7 - F7

R8 - F8

R9 - F9

R10 - F10

R11 - F11

R12 - F12

R13 - F13

R14 - F14

R15 - F15

Multiplier

ALU

Any Register

Any Register

Register File

Figure 2.9  Input Registers For Multifunction Computations (ALU & Multiplier)

2.9 REGISTER FILE
The register file provides the interface between the processor’s internal
data buses and the computation units. It also provides local storage for
operands and results. The register file consists of 16 primary registers and
16 alternate (secondary) registers. All of the data registers are 40 bits wide.
32-bit data from the computation units is always left-justified; on register
reads, the eight LSBs are ignored, and on writes, the eight LSBs are written
with zeros.

Program memory data accesses and data memory accesses to the register
file occur on the PM Data bus and DM Data bus, respectively. One PM
Data bus and/or one DM Data bus access can occur in one cycle. Transfers
between the register file and the 40-bit DM Data bus are always 40 bits
wide. The register file transfers data to and from the 48-bit PM Data bus in
the most significant 40 bits, writing zeros in the lower eight bits on
transfers to the PM Data bus.



2 Computation Units

2 – 28

If the same register file location is specified as both the source of an
operand and the destination of a result or memory fetch, the read occurs
in the first half of the cycle and the write in the second half. Thus the old
data is used as the operand before the location is updated with the new
result data. If writes to the same location take place in the same cycle, only
the write with higher precedence actually occurs. Precedence is
determined by the source of the data being written; from highest to
lowest, the precedence is:

• Data memory or universal register
• Program memory
• ALU
• Multiplier
• Shifter

The individual registers of the register file are prefixed with an “F” when
used in floating-point computations (in assembly language source code).
The registers are prefixed with an “R” when used in fixed-point
computations. The following instructions, for example, use the same
registers:

F0=F1 * F2; floating-point multiply
R0=R1 * R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer; they
only determine how the ALU, multiplier, or shifter treat the data. The F or
R may be either uppercase or lowercase; the assembler is case-insensitive.

2.9.1 Alternate (Secondary) Registers
To facilitate fast context switching, the register file has an alternate register
set. Each half of the register file—the lower half, R0 through R7, and the
upper half, R8 through R15—can independently activate its alternate
register set. Two bits in the MODE1 register select the active sets. Data can
be shared between contexts by placing the data to be shared in one half of
the register file and activating the alternate register set of the other half.
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MODE1
Bit Name Definition
7 SRRFH Register file alternate select for R15-R8 (F15-F8)
10 SRRFL Register file alternate select for R7-R0 (F7-F0)

Note that there is one cycle of effect latency from the instruction setting
the bit in MODE1 to when the alternate registers may be accessed. For
example,

BIT SET MODE1 SRRFL; /* activate alternate registers */
NOP;  /* wait until alternate registers activate */
R0=7;
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3.1 OVERVIEW
Program flow in the ADSP-2106x is most often linear; the processor
executes program instructions sequentially. Variations in this linear flow
are provided by the following program structures, illustrated in
Figure 3.1 on the following page:

• Loops. One sequence of instructions is executed several times with zero
overhead.

• Subroutines. The processor temporarily interrupts sequential flow to
execute instructions from another part of program memory.

• Jumps. Program flow is permanently transferred to another part of
program memory.

• Interrupts. A special case of subroutines in which the execution of the
routine is triggered by an event that happens at run time, not by a
program instruction.

• Idle. A special instruction that causes the processor to cease operations,
holding its current state. When an interrupt occurs, the processor
services the interrupt and continues normal execution.

Managing these program structures is the job of the ADSP-2106x’s
program sequencer. The program sequencer selects the address of the next
instruction, generating most of those addresses itself. It also performs a
wide range of related functions, such as

• incrementing the fetch address,
• maintaining stacks,
• evaluating conditions,
• decrementing the loop counter,
• calculating new addresses,
• maintaining an instruction cache, and
• handling interrupts.
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DO UNTIL

Instruction

Instruction

Instruction

Instruction

Instruction

JUMP

Instruction

Instruction

Instruction

Instruction

Instruction

N Times

n
n+1

n+2

n+3

n+4

n+5

Address:

CALL

Instruction

Instruction

Instruction

Instruction

Instruction

RTS

INTERRUPT

Instruction

Instruction

Instruction

Instruction

Instruction

RTI

Instruction IDLE

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Instruction

Linear Flow Loop Jump

Subroutine Interrupt Idle

Figure 3.1  Program Flow Variations

3.1.1 Instruction Cycle
The ADSP-2106x processes instructions in three clock cycles:

• In the fetch cycle, the ADSP-2106x reads the instruction from either the
on-chip instruction cache or from program memory.

• During the decode cycle, the instruction is decoded, generating
conditions that control instruction execution.

• In the execute cycle, the ADSP-2106x executes the instruction; the
operations specified by the instruction are completed.
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These cycles are overlapping, or pipelined, as shown in Figure 3.2. In
sequential program flow, when one instruction is being fetched, the
instruction fetched in the previous cycle is being decoded, and the
instruction fetched two cycles before is being executed. Thus, the
throughput is one instruction per cycle.

Fetch Execute

0x08

0x09

0x080x0A

0x090x0B

0x0A0x0C

Decode

0x08

0x09

0x0A

0x0B

time
(cycles)

1

2

3

4

5

Figure 3.2  Pipelined Execution Cycles

Any non-sequential program flow can potentially decrease the
ADSP-2106x’s instruction throughput. Non-sequential program
operations include:

• Program memory data accesses that conflict with instruction fetches
• Jumps
• Subroutine Calls and Returns
• Interrupts and Returns
• Loops

3.1.2 Program Sequencer Architecture
Figure 3.3, on the next page, shows a block diagram of the program
sequencer. The sequencer selects the value of the next fetch address from
several possible sources.

The fetch address register, decode address register and program counter
(PC) contain, respectively, the addresses of the instructions currently
being fetched, decoded and executed. The PC is coupled with the PC
stack, which is used to store return addresses and top-of-loop addresses.
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Figure 3.3  Program Sequencer Block Diagram

The interrupt controller performs all functions related to interrupt
processing, such as determining whether an interrupt is masked and
generating the appropriate interrupt vector address.

The instruction cache provides the means by which the ADSP-2106x can
access data in program memory and fetch an instruction (from the cache)
in the same cycle. The DAG2 data address generator (described in the next
chapter) outputs program memory data addresses.

The sequencer evaluates conditional instructions and loop termination
conditions using information from the status registers. The loop address
stack and loop counter stack support nested loops. The status stack stores
status registers for implementing nested interrupt routines.
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3.1.2.1 Program Sequencer Registers & System Registers
Table 3.1 lists the registers located in the program sequencer. The
functions of these registers are described in subsequent sections of this
chapter. All registers in the program sequencer are universal registers and
are thus accessible to other universal registers as well as to data memory.
All registers and the tops of stacks are readable; all registers except the
fetch address, decode address and PC are writeable. The PC stack can be
pushed and popped by writing the PC stack pointer, which is readable
and writeable. The loop address stack and status stack are pushed and
popped by explicit instructions.

The System Register Bit Manipulation instruction can be used to set, clear,
toggle or test specific bits in the system registers. This instruction is
described in Appendix A, Group IV–Miscellaneous Instructions.

Due to pipelining, writes to some of these registers do not take effect on
the next cycle; for example, if you write the MODE1 register to enable
ALU saturation mode, the change will not occur until two cycles after the
write. Also, some registers are not updated on the cycle immediately
following a write; it takes an extra cycle before a read of the register yields
the new value. Table 3.1 summarizes the number of extra cycles for a write
to take effect (effect latency) and for a new value to appear in the register
(read latency). A “0” indicates that the write takes effect or appears in the
register on the next cycle after the write instruction is executed. A “1”
indicates one extra cycle.

Program Sequencer Read Effect
Registers Contents Bits Latency Latency
FADDR* fetch address 24 – –
DADDR* decode address 24 – –
PC* execute address 24 – –
PCSTK top of PC stack 24 0 0
PCSTKP PC stack pointer   5 1 1
LADDR top of loop address stack 32 0 0
CURLCNTR top of loop count stack (current loop count) 32 0 0
LCNTR loop count for next DO UNTIL loop 32 0 0
System Registers
MODE1 mode control bits 32 0 1
MODE2 mode control bits 32 0 1
IRPTL interrupt latch 32 0 1
IMASK interrupt mask 32 0 1
IMASKP interrupt mask pointer (for nesting) 32 1 1
ASTAT arithmetic status flags 32 0 1
STKY sticky status flags 32 0 1
USTAT1 user-defined status flags 32 0 0
USTAT2 user-defined status flags 32 0 0

Table 3.1  Program Sequencer Registers & System Registers
* read-only



3 Program Sequencing

3 – 6

3.2 PROGRAM SEQUENCER OPERATIONS
This section gives an overview of the operation of the program sequencer.
The various kinds of program flow are defined here and described in
detail in subsequent sections.

3.2.1 Sequential Instruction Flow
The program sequencer determines the next instruction address by
examining both the current instruction being executed and the current
state of the processor. If no conditions require otherwise, the ADSP-2106x
executes instructions from program memory in sequential order by simply
incrementing the fetch address.

3.2.2 Program Memory Data Accesses
Usually, the ADSP-2106x fetches an instruction from memory on each
cycle. When the ADSP-2106x executes an instruction which requires data
to be read from or written to the same memory block in which the
instruction is stored, there is a conflict for access to that block. The
ADSP-2106x uses its instruction cache to reduce delays caused by this type
of conflict.

The first time the ADSP-2106x encounters an instruction fetch that
conflicts with a program memory data access, it must wait to fetch the
instruction on the following cycle, causing a delay. The ADSP-2106x
automatically writes the fetched instruction to the cache to prevent the
same delay from happening again. The ADSP-2106x checks the instruction
cache on every program memory data access. If the instruction needed is
in the cache, the instruction fetch from the cache happens in parallel with
the program memory data access, without incurring a delay.

3.2.3 Branches
A branch occurs when the fetch address is not the next sequential address
following the previous fetch address. Jumps, calls and returns are the
types of branches which the ADSP-2106x supports. In the program
sequencer, the only difference between a jump and a call is that upon
execution of a call, a return address is pushed onto the PC stack so that it
is available when a return instruction is later executed. Jumps branch to a
new location without allowing return.

3.2.4 Loops
The ADSP-2106x supports program loops with the DO UNTIL instruction.
The DO UNTIL instruction causes the ADSP-2106x to repeat a sequence of
instructions until a specified condition tests true.
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3.3 CONDITIONAL INSTRUCTION EXECUTION
The program sequencer evaluates conditions to determine whether to
execute a conditional instruction and when to terminate a loop. The
conditions are based on information from the arithmetic status (ASTAT)
register, mode control 1 (MODE1) register, flag inputs and loop counter.
The arithmetic ASTAT bits are described in the previous chapter,
Computation Units.

Each condition that the ADSP-2106x evaluates has an assembler
mnemonic and a unique code which is used in a conditional instruction’s
opcode. For most conditions, the program sequencer can test both true
and false states, e.g., equal to zero and not equal to zero. Table 3.2, on the
following page, defines the 32 condition and termination codes.

The bit test flag (BTF) is bit 18 of the ASTAT register. This flag is set (or
cleared) by the results of the BIT TST and BIT XOR forms of the
System Register Bit Manipulation instruction, which can be used to test the
contents of the ADSP-2106x’s system registers. This instruction is
described in Appendix A, Group IV–Miscellaneous instructions. After BTF
is set by this instruction, it can be used as the condition in a conditional
instruction (with the mnemonic TF; see Table 3.2).

The two conditions that do not have complements are LCE/NOT LCE
(loop counter expired/not expired) and TRUE/FOREVER. The
interpretation of these condition codes is determined by context; TRUE
and NOT LCE are used in conditional instructions, FOREVER and LCE in
loop termination. The IF TRUE construct creates an unconditional
instruction (the same effect as leaving out the condition entirely). A DO
FOREVER instruction executes a loop indefinitely, until an interrupt or
reset intervenes.

The LCE condition (loop counter expired) is most commonly used in a
DO UNTIL instruction. Because the LCE condition checks the value of the
loop counter (CURLCNTR), an IF NOT LCE conditional instruction
should not follow a write to CURLCNTR from memory. Otherwise,
because the write occurs after the NOT LCE test, the condition is based on
the old CURLCNTR value.

The bus master condition (BM) indicates whether the ADSP-2106x is the
current bus master in a multiprocessor system. To enable the use of this
condition, bits 17 and 18 of the MODE1 register must both be zeros;
otherwise the condition is always evaluated as false.
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No. Mnemonic Description True If
0 EQ ALU equal zero AZ = 1
1 LT ALU less than zero See Note 1 below
2 LE ALU less than or equal zero See Note 2 below
3 AC ALU carry AC = 1
4 AV ALU overflow AV = 1
5 MV Multiplier overflow MV = 1
6 MS Multiplier sign MN = 1
7 SV Shifter overflow SV = 1
8 SZ Shifter zero SZ = 1
9 FLAG0_IN Flag 0 input FI0 = 1
10 FLAG1_IN Flag 1 input FI1 = 1
11 FLAG2_IN Flag 2 input FI2 = 1
12 FLAG3_IN Flag 3 input FI3 = 1
13 TF Bit test flag BTF = 1
14 BM Bus Master
15 LCE Loop counter expired CURLCNTR = 1

(DO UNTIL term)
15 NOT LCE Loop counter not expired CURLCNTR ≠ 1

(IF cond)
Bits 16-30 are the complements of bits 0-14
16 NE ALU not equal to zero AZ = 0
17 GE ALU greater than or equal zero See Note 3 below
18 GT ALU greater than zero See Note 4 below
19 NOT AC Not ALU carry AC = 0
20 NOT AV Not ALU overflow AV = 0
21 NOT MV Not multiplier overflow MV = 0
22 NOT MS Not multiplier sign MN = 0
23 NOT SV Not shifter overflow SV = 0
24 NOT SZ Not shifter zero SZ = 0
25 NOT FLAG0_IN Not Flag 0 input FI0 = 0
26 NOT FLAG1_IN Not Flag 1 input FI1 = 0
27 NOT FLAG2_IN Not Flag 2 input FI2 = 0
28 NOT FLAG3_IN Not Flag 3 input FI3 = 0
29 NOT TF Not bit test flag BTF = 0
30 NBM Not Bus Master
31 FOREVER Always False (DO UNTIL) always
31 TRUE Always True (IF) always

Table 3.2  Condition & Loop Termination Codes

Notes:
1. [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 1
2. [AF and (AN xor (AV and ALUSAT)) or (AF and AN) ] or AZ = 1
3. [AF and (AN xor (AV and ALUSAT)) or (AF and AN and AZ)] = 0
4. [AF and (AN xor (AV and ALUSAT)) or (AF and AN)] or AZ = 0
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3.4 BRANCHES (CALL, JUMP, RTS, RTI)
The CALL instruction initiates a subroutine. Both jumps and calls transfer
program flow to another memory location, but a call also pushes a return
address onto the PC stack so that it is available when a return from
subroutine instruction is later executed. Jumps branch to a new location
without allowing return.

A return causes the processor to branch to the address stored at the top of
the PC stack. There are two types of returns: return from subroutine (RTS)
and return from interrupt (RTI). The difference between the two is that the
RTI instruction not only pops the return address off the PC stack, but also:
1) pops the status stack if the ASTAT and MODE1 status registers have
been pushed (if the interrupt was IRQ2-0, the timer interrupt, or the VIRPT
vector interrupt), and 2) clears the appropriate bit in the interrupt latch
register (IRPTL) and the interrupt mask pointer (IMASKP).

There are a number of parameters you can specify for branches:

• Jumps, calls and returns can be conditional. The program sequencer can
evaluate any one of several status conditions to decide whether the
branch should be taken. If no condition is specified, the branch is
always taken.

• Jumps and calls can be indirect, direct, or PC-relative. An indirect branch
goes to an address supplied by one of the data address generators,
DAG2. Direct branches jump to the 24-bit address specified in an
immediate field in the branch instruction. PC-relative branches also use a
value specified in the instruction, but the sequencer adds this value to
the current PC value to compute the destination address.

• Jumps, calls and returns can be delayed or nondelayed. In a delayed
branch, the two instructions immediately after the branch instruction
are executed; in a nondelayed branch, the program sequencer suppresses
the execution of those two instructions (NOPs are performed instead).

• The  JUMP (LA) instruction causes an automatic loop abort if it occurs
inside a loop. When the loop is aborted, the PC and loop address stacks
are popped once, so that if the loop was nested, the stacks still contain
the correct values for the outer loop. JUMP (LA) is similar to the break
instruction of the C programming language used to prematurely
terminate execution of a loop. (Note: JUMP (LA) may not be used in the
last three instructions of a loop.)
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3.4.1 Delayed & Nondelayed Branches
An instruction modifier (DB) indicates that a branch is delayed; otherwise,
it is nondelayed. If the branch is nondelayed, the two instructions after the
branch, which are in the fetch and decode stages, are not executed (see
Figure 3.4); for a call, the decode address (the address of the instruction
after the call) is the return address. During the two no-operation cycles,
the first instruction at the branch address is fetched and decoded.

Figure 3.4  Nondelayed Branches
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In a delayed branch, the processor continues to execute two more
instructions while the instruction at the branch address is fetched and
decoded (see Figure 3.5); in the case of a call, the return address is the
third address after the branch instruction. A delayed branch is more
efficient, but it makes the code harder to understand because of the
instructions between the branch instruction and the actual branch.
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Because of the instruction pipeline, a delayed branch instruction and the
two instructions that follow it must be executed sequentially. Instructions
in the two locations immediately following a delayed branch instruction
may not be any of the following:

• Other Jumps, Calls or Returns
• Pushes or Pops of the PC stack
• Writes to the PC stack or PC stack pointer
• DO UNTIL instruction
• IDLE or IDLE16 instruction

These exceptions are checked by the ADSP-21000 Family assembler.

The ADSP-2106x does not process an interrupt in between a delayed
branch instruction and either of the two instructions that follow, since
these three instructions must be executed sequentially. Any interrupt that
occurs during these instructions is latched but not processed until the
branch is complete.

A read of the PC stack or PC stack pointer immediately after a delayed call
or return is permitted, but it will show that the return address on the PC
stack has already been pushed or popped, even though the branch has not
occurred yet.

3.4.2 PC Stack
The PC stack holds return addresses for subroutines and interrupt service
routines and top-of-loop addresses for loops. The PC stack is 30 locations
deep by 24 bits wide.

The PC stack is popped during returns from interrupts (RTI), returns from
subroutines (RTS) and terminations of loops. The stack is full when all
entries are occupied, empty when no entries are occupied, and overflowed
if a call occurs when the stack is already full. The full and empty flags are
stored in the sticky status register (STKY). The full flag causes a maskable
interrupt.

A PC stack interrupt occurs when 29 locations of the PC stack are filled
(the almost full state). Entering the interrupt service routine then
immediately causes a push on the PC stack, making it full. Thus the
interrupt is a stack full interrupt, even though the condition that triggers it
is the almost full condition. The other stacks in the sequencer, the loop
address stack, loop counter stack and status stack, are provided with
overflow interrupts that are activated when a push occurs while the stack
is in a full state.
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The program counter stack pointer (PCSTKP) is a readable and writeable
register that contains the address of the top of the PC stack. The value of
PCSTKP is zero when the PC stack is empty, 1, 2, ..., 30 when the stack
contains data, and 31 when the stack is overflowed. A write to PCSTKP
takes effect after a one-cycle delay. If the PC stack is overflowed, a write to
PCSTKP has no effect.

3.5 LOOPS (DO UNTIL)
The DO UNTIL instruction provides for efficient software loops, without
the overhead of additional instructions to branch, test a condition, or
decrement a counter. Here is a simple example of an ADSP-2106x loop:

LCNTR=30, DO label UNTIL LCE;
R0=DM(I0,M0), F2=PM(I8,M8);
R1=R0-R15;

label: F4=F2+F3;

When the ADSP-2106x executes a DO UNTIL instruction, the program
sequencer pushes the address of the last loop instruction and the
termination condition for exiting the loop (both specified in the
instruction) onto the loop address stack. It also pushes the top-of-loop
address, which is the address of the instruction following the DO UNTIL
instruction, on the PC stack.

Because of the instruction pipeline (fetch, decode and execute cycles), the
processor tests the termination condition (and, if the loop is counter-
based, decrements the counter) before the end of the loop so that the next
fetch either exits the loop or returns to the top based on the test condition.
Specifically, the condition is tested when the instruction two locations
before the last instruction in the loop (at location e – 2, where e is the end-
of-loop address) is executed. If the termination condition is not satisfied,
the processor fetches the instruction from the top-of-loop address stored
on the top of the PC stack. If the termination condition is true, the
sequencer fetches the next instruction after the end of the loop and pops
the loop stack and PC stack. Loop operation is shown in Figure 3.6, on the
next page.
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Figure 3.6  Loop Operation

3.5.1 Restrictions & Short Loops
This section describes several programming restrictions for loops. It also
explains restrictions applying to short (one- and two-instruction) loops,
which require special consideration because of the three-instruction
fetch-decode-execute pipeline.

3.5.1.1 General Restrictions
• Nested loops cannot terminate on the same instruction.
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• The last three instructions of a loop cannot be any branch (jump, call, or
return); otherwise, the loop may not be executed correctly. This also
applies to one-instruction loops and two-instruction loops with only
one iteration. There is one exception to this rule, a non-delayed CALL
(no DB modifier) paired with an RTS (LR), return from subroutine with
loop reentry modifier. The non-delayed CALL may be used as one of
the last three instructions of a loop (but not in a one-instruction loop or
a two-instruction, single-iteration loop.)

The RTS (LR) instruction ensures proper reentry into a loop. In counter-
based loops, for example, the termination condition is checked by
decrementing the current loop counter (CURLCNTR) during execution
of the instruction two locations before the end of the loop. A non-
delayed call may then be used in one of the last two locations, providing
an RTS (LR) instruction is used to return from the subroutine. The loop
reentry (LR) modifier assures proper reentry into the loop, by
preventing the loop counter from being decremented again (i.e. twice
for the same loop iteration).

3.5.1.2 Counter-Based Loops
The third-to-last instruction of a counter-based loop (at e – 2, where e is the
end-of-loop address) cannot be a write to the counter from memory.

Short loops terminate in a special way because of the instruction (fetch-
decode-execute) pipeline. Counter-based loops of one or two instructions
are not long enough for the sequencer to check the termination condition
two instructions from the end of the loop. In these short loops, the
sequencer has already looped back when the termination condition is
tested. The sequencer provides special handling to avoid overhead (NOP)
cycles if the loop is iterated a minimum number of times. The detailed
operation is shown in Figures 3.7 and 3.8 (on the following page). For no
overhead, a loop of length one must be executed at least three times and a
loop of length two must be executed at least twice.

Loops of length one that iterate only once or twice and loops of length two
that iterate only once incur two cycles of overhead because there are two
aborted instructions after the last iteration to clear the instruction pipeline.

Processing of an interrupt that occurs during the last iteration of a
one-instruction loop that executes once or twice, a two-instruction loop
that executes once, or the cycle following one of these loops (which is a
NOP) is delayed by one cycle. Similarly, in a one-instruction loop that
iterates at least three times, processing is delayed by one cycle if the
interrupt occurs during the third-to-last iteration.
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3.5.1.3 Non-Counter-Based Loops
A non-counter-based loop is one in which the loop termination condition
is something other than LCE. When a non-counter-based loop is the outer
loop of a series of nested loops, the end address of the outer loop must be
located at least two addresses after the end address of the inner loop.

The  JUMP (LA) instruction is used to prematurely abort execution of a
loop. When this instruction is located in the inner loop of a series of nested
loops and the outer loop is non-counter-based, the address jumped to
cannot be the last instruction of the outer loop. The address jumped to
may, however, be the next-to-last instruction (or any earlier).
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Non-counter-based short loops terminate in a special way because of the
fetch-decode-execute instruction pipeline:

• In a three-instruction loop, the termination condition is tested when the
top of loop instruction is executed. When the condition becomes true,
the sequencer completes one full pass of the loop before exiting.

• In a two-instruction loop, the termination condition is checked during
the last (second) instruction. If the condition becomes true when the first
instruction is executed, it tests true during the second and one more full
pass is completed before exiting. If the condition becomes true during
the second instruction, however, two more full passes occur before the
loop exit.

• In a one-instruction loop, the termination condition is checked every
cycle. When the condition becomes true, the loop executes three more
times before exiting.
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3.5.2 Loop Address Stack
The loop address stack is six levels deep by 32 bits wide. The 32-bit word
of each level consists of a 24-bit loop termination address, a 5-bit
termination code, and a 2-bit loop type code:

Bits Value
0-23 Loop termination address
24-28 Termination code
29 reserved (always reads 0)
30-31 Loop type code:

00    arithmetic condition-based (not LCE)
01    counter-based, length 1
10    counter-based, length 2
11    counter-based, length > 2

The loop termination address, termination code and loop type code are
stacked when a DO UNTIL or PUSH LOOP instruction is executed. The
stack is popped two instructions before the end of the last loop iteration or
when a POP LOOP instruction is issued. A stack overflows if a push
occurs when all entries in the loop stack are occupied. The stack is empty
when no entries are occupied. The overflow and empty flags are in the
sticky status register (STKY). Overflow causes a maskable interrupt.

The LADDR register contains the top of the loop address stack. It is
readable and writeable over the DM Data bus. Reading and writing
LADDR does not move the loop address stack pointer; a stack push or
pop, performed with explicit instructions, moves the stack pointer.
LADDR contains the value 0xFFFF FFFF when the loop address stack is
empty.

Because the termination condition is checked two instructions before the
end of the loop, the loop stack is popped before the end of the loop on the
final iteration. If LADDR is read at either of these instructions, the value
will no longer be the termination address for the loop.

A jump out of a loop pops the loop address stack (and the loop count
stack if the loop is counter-based) if the Loop Abort (LA) modifier is
specified for the jump. This allows the loop mechanism to continue to
function correctly. Only one pop is performed, however, so the loop abort
cannot be used to jump more than one level of loop nesting.
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3.5.3 Loop Counters And Stack
The loop counter stack is six levels deep by 32 bits wide. The loop counter
stack works in synchronization with the loop address stack; both stacks
always have the same number of locations occupied. Thus, the same
empty and overflow status flags apply to both stacks.

The ADSP-2106x program sequencer operates two separate loop counters:
the current loop counter (CURLCNTR), which tracks iterations for a loop
being executed, and the loop counter (LCNTR), which holds the count
value before the loop is executed. Two counters are needed to maintain
the count for an outer loop while setting up the count for an inner loop.

3.5.3.1 CURLCNTR
The top entry in the loop counter stack always contains the loop count
currently in effect. This entry is the CURLCNTR register, which is
readable and writeable over the DM Data bus. A read of CURLCNTR
when the loop counter stack is empty gives the value 0xFFFF FFFF.

The program sequencer decrements the value of CURLCNTR for each
loop iteration. Because the termination condition is checked two
instruction cycles before the end of the loop, the loop counter is also
decremented before the end of the loop. If CURLCNTR is read at either of
the last two loop instructions, therefore, the value is already the count for
the next iteration.

The loop counter stack is popped two instructions before the end of the
last loop iteration. When the loop counter stack is popped, the new top
entry of the stack becomes the CURLCNTR value, the count in effect for
the executing loop. If there is no executing loop, the value of CURLCNTR
is 0xFFFF FFFF after the pop.

Writing CURLCNTR does not cause a stack push. Thus, if you write a new
value to CURLCNTR, you change the count value of the loop currently
executing. A write to CURLCNTR when no DO UNTIL LCE loop is
executing has no effect.

Because the processor must use CURLCNTR to perform counter-based
loops, there are some restrictions on when you can write CURLCNTR. As
mentioned under “Loop Restrictions,” the third-to-last instruction of a DO
UNTIL LCE loop cannot be a write to CURLCNTR from memory. The
instruction that follows a write to CURLCNTR from memory cannot be an
IF NOT LCE instruction.
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3.5.3.2 LCNTR
LCNTR is the value of the top of the loop counter stack plus one, i.e., it is
the location on the stack which will take effect on the next loop stack push.
To set up a count value for a nested loop without affecting the count value
of the loop currently executing, you write the count value to LCNTR. A
value of zero in LCNTR causes a loop to execute 232 times.

The DO UNTIL LCE instruction pushes the value of LCNTR on the loop
count stack, so that it becomes the new CURLCNTR value. This process is
illustrated in Figure 3.9. The previous CURLCNTR value is preserved one
location down in the stack.

A read of LCNTR when the loop counter stack is full results in invalid
data. When the loop counter stack is full, any data written to LCNTR is
discarded.

If you read LCNTR during the last two instructions of a terminating loop,
its value is the last CURLCNTR value for the loop.

Figure 3.9  Pushing The Loop Counter Stack For Nested Loops
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3.6 INTERRUPTS
Interrupts are caused by a variety of conditions, both internal and
external to the processor. An interrupt forces a subroutine call to a
predefined address, the interrupt vector. The ADSP-2106x assigns a
unique vector to each type of interrupt.

Externally, the ADSP-2106x supports three prioritized, individually
maskable interrupts, each of which can be either level or edge-
triggered. These interrupts are caused by an external device asserting
one of the ADSP-2106x’s interrupt inputs (IRQ2-0). Among the
internally generated interrupts are arithmetic exceptions, stack
overflows, and circular data buffer overflows.

An interrupt request is deemed valid if it is not masked, if interrupts
are globally enabled (if bit 12 in MODE1 is set), and if a higher priority
request is not pending. Valid requests invoke an interrupt service
sequence that branches to the address reserved for that interrupt.
Interrupt vectors are spaced at 8-instruction intervals; longer service
routines can be accommodated by branching to another region of
memory. Program execution returns to normal sequencing when an
RTI (return from interrupt) instruction is executed.

The ADSP-2106x core processor cannot service an interrupt unless it is
executing instructions or is in the IDLE state. IDLE and IDLE16 are a
special instructions that halt the processor core until an external
interrupt or the timer interrupt occurs.

To process an interrupt, the ADSP-2106x’s program sequencer
performs the following actions:

1. Outputs the appropriate interrupt vector address.

2. Pushes the current PC value (the return address) on the PC stack.

3. If the interrupt is either an external interrupt (IRQ2-0), the internal timer
interrupt, or the VIRPT multiprocessor vector interrupt, the program
sequencer pushes the current value of the ASTAT and MODE1 registers
onto the status stack.

4. Sets the appropriate bit in the interrupt latch register (IRPTL).

5. Alters the interrupt mask pointer (IMASKP) to reflect the current
interrupt nesting state. The nesting mode (NESTM) bit in the MODE1
register determines whether all interrupts or only lower priority
interrupts are masked during the service routine.
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At the end of the interrupt service routine, the RTI instruction causes
the following actions:

1. Returns to the address stored at the top of the PC stack.

2. Pops this value off of the PC stack.

3. Pops the status stack if the ASTAT and MODE1 status registers were
pushed (for the IRQ2-0 external interrupts, timer interrupt, or VIRPT
vector interrupt).

4. Clears the appropriate bit in the interrupt latch register (IRPTL) and
interrupt mask pointer (IMASKP).

All interrupt service routines, except for reset, should end with a
return-from-interrupt (RTI) instruction. After reset, the PC stack is
empty, so there is no return address—the last instruction of the reset
service routine should be a jump to the start of your program.

3.6.1 Interrupt Latency
The ADSP-2106x responds to interrupts in three stages:
synchronization and latching (1 cycle), recognition (1 cycle), and
branching to the interrupt vector (2 cycles). See Figure 3.10. If an
interrupt is forced in software by a write to a bit in IRPTL, it is
recognized in the following cycle, and the two cycles of branching to
the interrupt vector follow that.

For most interrupts, internal and external, only one instruction is
executed after the interrupt occurs (and before the two instructions
aborted) while the processor fetches and decodes the first instruction
of the service routine. Because of the one-cycle delay between an
arithmetic exception and the STKY register update, however, there are
two cycles after an arithmetic exception occurs before interrupt
processing starts.

The standard latency associated with the IRQ2-0 interrupts and the
multiprocessor vector interrupt are:

Interrupt Latency (minimum)
IRQ2-0 interrupts 3 cycles
Multiprocessor vector interrupt (VIRPT register) 6 cycles
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If nesting is enabled and a higher priority interrupt occurs immediately
after a lower priority interrupt, the service routine of the higher priority
interrupt is delayed by one additional cycle. (See “Interrupt Nesting &
IMASKP”.) This allows the first instruction of the lower priority interrupt
routine to be executed before it is interrupted.

Certain ADSP-2106x operations that span more than one cycle will hold
off interrupt processing. If an interrupt occurs during one of these
operations, it is synchronized and latched, but its processing is delayed.
The operations that delay interrupt processing in this way are as follows:

• a branch (call, jump, or return) and the following cycle, whether it is an
instruction (in a delayed branch) or a NOP (in a non-delayed branch)

• the first of the two cycles needed to perform a program memory data
access and an instruction fetch (when there is an instruction cache miss).

• the third-to-last iteration of a one-instruction loop

• the last iteration of a one-instruction loop executed once or twice or of a
two-instruction loop executed once, and the following cycle (which is a
NOP)

• the first of the two cycles needed to fetch and decode the first instruction
of an interrupt service routine

• waitstates for external memory accesses

• when an external memory access is required and the ADSP-2106x does not
have control of the external bus (during a host bus grant or when the
ADSP-2106x is a bus slave in a multiprocessing system)

3.6.2 Interrupt Vector Table
Table 3.3 shows all ADSP-2106x interrupts, listed according their bit
position in the IRPTL and IMASK registers (see “Interrupt Latch
Register”). Also shown is the address of the interrupt vector; each vector
is separated by eight memory locations. The addresses in the vector table
represent offsets from a base address. For an interrupt vector table in
internal memory, the base address is 0x0002 0000; for an interrupt vector
table in external memory, the base address is 0x0040 0000. The third
column in Table 3.3 lists a mnemonic name for each interrupt. These
names are provided for convenience, and are not required by the
assembler.



3Program Sequencing

3 – 25

IRPTL/
IMASK Vector Interrupt
Bit # Address* Name** Function
0 0x00 – reserved
1 0x04 RSTI Reset (read-only, non-maskable) HIGHEST PRIORITY
2 0x08 – reserved
3 0x0C SOVFI Status stack or loop stack overflow or PC stack full
4 0x10 TMZHI Timer=0 (high priority option)
5 0x14 VIRPTI Vector Interrupt
6 0x18 IRQ2I IRQ2 asserted
7 0x1C IRQ1I IRQ1 asserted
8 0x20 IRQ0I IRQ0 asserted
9 0x24 – reserved
10 0x28 SPR0I DMA Channel 0 –  SPORT0 Receive
11 0x2C SPR1I DMA Channel 1 –  SPORT1 Receive (or Link Buffer 0)
12 0x30 SPT0I DMA Channel 2 –  SPORT0 Transmit
13 0x34 SPT1I DMA Channel 3 –  SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 –  Link Buffer 2
15 0x3C LP3I DMA Channel 5 –  Link Buffer 3
16 0x40 EP0I DMA Channel 6 –  Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1I DMA Channel 7 –  Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 –  Ext. Port Buffer 2
19 0x4C EP3I DMA Channel 9 –  Ext. Port Buffer 3
20 0x50 LSRQ Link Port Service Request
21 0x54 CB7I Circular Buffer 7 overflow
22 0x58 CB15I Circular Buffer 15 overflow
23 0x5C TMZLI Timer=0 (low priority option)
24 0x60 FIXI Fixed-point overflow
25 0x64 FLTOI Floating-point overflow exception
26 0x68 FLTUI Floating-point underflow exception
27 0x6C FLTII Floating-point invalid exception
28 0x70 SFT0I User software interrupt 0
29 0x74 SFT1I User software interrupt 1
30 0x78 SFT2I User software interrupt 2
31 0x7C SFT3I User software interrupt 3 LOWEST PRIORITY

Table 3.3  Interrupt Vectors & Priority

* Offset from base address: 0x0002 0000 for interrupt vector table in internal memory,
0x0040 0000 for interrupt vector table in external memory
** These IRPTL/IMASK bit names are defined in the def21060.h include file
supplied with the ADSP-21000 Family Development Software.
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The interrupt vector table may be located in internal memory, at
address 0x0002 0000 (the beginning of Block 0), or in external memory
at address 0x0040 0000. If the ADSP-2106x’s on-chip memory is booted
from an external source, the interrupt vector table will be located in
internal memory. If, however, the ADSP-2106x is not booted (because
it will execute from off-chip memory), the vector table must be located
in the off-chip memory. See “Booting” in the System Design chapter for
details on booting mode selection.

Also, if booting is from an external EPROM or host processor, bit 16 of
IMASK (the EP0I interrupt for external port DMA Channel 6) will
automatically be set to 1 following reset—this enables the DMA done
interrupt for booting on Channel 6. IRPTL is initialized to all zeros
following reset.

The IIVT bit in the SYSCON control register can be used to override
the booting mode in determining where the interrupt vector table is
located. If the ADSP-2106x is not booted (no boot mode), setting IIVT to
1 selects an internal vector table while IIVT=0 selects an external vector
table. If the ADSP-2106x is booted from an external source (any mode
other than no boot mode), then IIVT has no effect.

3.6.3 Interrupt Latch Register (IRPTL)
The interrupt latch (IRPTL) register is a 32-bit register that latches
interrupts. It indicates all interrupts currently being serviced as well as
any which are pending. Because this register is readable and writeable,
any interrupt (except reset) can be set or cleared in software. Do not
write to the reset bit (bit 1) in IRPTL because this puts the processor
into an illegal state.

When an interrupt occurs, the corresponding bit in IRPTL is set.
During execution of the interrupt’s service routine, this bit is kept
cleared—the ADSP-2106x clears the bit during every cycle, preventing
the same interrupt from being latched while its service routine is
already executing.

A special method is provided, however, to allow the reuse of an
interrupt while it is being serviced. This method is provided by the
clear interrupt (CI) modifier of the JUMP instruction. See Section 3.6.8,
“Clearing The Current Interrupt For Reuse.”

IRPTL is cleared by a processor reset.

(Note: The bits in the IMASK register correspond exactly to those in IRPTL.)



3Program Sequencing

3 – 27

3.6.4 Interrupt Priority
The interrupt bits in IRPTL are ordered by priority. The interrupt
priority is from 0 (highest) to 31 (lowest). Interrupt priority determines
which interrupt is serviced first when more than one occurs in the
same cycle. It also determines which interrupts are nested when
nesting is enabled (see “Interrupt Nesting and IMASKP”).

The arithmetic interrupts—fixed-point overflow and floating-point
overflow, underflow, and invalid operation—are determined from
flags in the sticky status register (STKY). By reading these flags, the
service routine for one of these interrupts can determine which
condition caused the interrupt. The routine also has to clear the
appropriate STKY bit so that the interrupt is not still active after the
service routine is done.

The timer decrementing to zero causes both interrupt 4 and interrupt
14. This feature allows you to choose the priority of the timer interrupt.
Unmask the timer interrupt that has the priority you want, and leave
the other one masked. Unmasking both interrupts results in two
interrupts when the timer reaches zero. In this case the processor
services the higher priority interrupt first, then the lower priority
interrupt.

3.6.5 Interrupt Masking & Control
All interrupts except for reset can be enabled and disabled by the
global interrupt enable bit, IRPTEN, bit 12 in the MODE1 register. This
bit is cleared at reset. You must set this bit for interrupts to be enabled.

3.6.5.1 Interrupt Mask Register (IMASK)
All interrupts except for reset can be masked. Masked means the
interrupt is disabled. Interrupts that are masked are still latched (in
IRPTL), so that if the interrupt is later unmasked, it is processed.

The IMASK register controls interrupt masking. The bits in IMASK
correspond exactly to the bits in the IRPTL register. For example, bit 10
in IMASK masks or unmasks the same interrupt latched by bit 10 in
IRPTL.

– If a bit in IMASK is set to 1, its interrupt is unmasked (enabled).
– If the bit is cleared (to 0), the interrupt is masked (disabled).
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After reset, all interrupts except for the reset interrupt and the
EP0I interrupt for external port DMA Channel 6 (bit 16 of IMASK) are
masked. The reset interrupt is always non-maskable. The EP0I
interrupt is automatically unmasked after reset if the ADSP-2106x is
booting from EPROM or from a host.

3.6.5.2 Interrupt Nesting & IMASKP
The ADSP-2106x supports the nesting of one interrupt service routine
inside another; that is, a service routine can be interrupted by a higher
priority interrupt. This feature is controlled by the nesting mode bit
(NESTM) in the MODE1 register.

When the NESTM bit is a 0, an interrupt service routine cannot be
interrupted; any interrupt that occurs will be processed only after the
routine finishes. When NESTM is a 1, higher priority interrupts can
interrupt if they are not masked; lower or equal priority interrupts
cannot. The NESTM bit should only be changed outside of an interrupt
service routine or during the reset service routine; otherwise, interrupt
nesting may not work correctly.

If nesting is enabled and a higher priority interrupt occurs
immediately after a lower priority interrupt, the service routine of the
higher priority interrupt is delayed by one cycle. This allows the first
instruction of the lower priority interrupt routine to be executed before
it is interrupted.

In nesting mode, the ADSP-2106x uses the interrupt mask pointer
(IMASKP) to create a temporary interrupt mask for each level of
interrupt nesting; the IMASK value is not affected. The ADSP-2106x
changes IMASKP each time a higher priority interrupt interrupts a
lower priority service routine.

The bits in IMASKP correspond to the interrupts in order of priority,
the same as in IRPTL and IMASK. When an interrupt occurs, its bit is
set in IMASKP. If nesting is enabled, a new temporary interrupt mask
is generated by masking all interrupts of equal or lower priority to the
highest priority bit set in IMASKP (and keeping higher priority
interrupts the same as in IMASK). When a return from an interrupt
service routine (RTI) is executed, the highest priority bit set in IMASKP
is cleared, and again a new temporary interrupt mask is generated by
masking all interrupts of equal or lower priority to the highest priority
bit set in IMASKP. The bit set in IMASKP that has the highest priority
always corresponds to the priority of the interrupt being serviced.
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If nesting is not enabled, the processor masks out all interrupts and
IMASKP is not used, although IMASKP is still updated to create a
temporary interrupt mask.

IRPTL is updated, but the ADSP-2106x does not vector to an interrupt
that occurs while its service routine is already executing. It waits until
the RTI completes before vectoring to the service routine again.

3.6.6 Status Stack Save & Restore
For low-overhead interrupt servicing, the ADSP-2106x automatically
saves and restores the status and mode contexts of the interrupted
program. The three external interrupts (IRQ2-0), the timer interrupt,
and the VIRPT vector interrupt cause an automatic push of ASTAT
and MODE1 onto the status stack, which is five levels deep. These
registers are automatically popped from the status stack by the return
from interrupt instruction, RTI (and by the JUMP (CI) instruction,
described below in “Clearing The Current Interrupt For Reuse”).

➠ Only IRQ2-0, timer, and VIRPT interrupts cause a push of the
status stack. All other interrupts require an explicit save and
restore of the appropriate registers to memory.

Pushing ASTAT and MODE1 preserves the status and control bit
settings so that if the service routine alters these bits, the original
settings are automatically restored upon the return from interrupt.

Note, however, that the FLAG3-0 bits in ASTAT are not affected by
status stack pushes and pops; the values of these bits carry over from
the main program to the service routine and from the service routine
back to the main program.

The top of the status stack contains the current values of ASTAT and
MODE1. Reading and writing these registers does not move the stack
pointer. The stack pointer is moved, however, by explicit PUSH and
POP instructions.

3.6.7 Software Interrupts
The ADSP-2106x provides software interrupts that emulate interrupt
behavior but are activated through software instead of hardware.
Setting one of bits 28-31 in IRPTL, with either a BIT SET instruction or
a write to IRPTL, activates a software interrupt. The ADSP-2106x
branches to the corresponding interrupt routine if that interrupt is not
masked and interrupts are enabled.
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3.6.8 Clearing The Current Interrupt For Reuse
Normally the ADSP-2106x ignores and does not latch an interrupt that
reoccurs while its service routine is already executing. When the
interrupt initially occurs, the corresponding bit in IRPTL is set. During
execution of the service routine, this bit is kept cleared—the
ADSP-2106x clears the bit during every cycle, preventing the same
interrupt from being latched while its service routine is already
executing.

The clear interrupt (CI) modifier of the JUMP instruction, however,
allows the reuse of an interrupt while it is being serviced. This can be
useful in systems that require fast interrupt response and low interrupt
latency. The JUMP (CI) instruction should be located within the
interrupt service routine. JUMP (CI) clears the status of the current
interrupt without leaving the interrupt service routine, reducing the
interrupt routine to a normal subroutine—this allows the interrupt to
occur again, as a result of a different event or task in the ADSP-2106x
system.

The JUMP (CI) instruction reduces an interrupt service routine to a
normal subroutine by clearing the appropriate bit in the interrupt latch
register (IRPTL) and interrupt mask pointer (IMASKP) and popping
the status stack. The ADSP-2106x then stops automatically clearing the
interrupt’s latch bit (in IRPTL) in every cycle, allowing the interrupt to
occur again.

When returning from a subroutine which has been reduced from an
interrupt service routine with a JUMP (CI) instruction, the (LR)
modifier of the RTS instruction must be used (in case the interrupt
occurred during the last two instructions of a loop). Refer to “General
Restrictions” in Section 3.5, “Loops”, for a description of the RTS (LR)
instruction.

The following example shows an interrupt service routine that is
reduced to a subroutine with the (CI) modifier:

instr1;               {interrupt entry from main program}
JUMP(PC,3) (DB,CI);   {clear interrupt status}
instr3;
instr4;
instr5;
RTS (LR);       {use LR modifier with return from subroutine}
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Note that the JUMP(PC,3)(DB,CI) instruction actually only
continues linear execution flow by jumping to the location PC + 3
(instr5), with the two intervening instructions (instr3, instr4) being
executed because of the delayed branch (DB). This JUMP instruction is
only an example—a JUMP (CI) can be to any location.

3.6.9 External Interrupt Timing & Sensitivity
Each of the ADSP-2106x’s three external interrupts, IRQ2-0, can be
either level- or edge-triggered.

The ADSP-2106x samples interrupts once every CLKIN cycle. Level-
sensitive interrupts are considered valid if sampled active (low). A
level-sensitive interrupt must go inactive (high) before the processor
returns from the interrupt service routine. If a level-sensitive interrupt
is still active when the processor samples it, the processor treats it as a
new request, repeating the same interrupt routine without returning to
the main program (assuming no higher priority interrupts are active).

Edge-triggered interrupt requests are considered valid if sampled high
in one cycle and low in the next. The interrupt can stay active
indefinitely. To request another interrupt, the signal must go high,
then low again.

Edge-triggered interrupts require less external hardware compared to
level-sensitive requests since there is never a need to negate the
request. However, multiple interrupting devices may share a single
level-sensitive request line on a wired-OR basis, which allows for easy
system expansion.

A bit for each interrupt in the MODE2 register indicates the sensitivity
mode of each interrupt.

MODE2
Bit Name Definition
0 IRQ0E 1=edge-sensitive; 0=level-sensitive
1 IRQ1E 1=edge-sensitive; 0=level-sensitive
2 IRQ2E 1=edge-sensitive; 0=level-sensitive
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3.6.9.1 Asynchronous External Interrupts
The processor accepts interrupts that are asynchronous to the ADSP-
2106x clock; that is, an interrupt signal may change at any time. An
asynchronous interrupt must be held low at least one CLKIN cycle to
guarantee that it is sampled. Synchronous interrupts need only meet
the setup and hold time requirements relative to the rising edge of
CLKIN, as specified in the ADSP-2106x Data Sheet.

3.6.10 Multiprocessor Vector Interrupts (VIRPT)
Vector interrupts are used for interprocessor commands in multiple-
processor systems. When an external processor writes an address to
the VIRPT register a vector interrupt is caused. The external processor
may be either another ADSP-2106x or a host.

When the vector interrupt is serviced, the ADSP-2106x automatically
pushes the status stack and begins executing the service routine
located at the address specified in VIRPT. The lower 24 bits of VIRPT
contain the address; the upper 8 bits may be optionally used as data to
be read by the interrupt service routine. At reset, VIRPT is initialized to
its standard address in the ADSP-2106x’s interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which
are NOPs. When the RTI (return from interrupt) instruction is reached
in the service routine, the ADSP-2106x automatically pops the status
stack.

The VIPD bit in SYSTAT reflects the status of the VIRPT register. If
VIRPT is written while a previous vector interrupt is pending, the new
vector address replaces the pending one. If VIRPT is written while a
previous vector interrupt is being serviced, the new vector address is
ignored and no new interrupt is triggered. If the ADSP-2106x writes to
its own VIRPT register it is ignored.

To use the ADSP-2106x’s vector interrupt feature, external processors
can take the following sequence of actions:

1. Poll the VIRPT register until it reads a certain token value (i.e. zero).
2. Write the vector interrupt service routine address to VIRPT.
3. When the service routine is finished, it writes the token back into

VIRPT to indicate that it is finished and that another vector interrupt
can be initiated.
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3.7 TIMER
The ADSP-2106x includes a programmable interval timer which can
generate periodic interrupts. You program the timer by writing values
to its two registers and you control timer operation through a bit in the
MODE2 register. An external output, TIMEXP, signals to other devices
that the timer count has expired.

Figure 3.11 shows a block diagram of the timer. Two universal
registers, TPERIOD and TCOUNT, control the timer interval.

Register Function Width
TPERIOD Timer Period Register 32 bits
TCOUNT Timer Counter Register 32 bits

TPERIOD

TCOUNT

MUX

Decrement

 DM Data BUS

Interrupt; assert TIMEXP;
reload from TPERIOD

32

32

32

32

32

32

TCOUNT=0?
Y

N

Figure 3.11  Timer Block Diagram
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The TCOUNT register contains the timer counter. The timer
decrements the TCOUNT register each clock cycle. When the
TCOUNT value reaches zero, the timer generates an interrupt and
asserts the TIMEXP output high for 4 cycles (when the timer is
enabled). See Figure 3.12. On the clock cycle after TCOUNT reaches
zero, the timer automatically reloads TCOUNT from the TPERIOD
register.

The TPERIOD value specifies the frequency of timer interrupts. The
number of cycles between interrupts is TPERIOD + 1. The maximum
value of TPERIOD is 232 – 1, so if the clock cycle is 50 ns, the maximum
interval between interrupts is 214.75 seconds.

CLOCK

TCOUNT = 1 TCOUNT = 0

TIMEXP

Figure 3.12  TIMEXP Signal

3.7.1 Timer Enable/Disable
To start and stop the timer, you enable and disable it with the TIMEN
bit in the MODE2 register. With the timer disabled, you load TCOUNT
with an initial count value and TPERIOD with the number of cycles for
the interval you want. Then you enable the timer when you want to
begin the count.

At reset, the timer enable bit in the MODE2 register is cleared, so the
timer is disabled. When the timer is disabled, it does not decrement the
TCOUNT register and it generates no interrupts. When the timer
enable bit is set, the timer starts decrementing the TCOUNT register at
the end of the next clock cycle. If the bit is subsequently cleared, the
timer is disabled and stops decrementing TCOUNT after the next clock
cycle (see Figure 3.13).

MODE2
Bit Name Definition
5 TIMEN Timer enable
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CLOCK

Set TIMEN in MODE2

TCOUNT = N TCOUNT = N TCOUNT = N – 1

CLOCK

Clear TIMEN in MODE2

TCOUNT = M – 1 TCOUNT = M – 2 TCOUNT = M – 2

Timer Active

Timer Inactive

TIMER DISABLE

TIMER ENABLE

Figure 3.13  Timer Enable & Disable

3.7.2 Timer Interrupts
When the value of TCOUNT reaches zero, the timer generates two
interrupts, one with a relatively high priority, the other with a
relatively low priority. At reset, both are masked. You should unmask
only the timer interrupt that has the priority you want, and leave the
other masked.

IRPTL  Interrupt Vector
Bit Name Address Function
4 TMZHI 0x10 Timer =0 (high priority option)
23 TMZLI 0x5C Timer=0 (low priority option)

Interrupt priority determines which interrupt is serviced first when
two occur in the same cycle. It also affects interrupt nesting—when
nesting is enabled, only higher priority interrupts can interrupt a
service routine in progress.
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Like other interrupts, the timer interrupt requires two cycles to fetch
and decode the first instruction of the service routine. The service
routine begins executing four cycles after the timer count reaches zero,
as shown in Figure 3.14.

CLOCK

TCOUNT = 1 TCOUNT = 0

PM 
ADDRESS

NOP
(FETCH)

NOP
(DECODE)

EXECUTE
FIRST

SERVICE
ROUTINE

INSTRUCTION

TIMER
INTERRUPT

VECTOR

Figure 3.14  Timer Interrupt Timing

3.7.3 Timer Registers
Both the TPERIOD and TCOUNT registers can be read and written by
universal register transfers. Reading the registers has no effect on the
timer. An explicit write to TCOUNT has priority over both the loading
of TCOUNT from TPERIOD and the decrementing of TCOUNT.

Neither TCOUNT nor TPERIOD are affected by a reset, so you should
initialize both registers after reset, before enabling the timer.

3.8 STACK FLAGS
The STKY status register maintains stack full and stack empty flags for
the PC stack as well as overflow and empty flags for the status stack
and loop stack. Unlike other bits in STKY, several of these flag bits are
not “sticky.” They are set by the occurrence of the corresponding
condition and are cleared when the condition is changed (by a push,
pop, or processor reset).

STKY Sticky/
Bit Name Definition Not Sticky Cleared By
21 PCFL PC stack full Not sticky Pop
22 PCEM PC stack empty Not sticky Push
23 SSOV Status stack overflow Sticky RESET
24 SSEM Status stack empty Not sticky Push
25 LSOV Loop stacks* overflow Sticky RESET
26 LSEM Loop stacks* empty Not sticky Push
* Loop address stack and loop counter stack
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The status stack flags are read-only. Writes to the STKY register have
no effect on these bits.

The overflow and full flags are provided for diagnostic aid only and
are not intended to allow recovery from overflow. Status stack or loop
stack overflow or PC stack full causes an interrupt.

The empty flags facilitate stack saves to memory. You monitor the
empty flag when saving a stack to memory to know when all values
have been transferred. The empty flags do not cause interrupts because
an empty stack is an acceptable condition.

3.9 IDLE & IDLE16
IDLE and IDLE16 are special instructions that halt the ADSP-2106x
core processor in a low-power state until an external interrupt (IRQ2-0),
timer interrupt, DMA interrupt, or VIRPT vector interrupt occurs.
When the processor executes an IDLE instruction, it fetches one more
instruction at the current fetch address and then suspends operation.
The ADSP-2106x’s I/O processor is unaffected by the IDLE
instruction—any DMA transfers to or from internal memory will
continue uninterrupted.

The processor’s internal clock continues to run during IDLE, as well as
the timer (if it is enabled). When an external interrupt (IRQ2-0), timer
interrupt, DMA interrupt, or VIRPT vector interrupt occurs, the
processor responds normally. After two cycles needed to fetch and
decode the first instruction of the interrupt service routine, the
processor continues executing instructions normally.

On the ADSP-21061 only, the IDLE16 instruction executes a NOP and puts
the processor in a low power state. IDLE16 is a lower power version of the
IDLE instruction. This instruction halts the processor like the IDLE
instruction; in this case, the internal clock runs at 1/16th the rate of
CLKIN. The ADSP-21061's I/O processor continues to function, but all
operations occur at 1/16th the rate. All internal memory transfers require
an extra 15 cycles. The serial clocks and frame syncs (if being sourced by
the ADSP-21061) are divided down by a factor of 16 during IDLE16.
Similarly, all Host accesses take 16 times longer to complete. The
processor remains in the low power state until an interrupt occurs.

After returning from the interrupt, execution continues at the
instruction following the IDLE or IDLE16 instruction.
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3.10 INSTRUCTION CACHE
The ADSP-2106x’s on-chip instruction cache is a 2-way, set-associative
cache with entries for 32 instructions. Operation of the cache is
transparent to the programmer. The ADSP-2106x caches only
instructions that conflict with program memory data accesses (over the
PM Data Bus, with the address generated by DAG2 on the
PM Address Bus). This feature makes the cache considerably more
efficient than a cache that loads every instruction, since typically only a
few instructions must access data from a block of program memory.

Because of the three-stage instruction pipeline, if the instruction at
address n requires a program memory data access, there is a conflict
with the instruction fetch at address n+2, assuming sequential
execution. It is this fetched instruction (n+2) that is stored in the
instruction cache, not the instruction requiring the program memory
data access.

If the instruction needed is in the cache, a “cache hit” occurs—the
cache provides the instruction while the program memory data access
is performed. If the instruction needed is not in the cache, a “cache
miss” occurs, and the instruction fetch (from memory) takes place in
the cycle following the program memory data access, incurring one
cycle of overhead. This instruction is loaded into the cache, if the cache
is enabled and not frozen, so that it is available the next time the same
instruction (requiring program memory data) is executed.

3.10.1 Cache Architecture
Figure 3.15 shows a block diagram of the instruction cache. The cache
contains 32 entries. An entry consists of a register pair containing an
instruction and its address. Each entry has a “valid” bit which is set if
the entry contains a valid instruction.

The entries are divided into 16 sets (numbered 15-0) of two entries
each, entry 0 and entry 1. Each set has an LRU (Least Recently Used)
bit whose value indicates which of the two entries contains the least
recently used instruction (1=entry 1, 0=entry 0).

Every possible instruction address is mapped to a set in the cache by
its 4 LSBs. When the processor needs to fetch an instruction from the
cache, it uses the 4 address LSBs as an index to a particular set. Within
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Set 0

Set 1

Set 2

Set 13

Set 14

Set 15

LRU Bit Valid BitInstruction Address

Figure 3.15  Instruction Cache Architecture

that set, it checks the addresses of the two entries to see whether either
contains the needed instruction. A cache hit occurs if the instruction is
found, and the LRU bit is updated if necessary to indicate the entry
that did not contain the needed instruction.

A cache miss occurs if neither entry in the set contains the needed
instruction. In this case, a new instruction and its address are loaded
into the least recently used entry of the set that matches the 4 LSBs of
the address. The LRU bit is toggled to indicate that the other entry in
the set is now the least recently used.

Because instructions are mapped to sets by their 4 address LSBs, there
is no need to store these bits in the cache; the 4 LSBs are implied by the
set in which the instruction has been stored. Only bits 23-4 are actually
stored in a cache entry.

3.10.2 Cache Efficiency
Usually, cache operation and its efficiency is not a concern. However,
there are some situations that can degrade cache efficiency and can be
remedied easily in your program.
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When a cache miss occurs, the needed instruction is loaded into the
cache so that if the same instruction is needed again, it will be there
(i.e. a cache hit will occur). However, if another instruction whose
address is mapped to the same set displaces this instruction, there will
be a cache miss instead. The LRU bits help to reduce this possibility
since at least two other instructions mapped to the same set must be
needed before an instruction is displaced. If three instructions mapped
to the same set are all needed repeatedly, cache efficiency (i.e. “hit
rate”) can go to zero. The solution is to move one or more of the
instructions to a new address, one that is mapped to a different set.

An example of cache-inefficient code is shown in Figure 3.16. The
program memory data access at address 0x101 in the tight loop causes
the instruction at 0x103 to be cached (in set 3). Each time the
subroutine sub is called, the program memory data accesses at 0x201
and 0x211 displace this instruction by loading the instructions at 0x203
and 0x213 into set 3. If the subroutine is called only rarely during the
loop execution, the impact will be minimal. If the subroutine is called
frequently, the effect will be noticeable. If the execution of the loop is
time-critical, it would be advisable to move the subroutine up one
location (starting at 0x201), so that the two cached instructions end up
in set 4 instead of 3.

Address
0x0100 lcntr=1024, do tight until lce;
0x0101 r0=dm(i0,m0), pm(i8,m8)=f3;
0x0102 r1=r0-r15;
0x0103 if eq call (sub);
0x0104 f2=float r1;
0x0105 f3=f2*f2;
0x0106 tight: f3=f3+f4;
0x0107 pm(i8,m8)=f3;
•
•
•
0x0200 sub: r1=R13;
0x0201 r14=pm(i9,m9);
•
•
•
0x0211 pm(i9,m9)=r12;
•
•
•
0x021F rts;

Figure 3.16  Cache-Inefficient Code
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3.10.3 Cache Disable & Cache Freeze
Freezing the cache prevents any changes to its contents—a cache miss
will not result in a new instruction being stored in the cache. Disabling
the cache stops its operation completely; all instruction fetches
conflicting with program memory data accesses are delayed by the
access. These functions are selected by the CADIS (cache enable/
disable) and CAFRZ (cache freeze) bits in the MODE2 register:

MODE2
Bit Name Function
4 CADIS Cache Disable
19 CAFRZ Cache Freeze

After reset the cache is cleared, containing no instructions, and is
unfrozen and enabled.

An instruction containing a program memory data access must not be
placed directly after a cache enable or cache disable instruction—the
ADSP-2106x must wait at least one cycle before executing the PM data
access. A NOP may be inserted to accomplish this.
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4.1 OVERVIEW
The ADSP-2106x’s two data address generators (DAGs) simplify the task of
organizing data by maintaining pointers into memory. The DAGs allow the
processor to address memory indirectly; that is, an instruction specifies a
DAG register containing an address instead of the address value itself.

Data address generator 1 (DAG1) generates 32-bit addresses on the
DM Address Bus. Data address generator 2 (DAG2) generates 24-bit
addresses on the PM Address Bus. The basic architecture for both DAGs
is shown in Figure 4.1 on the following page.

The DAGs also support in hardware some functions commonly used in
digital signal processing algorithms. Both DAGs support circular data
buffers, which require advancing a pointer repetitively through a range of
memory. Both DAGs can also perform a bit-reversing operation, which
outputs the bits of an address in reversed order.

4.2 DAG REGISTERS
Each DAG has four types of registers: Index (I), Modify (M), Base (B), and
Length (L) registers.

An I register acts as a pointer to memory, and an M register contains the
increment value for advancing the pointer. By modifying an I register with
different M values, you can vary the increment as needed.

B registers and L registers are used only for circular data buffers. A
B register holds the base address (i.e. the first address) of a circular buffer.
The same-numbered L register contains the number of locations in (i.e. the
length of) the circular buffer.
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Each DAG contains eight of each type of register:

DAG1 registers (32-bit) DAG2 registers (24-bit)
B0-B7 B8-B15
I0-I7 I8-I15
M0-M7 M8-M15
L0-L7 L8-L15

L
Registers

8 x N

DM Data Bus

ADD

I
Registers

8 x N

M
Registers

8 x N

MODULUS
LOGIC

N N

N

FROM
INSTRUCTION

B
Registers

8 x N

MUX

MUX

N N

BIT-REVERSE

(Optional)

N

UPDATE

N

N

DAG1:  N=32
DAG2:  N=24

BIT-REVERSE

I0 (DAG1) or I8 (DAG2) only 
(Optional)

24

DM Address Bus (DAG1)

PM Address Bus (DAG2)

32

Figure 4.1  Data Address Generator Block Diagram
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4.2.1 Alternate DAG Registers
Each DAG register has an alternate (secondary) register for context
switching. For activating alternate registers, each DAG is organized into
high and low halves, as shown in Figure 4.2. The high half of DAG1
contains the I, M, B and L registers numbered 4-7, and the low half, the
registers numbered 0-3. Likewise, the high half of DAG2 consists of
registers 12-15, and the low half consists of registers 8-11.

I0

I1

I2
I3

I4
I5

I6

I7

I8
I9

I10

I11

I12

I13

I15

I14

M0

M1

M2
M3

M4
M5

M6

M7

M8
M9

M10

M11

M12

M13

M15

M14

L0

L1

L2
L3

L4
L5

L6

L7

L8
L9

L10

L11

L12

L13

L15

L14

B0

B1

B2
B3

B4
B5

B6

B7

B8
B9

B10

B11

B12

B13

B15

B14

DAG1 Registers (Data Memory)

DAG2 Registers (Program Memory)

SRD1H

SRD1L

SRD2H

SRD2L

MODE1
Select Bit

Figure 4.2  Alternate DAG Registers
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Several control bits in the MODE1 register determine for each half
whether primary or alternate registers are active (0=primary registers,
1=alternate registers):

MODE1
Bit Name Definition
3 SRD1H DAG1 alternate register select (4-7)
4 SRD1L DAG1 alternate register select (0-3)
5 SRD2H DAG2 alternate register select (12-15)
6 SRD2L DAG2 alternate register select (8-11)

This grouping of alternate registers lets you pass pointers between
contexts in each DAG.

4.3 DAG OPERATION
DAG operations include:

• address output with pre-modify or post-modify,
• modulo addressing (for circular buffers), and
• bit-reversed addressing

Short word addresses (for 16-bit data) are right-shifted by one bit before
being output onto the DM Address Bus. This allows internal memory to
use the address directly. (See “16-Bit Short Words” in the Memory chapter
of this manual for details on short word addresses.)

4.3.1 Address Output & Modification
The processor can add an offset (modifier), either an M register or an
immediate value, to an I register and output the resulting address; this is
called a pre-modify without update operation. Or it can output the I register
value as it is, and then add an M register or immediate value to form a
new I register value. This is a post-modify operation. These operations are
compared in Figure 4.3. The pre-modify operation does not change the
value of the I register. The width of an immediate modifier depends on
the instruction; it can be as large as the width of the I register. The L
register and modulo logic do not affect a pre-modified address—
pre-modify addressing is always linear, not circular.

Pre-modify addressing operations must not change the memory space of
the address; for example, pre-modification of an address in ADSP-2106x
Internal Memory Space should not generate an address in External
Memory Space. Refer to the Memory chapter for information on the
ADSP-2106x memory map.
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I

M

I

M

++

I + MI + M

1. output 2. update

output

PM (Mx, Ix) PM (Ix, Mx)

PRE-MODIFY
Without I Register Update

POST-MODIFY 
With I Register Update

DM (Ix, Mx)DM (Mx, Ix)

Figure 4.3  Pre-Modify & Post-Modify Operations

4.3.1.1 DAG Modify Instructions
In ADSP-2106x assembly language, pre-modify and post-modify
operations are distinguished by the positions of the index and modifier
(M register or immediate value) in the instruction. The I register before the
modifier indicates a post-modify operation. If the modifier comes first, a
pre-modify without update operation is indicated. The following
instruction, for example, accesses the program memory location with an
address equal to the value stored in I15, and the value I15 + M12 is written
back to the I15 register:

R6 = PM(I15,M12); Indirect addressing with post-modify

If the order of the I and M registers is switched, however,

R6 = PM(M12,I15); Indirect addressing with pre-modify

the instruction accesses the location in program memory with an address
equal to I15 + M12, but does not change the value of I15.
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Any M register can modify any I register within the same DAG (DAG1 or
DAG2). Thus,

DM(M0,I2) = TPERIOD;

is a legal instruction that accesses the data memory location M0 + I2;
however,

DM(M0,I14) = TPERIOD;

is not a legal instruction because the I and M registers belong to different
DAGs.

4.3.1.2 Immediate Modifiers
The magnitude of an immediate value that can modify an I register
depends on the instruction type and whether the I register is in DAG1 or
DAG2. DAG1 modify values can be up to 32 bits wide; DAG2 modify
values can be up to 24 bits wide. Some instructions with parallel
operations only allow modify values up to 6 bits wide. Here are two
examples:

32-bit modifier:

R1=DM(0x40000000,I1); DM address = I1 + 0x4000 0000

6-bit modifier:
F6=F1+F2,PM(I8,0x0B)=ASTAT; PM address = I8,  I8 = I8 + 0x0B

4.3.2 Circular Buffer Addressing
The DAGs provide for addressing of locations within a circular data
buffer. A circular buffer is a set of memory locations that stores data. An
index pointer steps through the buffer, being post-modified and updated
by the addition of a specified value (positive or negative) for each step. If
the modified address pointer falls outside the buffer, the length of the
buffer is subtracted from or added to the value, as required to wrap the
index pointer back to the start of the buffer (see Figure 4.4). There are no
restrictions on the value of the base address for a circular buffer.

Circular buffer addressing must use M registers for post-modify of I
registers, not pre-modify; for example:

F1=DM(I0,M0); Use post-modify addressing for circular buffers,
F1=DM(M0,I0);  not pre-modify.
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Figure 4.4  Circular Data Buffers

4.3.2.1 Circular Buffer Operation
You set up a circular buffer in assembly language by initializing an
L register with a positive, nonzero value and loading the corresponding
(same-numbered) B register with the base (starting) address of the buffer.
The corresponding I register is automatically loaded with this same
starting address.

On the first post-modify access using the I register, the DAG outputs the I
register value on the address bus and then modifies it by adding the
specified M register or immediate value to it. If the modified value is
within the buffer range, it is written back to the I register. If the value is
outside the buffer range, the L register value is subtracted (or, if the
modify value is negative, added) first.
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If M is positive,

Inew = Iold + M if Iold + M < Buffer base + length (end of buffer)
Inew = Iold + M – L if Iold + M ≥ Buffer base + length (end of buffer)

If M is negative,

Inew = Iold + M if Iold + M ≥ Buffer base (start of buffer)
Inew = Iold + M + L if Iold + M < Buffer base (start of buffer)

4.3.2.2 Circular Buffer Registers
All four types of DAG registers are involved in the operation of a circular
buffer:

• The I register contains the value which is output on the address bus.

• The M register contains the post-modify amount (positive or negative)
which is added to the I register at the end of each memory access. The
M register can be any M register in the same DAG as the I register and
does not have to have the same number. The modify value can also be an
immediate number instead of an M register. The magnitude of the
modify value, whether from an M register or immediate, must be less
than the length (L register) of the circular buffer.

• The L register sets the size of the circular buffer and thus the address
range that the I register is allowed to circulate through. L must be
positive and cannot have a value greater than 231 – 1 (for L0-L7) or
223 – 1 (for L8-L15). If an L register’s value is zero, its circular buffer
operation is disabled.

• The B register, or the B register plus the L register, is the value that the
modified I value is compared to after each access. When the B register is
loaded, the corresponding I register is simultaneously loaded with the
same value. When I is loaded, B is not changed. B and I can be read
independently.

4.3.2.3 Circular Buffer Overflow Interrupts
There is one set of registers in each DAG that can generate an interrupt upon
circular buffer overflow (i.e. address wraparound). In DAG1, the registers
are B7, I7, L7, and in DAG2 they are B15, I15, L15. Circular buffer overflow
interrupts can be used to implement a ping-pong (i.e. swap I/O buffer
pointers) routine, for example.
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Whenever a circular buffer addressing operation using these registers
causes the address in the I register to be incremented (or decremented)
past the end (or start) of the circular buffer, an interrupt is generated.
Depending on which register set was used, the interrupt is either:

DAG Registers Vector Symbolic
Interrupt To Use Address Name*
DAG1 circular buffer 7 overflow B7, I7, L7 0x54 CB7I
DAG2 circular buffer 15 overflow B15, I15, L15 0x58 CB15I

* These symbols are defined in the #include file def21060.h .  See “Symbol
Definitions File (def21060.h)” at the end of Appendix E, Control/Status Registers.

Specifically, an interrupt is generated during an instruction’s address
post-modify when:

(for M<0) I + M < B
(for M≥0) I + M ≥ B + L

The interrupts can be masked by clearing the appropriate bit in IMASK.

There may be situations where you want to use I7 or I15 without circular
buffering but with the circular buffer overflow interrupts unmasked. To
disable the generation of these interrupts, set the B7/B15 and L7/L15
registers to values that assure the conditions that generate interrupts (as
specified above) never occur. For example, when accessing the address
range 0x1000–0x2000, your program could set B=0x0000 and L=0xFFFF.
Note that setting the L register to zero will not achieve the desired results.

If you are using either of the circular buffer overflow interrupts, you
should avoid using the corresponding I register(s) (I7, I15) in the rest of
your program, or be careful to set the B and L registers as described above
to prevent spurious interrupt branching.

The STKY status register includes two bits that also indicate the
occurrence of a circular buffer overflow, bit 17 (DAG1 circular buffer 7
overflow) and bit 18 (DAG2 circular buffer 15 overflow). These bits are
“sticky”—they remain set until explicitly cleared.
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4.3.3 Bit-Reversal
Bit-reversal of memory addresses can be performed in two ways: by
enabling the bit-reverse mode on DAG1 or DAG2 and using a specific I
register (I0 or I8), or by using the explicit bit-reverse instruction (BITREV).

4.3.3.1 Bit-Reverse Mode
In bit-reverse mode, DAG1 bit-reverses 32-bit address values output from
I0 and DAG2 bit-reverses 24-bit address values output from I8. These
modes are enabled by the BR0 and BR8 bits in the MODE1 register. Only
address values from I0 or I8 are bit-reversed. This mode affects both pre-
modify and post-modify operations.

MODE1
Bit Name Definition
0   BR8 Bit-reverse mode for I8 (DAG2)
1   BR0 Bit-reverse mode for I0 (DAG1)

Bit-reversal occurs at the output of the DAG and does not affect the value
in I0 or I8. In the case of a post-modify operation, the update value is not
bit-reversed.

Example:

I0=0x80400000;
R1=DM(I0,3); DM address=0x201,  I0=0x80400003

4.3.3.2 Bit-Reverse Instruction
The BITREV instruction modifies and bit-reverses addresses in any DAG
index register (I0-I15) without actually accessing memory. This instruction
is independent of the bit-reverse mode. The BITREV instruction adds a
32-bit immediate value to a DAG1 index register (or a 24-bit immediate
value to a DAG2 index register), bit-reverses the result and writes the
result back to the same index register.

Example:

BITREV(I1,4); I1 = Bit-reverse of  (I1+4)
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4.4 DAG REGISTER TRANSFERS
DAG registers are part of the universal register set and may be written to
from memory, from another universal register, or from an immediate field
in an instruction. DAG register contents may be written to memory or to a
universal register.

Transfers between 32-bit DAG1 registers and the 40-bit DM Data Bus are
aligned to bits 39-8 of the bus. When 24-bit DAG2 registers are read to the
40-bit DM Data Bus, M register values are sign-extended to 32 bits and I,
L, and B register values are zero-filled to 32 bits. The results are aligned to
bits 39-8 of the DM Data Bus. When DAG2 registers are written from the
DM Data Bus, bits 31-8 are transferred and the rest are ignored. Figure 4.5
illustrates these transfers.

0739

DAG1 Register  (7-0)

0739

8 ZEROS

DAG2  I, L, or B Register  (15-8)

23

8 ZEROS

0739

8 ZEROS

DAG2  M Register  (15-8)

23

8 SIGN BITS

0739

DAG2  M Register  (15-8)

23

8 ZEROS

Figure 4.5  DAG Register Transfers
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4.4.1 DAG Register Transfer Restrictions
For certain instruction sequences involving transfers to and from DAG
registers, an extra (NOP) cycle is automatically inserted by the processor (1).
Certain other sequences cause incorrect results and are not allowed by the
ADSP-21000 Family assembler (2).

1.) When an instruction that loads a DAG register is followed by an
instruction that uses any register in the same DAG for data addressing,
modify instructions, or indirect jumps, the ADSP-2106x inserts an extra
(NOP) cycle between the two instructions. This happens because the same
bus is needed by both operations in the same cycle, therefore the second
operation must be delayed.

Example:

L2=8;
DM(I0,M1)=R1;

Because L2 is in the same DAG as I0 (and M1), an extra cycle is inserted after
the write to L2.

2.) The following types of instructions can execute on the processor, but
cause incorrect results; these instructions are disallowed by the ADSP-21000
Family assembler:

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the index
register. The instruction writes the wrong data to memory or updates the
wrong index register.

Examples:

DM(M2,I1)=I0; or DM(I1,M2)=I0;

• An instruction that loads a DAG register from memory using indirect
addressing from the same DAG, with update of the index register. The
instruction will either load the DAG register or update the index register,
but not both.

Example:

L2=DM(I1,M0);
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Memory

5.1 OVERVIEW
ADSP-2106x processors contain a large dual-ported memory for on-
chip program and data storage. On these processors, the two memory
blocks are named Block 0 and Block 1. A comparison of on-chip
memory (SRAM) available on ADSP-2106x processors is as follows:

On-chip SRAM ADSP-21060 ADSP-21062 ADSP-21061
Total Size 4 MBit 2 MBit 1 MBit
Block size (2) 2 MBit 1 MBit 0.5 MBit
# of 48-bit words 40K 20K 8K
    (per block)
# of 32-bit words 64K 32K 16K
     (per block)
# of 16-bit words 128K 64K 32K
     (per block)

Addressing of up to 4 gigawords of additional, off-chip memory is also
provided through the external port of ADSP-2106x processors.

32-bit memory words are used for single-precision IEEE floating-point
data. 48-bit words contain either instructions or 40-bit extended-
precision floating-point data. In addition, the ADSP-2106x supports a
16-bit short word format which can be used for integer or fractional
data values.

The ADSP-2106x has three internal buses connected to its dual-ported
memory, the PM bus, DM bus, and I/O bus. The PM bus and DM bus
share one port of the memory and the I/O bus is connected to the
other port. The ADSP-2106x’s internal PM and DM buses are
controlled by the processor core while the I/O bus is controlled by the
ADSP-2106x’s on-chip I/O processor. The I/O bus allows concurrent
data transfers between either memory block and the ADSP-2106x’s
communication ports (link ports, serial ports, and external port).
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With this dual-ported structure, accesses of internal memory by the
processor core and I/O processor are independent and transparent to
one another. Each block of memory can be accessed by both the core
processor and the I/O processor in every cycle—no extra cycles are
incurred when both the core and the I/O processor access the same
block.
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Figure 5.1  ADSP-2106x Block Diagram
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Both the core processor and I/O processor have access to the external bus
(DATA47-0 , ADDR31-0), via the ADSP-2106x’s external port. The external
port provides access to off-chip memory and peripherals; it can also access
the internal memory of other ADSP-2106xs connected in a multiprocessing
system. This busing scheme allows the ADSP-2106x to have a single
unified address space in which both code and data is stored.

External memory can be either 16, 32, or 48 bits wide; the ADSP-2106x’s
DMA controller automatically packs external data into the appropriate
word width, either 48-bit instructions or 32-bit data.

Note that the ADSP-2106x’s internal memory is divided into two blocks,
called Block 0 and Block 1, while the external memory space is divided
into four banks.

5.1.1 Dual Data Accesses
The ADSP-2100 and ADSP-21000 Family DSPs traditionally define
memory as either program memory, for instructions, or as data memory,
for data storage. The processors’ modified Harvard architecture, however,
allows data storage within program memory. The ADSP-2106x retains the
ADSP-21000 Family’s separate on-chip buses for program memory and
data memory, but does not pre-define the two on-chip memory blocks as
either PM or DM. This allows the memory to be freely configured to store
different combinations of code and data.

The independent PM and DM buses allow the ADSP-2106x’s processor
core to simultaneously access instructions and data from both memory
blocks. If the core tries to access two words from the same memory block
(over the same bus) for a single instruction, however, an extra cycle is
needed. Instructions are fetched over the PM bus or from the instruction
cache. Data can be accessed over both the DM bus (using DAG1) and the
PM bus (using DAG2). Figure 5.1 shows the memory bus connections on
the ADSP-2106x.

The ADSP-2106x’s two memory blocks can be configured to store different
combinations of 48-bit instruction words and 32-bit data words.
Maximum efficiency (i.e. single-cycle execution of dual-data-access
instructions), though, is achieved when one block contains a mix of
instructions and PM bus data while the other block contains DM bus data
only.
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This means that for an instruction requiring two data accesses, the
PM bus (and DAG2) is used to access data from the mixed block, the
DM bus (and DAG1) is used to access data from the data-only block,
and the instruction to be fetched must be available from the cache. Another
way to partition the data is to store one operand in external memory
and the other in either block of internal memory.

In typical DSP applications such as digital filters and FFTs, two data
operands must be accessed for some instructions. In a digital filter, for
example, the filter coefficients can be stored in 32-bit words in the
same memory block that contains the 48-bit instructions, while 32-bit
data samples are stored in the other block. This provides single-cycle
execution of dual-data-access instructions, with the filter coefficients
being accessed by DAG2 over the PM bus and the instruction available
from the cache.

In summary, to assure single-cycle, parallel accesses of two on-chip
memory locations, the following conditions must be met:

• The two addresses must be located in different memory blocks
(i.e. one in Block 0, one in Block 1).

• One address must be generated by DAG1 and the other by DAG2.
• The DAG1 address must not point to the same memory block that

instructions are being fetched from.
• The instruction should be of the form:

compute, Rx=DM(I0 -I7,M0 -M7), Ry=PM(I8 -I15,M8 -M15);

(Note that reads and writes may be intermixed.)

Remember that a cache miss will occur if the fetched instruction is not
valid during any DAG2 transfer.

5.1.2 Instruction Cache & PM Bus Data Accesses
Normally the ADSP-2106x fetches instructions over the 48-bit PM Data
bus. When, however, the processor executes a dual-data-access
instruction that requires data to be read or written over the PM bus,
there is a conflict for use of the PM Data bus. The ADSP-2106x’s
on-chip instruction cache can resolve this conflict by providing the
instruction (once it is stored in the cache, the first time it is executed).
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By providing the instruction, the cache lets the core processor access
data over the PM bus—the core processor fetches the instruction from
the cache instead of from memory so that the processor can
simultaneously transfer data over the PM bus. Only the instructions
whose fetches conflict with PM bus data accesses are cached.

The instruction cache allows data to be accessed over the PM bus,
without any extra cycles, whenever the instruction to be fetched is
already cached (i.e. within a loop). An extra cycle will always occur in
the event of a cache miss, even if the instruction and data are in
different memory blocks but use the same bus.

5.1.3 On-Chip Memory Buses & Address Generation
The ADSP-2106x has three internal buses connected to its dual-ported
memory, the PM bus, DM bus, and I/O bus. The PM bus and DM bus
share one port of the memory and the I/O bus is connected to the
other port.

The ADSP-2106x’s program sequencer and data address generators
(DAGs) supply memory addresses. The program sequencer supplies
24-bit PM bus addresses for instruction fetches. The DAGs supply
addresses for data reads and writes. (See Figure 5.1.)

The two data address generators allow indirect addressing of data.
DAG1 supplies 32-bit addresses over the DM bus. DAG2 supplies
24-bit addresses for PM bus data accesses. The two DAGs can generate
simultaneous addresses—over the PM bus and DM bus—for dual
operand read/writes, if the instruction to be fetched is available from
the cache.

The 48-bit PM Data bus is used to transfer instructions (and data), and
the 40-bit DM Data bus is used to transfer data. The PM Data bus is
48 bits wide to accommodate the 48-bit instruction width. When this
bus is used to transfer 32-bit floating-point or 32-bit fixed-point data,
the data is aligned to the upper 32 bits of the bus.

The 40-bit DM Data bus provides a path for the contents of any register
in the processor to be transferred to any other register or to any
external memory location in a single cycle. Data addresses come from
one of two sources: an absolute value specified in the instruction
(direct addressing), or the output of a data address generator
(indirect addressing). 32-bit fixed-point and 32-bit single-precision
floating-point data is also aligned to the upper 32 bits of the DM Data
bus.
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The PX bus connect registers permit data to be passed between the
48-bit PM Data bus and the 40-bit DM Data bus or between the 40-bit
register file and the PM Data bus. These registers contain hardware to
handle the 8-bit width difference.

The three memory buses—PM, DM, and I/O—are multiplexed at the
processor’s external port to create a single off-chip data bus (DATA47-0)
and address bus (ADDR31-0).

5.1.4 Bus Exchange (PX Registers)
The PX register provides an internal bus exchange path for transferring
data between the 48-bit PM Data Bus and the 40-bit DM Data Bus. The
48-bit PX register consists of PX1 and PX2. PX1 is 16 bits wide and PX2 is
32 bits wide. PX1 and PX2 can be used separately in instructions and can
also be treated as the combined PX register. The alignment of PX1 and
PX2 within PX is shown below in Figure 5.2.

Figure 5.2  PX Register

Either PX1, PX2, or the combined PX register can be used in universal
register-to-register transfers or in memory-to-register (and register-to-
memory) transfers. These transfers may take place over the PM Data Bus
or DM Data Bus. The PX register(s) can be read from or written to the
PM Data Bus, the DM Data Bus, or the register file.

Data is aligned in PX register transfers as shown in Figure 5.3. When
data is transferred between PX2 and the PM Data Bus, the upper 32 bits
of the PM Data Bus are used. On transfers from PX2, the 16 LSBs of the
PM Data Bus are filled with zeros. When data is transferred between
PX1 and the PM Data Bus, the middle 16 bits of the PM Data Bus are
used. On transfers from PX1, bits 15-0 and bits 47-32 are filled with
zeros.
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When the combined PX register is used for PM Data Bus transfers, the
entire 48 bits can be read from or written to program memory.
PX2 contains the 32 MSBs of the 48-bit word while PX1 contains the
16 LSBs. (PM Bus data is left-justified in the 48-bit word.)

To write a 48-bit word to the memory location named Port1 over the
PM Data Bus, for example, the following instructions could be used:

R0=0x9A00;      /* load R0 with 16 LSBs */
R1=0x12345678;  /* load R1 with 32 MSBs */
PX1=R0;
PX2=R1;
PM(Port1)=PX;   /* write 16 LSBs on PM bus 15-0 */
                /* and 32 MSBs on PM bus 47-16  */

When data is transferred between PX2 and the DM Data Bus or the
register file, the upper 32 bits of the DM Data Bus (and register file) are
used. On transfers from PX2, the eight LSBs are filled with zeros. (See
Figure 5.3.) When data is transferred between PX1 and the DM Data
Bus or the register file, bits 23-8 of the DM Data Bus (and register file)
are used. On transfers from PX1, bits 7-0 and bits 39-24 are filled with
zeros.

When the combined PX register is used for DM Data Bus transfers, the
upper 40 bits of PX are read or written. For transfers to or from internal
memory, the lower 8 bits are filled with zeroes. For transfers to or from
external memory, the entire 48 bits are transferred.

5.1.5 Memory Block Accesses & Conflicts
Any of the ADSP-2106x’s three internal buses, PM, DM, and I/O, may
need to access one of the memory blocks at any given time. Each block
of dual-ported memory can be accessed by both the ADSP-2106x’s core
processor (over either the PM or DM bus) and by the I/O processor
(over the I/O bus) in every cycle—no extra cycles are incurred when
both the core and I/O processor access the same block.

A conflict occurs, however, when two core accesses to a single block
are attempted in the same cycle, for example over both the PM bus (by
the program sequencer or DAG2) and DM bus (by DAG1). When this
happens, an extra cycle is incurred—the DM bus access completes first
and the PM bus access completes in the following (extra) cycle.



5Memory

5 – 9

5.2 ADSP-2106x MEMORY MAP
The ADSP-2106x memory map, shown in Figure 5.5, is divided into three
sections: internal memory space, multiprocessor memory space, and
external memory space. Internal memory space consists of the
ADSP-2106x’s on-chip memory and resources. Multiprocessor memory
space corresponds to the on-chip memory and resources of other
ADSP-2106x’s in a multiprocessor system. External memory space
corresponds to off-chip memory and memory-mapped I/O devices.

The address boundaries of each memory space are:

Internal memory 0x0000 0000 to 0x0007 FFFF
Multiprocessor memory 0x0008 0000 to 0x003F FFFF
External memory 0x0040 0000 to 0xFFFF FFFF

Addresses generated by the ADSP-2106x for DM bus and PM bus accesses
are shown below in Figure 5.4. DM bus addresses are generated by DAG1,
and PM bus addresses are generated either by the ADSP-2106x’s program
sequencer (for instructions) or by DAG2 (for data).

16 0182131

SME

16 01821

SME

(generated by DAG1)

(generated by Program Sequencer or  DAG2)

23

Note: Off-chip PM bus addresses are MSB-extended with zeros
to create 32-bit external  bus addresses (ADDR31-0).

DM Bus Addresses

PM Bus Addresses

Figure 5.4  Memory Addresses (E = external, M = Multiprocessor, S = Internal)
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The ADSP-2106x’s I/O processor monitors the addresses of all
memory accesses and routes them to the appropriate memory space.
The E (external), M (multiprocessing), and S fields are decoded by the I/O
processor as shown below. If the E bit field is all zeros, the M and S fields
become active and are decoded.

Field Value Meaning
E non-zero –Address in external memory

all zeros –Address in the processor’s own internal memory or in
the internal memory of another ADSP-2106x
(M and S activated)

M 000 –Address in the processor’s own internal memory
non-zero – M = ID of another ADSP-2106x
111 –Broadcast write to internal memory of all ADSP-2106xs

S 00 –Address of an IOP register
01 –Address in Normal Word Addressing space
1x –Address in Short Word Addressing space

(x = MSB of short word address)

5.2.1 ADSP-21060 Internal Memory Space
The internal memory space of the ADSP-21060 is shown in Figure 5.6.
This memory has three address regions:

• I/O Processor (IOP) Registers 0x0000 0000 to 0x0000 00FF
• Normal Word Addresses 0x0002 0000 to 0x0003 FFFF
     Interrupt Vector Table 0x0002 0000 to 0x0002 007F
• Short Word Addresses 0x0004 0000 to 0x0007 FFFF

The I/O Processor (IOP) Registers are 256 memory-mapped registers
that control the system configuration of the ADSP-2106x as well as
various I/O operations. The address space between the IOP registers
and normal word addresses, locations 0x0000 0100 to 0x0001 FFFF,
does not exist as usable memory and should not be written to.

Memory block 0 starts at the beginning of normal word space, at
address 0x0002 0000. Block 1 starts at the middle of normal word
space, at address 0x0003 0000.
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Figure 5.6  ADSP-21060 Internal Memory Space
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0x0000 0000 – 0x0000 00FF IOP Registers (control/status registers)
0x0000 0100 – 0x0001 FFFF Reserved addresses

0x0002 0000 – 0x0002 FFFF Block 0 – Normal Word Addressing (32-bit, 48-bit words)
0x0003 0000 – 0x0003 FFFF Block 1 – Normal Word Addressing (32-bit, 48-bit words)

0x0004 0000 – 0x0005 FFFF Block 0 – Short Word Addressing (16-bit words)
0x0006 0000 – 0x0007 FFFF Block 1 – Short Word Addressing (16-bit words)

Table 5.1  ADSP-21060 Internal Memory Addresses

The normal word address space and short word address space actually
access the same physical memory. For example, the normal word address
0x0002 0000 represents the same locations as short word addresses
0x0004 0000 and 0x0004 0001 (for a 32-bit data access in normal word
space).

The ADSP-21060’s 4 megabits of on-chip memory can be accessed with
either normal word addressing, short word addressing, or
combinations of both. The range of normal word addresses, from
0x0002 0000 through 0x0003 FFFF, is exactly 4 megabits when each
word is 32 bits wide (128K x 32). (The normal word addressing range
also accesses 4 megabits of 48-bit wide instruction words, 80K x 48, but
with non-existant addresses at the end of Block 0 and Block 1—see
“Internal Memory Organization & Word Size” for further details on
physical mapping of 48-bit words and 32-bit words.) The range of
short word addresses, from 0x0004 0000 through 0x0007 FFFF, is also
exactly 4 megabits (256K x 16).

Using normal word addressing, each 2-Mbit block of memory contains
64K addressable locations (for 32-bit data words). Using short word
addressing, each 2-Mbit block contains 128K addressable locations.

Normal word and short word addresses can be generated on all three
on-chip buses: DM, PM, and I/O. Short word addresses only occur on
the I/O bus when an external device is reading or writing to the
ADSP-2106x’s internal memory, and not for DMA operations.

Short word addressing increases the amount of 16-bit data that can be
stored in internal memory, and also allows MSW (most significant
word) and LSW (least significant word) addressing of 32-bit data
words. Short word addressing of 16-bit data words is useful in array
signal processing systems. The 16-bit short words are extended into
32-bit integers when they are read from memory, and may be either
sign-extended or zero-filled (as determined by the SSE bit in the
MODE1 register).
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The ADSP-2106x’s interrupt vector table is located at the start of
normal word addressing, 0x0002 0000 – 0x0002 007F, when the
processor is booted from an external source (EPROM, host port, or link
port booting). If the processor is in “no boot” mode, the interrupt
vector table is located in external memory, 0x0040 0000 to 0x0040 007F.
If the IIVT bit of the SYSCON register is set, the interrupt table resides
in internal memory regardless of booting mode.

5.2.2 ADSP-21062 Internal Memory Space
The ADSP-21062 is a memory-variant version of the ADSP-21060. The
two processors include the following amounts of on-chip SRAM:

Total Maximum Maximum
Processor Memory Data Memory Program Memory
ADSP-21060 4 Mbits 128K x 32 80K x 48
ADSP-21062 2 Mbits 64K x 32 40K x 48

The on-chip memory of the ADSP-21062 is divided into two equal
blocks, Block 0 and Block 1, in the same way as the ADSP-21060’s. The
ADSP-21062’s multiprocessor memory space and external memory
space are exactly the same as that of the ADSP-21060.

On the ADSP-21062, Block 0 starts at normal word address
0x0002 0000. Block 1 starts at normal word address 0x0002 8000. The
memory map for the ADSP-21062’s 2 Mbits of internal memory is
shown in Figure 5.7a and in Table 5.2a below. The Block 1 Alias address
ranges will access the actual Block 1, 0x0002 8000 – 0x0002 FFFF in
normal word address space and 0x0005 0000 – 0x0005 FFFF in short
word address space.

0x0000 0000 – 0x0000 00FF IOP Registers (control/status registers)
0x0000 0100 – 0x0001 FFFF Reserved addresses

0x0002 0000 – 0x0002 7FFF Block 0 – Normal Word Addressing
0x0002 8000 – 0x0002 FFFF Block 1 – Normal Word Addressing
0x0003 0000 – 0x0003 7FFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0003 8000 – 0x0003 FFFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing

0x0004 0000 – 0x0004 FFFF Block 0 – Short Word Addressing
0x0005 0000 – 0x0005 FFFF Block 1 – Short Word Addressing
0x0006 0000 – 0x0006 FFFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0007 0000 – 0x0007 FFFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing

Table 5.2a  ADSP-21062 Internal Memory Addresses



5Memory

5 – 15

Figure 5.7a  ADSP-21062 Internal Memory Space
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5.2.3 ADSP-21061 Internal Memory Space
The ADSP-21061 is a memory-variant version of the ADSP-21060. The
two processors include the following amounts of on-chip SRAM:

Total Maximum Maximum
Processor Memory Data Memory Program Memory
ADSP-21060 4 Mbits 128K x 32 80K x 48
ADSP-21062 1 Mbits 32K x 32 16K x 48

The on-chip memory of the ADSP-21061 is divided into two equal
blocks, Block 0 and Block 1, in the same way as the ADSP-21060’s. The
ADSP-21061’s multiprocessor memory space and external memory
space are exactly the same as that of the ADSP-21060.

On the ADSP-21061, Block 0 starts at normal word address
0x0002 0000. Block 1 starts at normal word address 0x0002 4000. The
memory map for the ADSP-21061’s 1 Mbit of internal memory is
shown in Figure 5.7b and in Table 5.2b below. The Block 1 Alias address
ranges will access the actual Block 1, 0x0002 4000 – 0x0002 7FFF in
normal word address space and 0x0004 8000 – 0x0004 FFFF in short
word address space.

0x0000 0000 – 0x0000 00FF IOP Registers (control/status registers)
0x0000 0100 – 0x0001 FFFF Reserved addresses

0x0002 0000 – 0x0002 3FFF Block 0 – Normal Word Addressing
0x0002 4000 – 0x0002 7FFF Block 1 – Normal Word Addressing
0x0002 8000 – 0x0002 BFFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0002 C000 – 0x0002 FFFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0003 0000 – 0x0003 3FFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0003 4000 – 0x0003 7FFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0003 8000 – 0x0003 BFFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing
0x0003 C000 – 0x0003 FFFF Alias of Block 1 (i.e. accesses Block 1) – Normal Word Addressing

0x0004 0000 – 0x0004 7FFF Block 0 – Short Word Addressing
0x0004 8000 – 0x0004 FFFF Block 1 – Short Word Addressing
0x0005 0000 – 0x0005 7FFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0005 8000 – 0x0005 FFFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0006 0000 – 0x0006 7FFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0006 8000 – 0x0006 FFFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0007 0000 – 0x0007 7FFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing
0x0007 8000 – 0x0007 FFFF Alias of Block 1 (i.e. accesses Block 1) – Short Word Addressing

Table 5.2b  ADSP-21061 Internal Memory Addresses
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Figure 5.7b  ADSP-21061 Internal Memory Space

Normal Word 
Addressing
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64K x 16
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0x0001 FFFF

IOP Registers
0x0000 0100

Reserved
Address

Space

Block 1 Alias

Block 1 Alias

Block 1 Alias

Block 1 Alias

0x0002 4000

0x0003 0000

0x0003 C000

0x0003 FFFF
Block 1
Alias

Block 1
Alias

Block 1
Alias

Block 1
Alias

0x0004 8000

0x0005 8000

0x0006 8000

0x0007 8000
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5.2.4 Porting Code from ADSP-21060 to ADSP-21062 or ADSP-21061
To ease porting code between ADSP-2106x processor, a system for
aliasing memory Block 1 eliminates the need to re-arrange (some) code
placement. For example, memory Block 0 on the ADSP-21062 starts at
the beginning of internal memory, normal word address 0x0002 0000.
Block 1 on the ADSP-21062 starts at the end of Block 0, with
contiguous addresses. The remaining addresses in internal memory
are divided into blocks, which alias into Block 1. This aliasing allows
any code or data stored in Block 1 on the ADSP-21060 to retain the
same addresses on the ADSP-21062—these addresses will alias into the
actual Block 1 of each processor.

A similar aliasing structure is built into the ADSP-21061. For more
information on aliasing, see the memory maps for the ADSP-21061 and
ADSP-21062 processors.

5.2.5 Multiprocessor Memory Space
Multiprocessor memory space maps to the internal memory of other
ADSP-2106xs in a multiprocessor system. This allows each
ADSP-2106x to access the internal memory and memory-mapped IOP
registers of the other processors.

As shown in Figure 5.5, when the E field of an address is zero and the
M field is non-zero, the address falls within multiprocessor memory
space. The value of M specifies the processor ID2-0 of the external
ADSP-2106x being accessed, and only that processor will respond to
the read/write cycle. If M=111, however, a broadcast write is performed
to all processors. All of the processors react to this address as if their
individual ID2-0 was being used, enabling the write to their internal
memory.

Instead of directly accessing its own internal memory, an ADSP-2106x
can also access its memory through the multiprocessor memory space
by using its own ID. In this case the processor simply reads or writes to
its own internal memory and does not attempt an access on the
external system bus. (Note that these self-accesses through
multiprocessor memory space may only be accomplished with
core-processor-generated addresses, not DMA-controller-generated
addresses.)

If both the E and M fields of an address on the external bus are equal to
zero, the address will be ignored unless the processor ID is also zero
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(M=ID2-0 =000). Addresses with M=ID2-0 =000 are only allowed in
single-processor systems.

If the ADSP-2106x attempts to access an invalid address in
multiprocessor memory space, data written will be ignored and reads
will return invalid data.

For additional information about multiprocessor memory accesses, see
“Direct Reads & Writes” and “Data Transfers Through The EPBx
Buffers” in the Multiprocessing chapter of this manual.

5.2.6 External Memory Space
External memory can be accessed over the ADSP-2106x’s DM bus,
PM bus, and EP bus, all via the external port. The processor’s DAG1,
program sequencer (and DAG2), and IOP control these respective
buses.

32-bit addresses are generated by DAG1 and the IOP over the DM address
bus and I/O address bus, allowing addressing of the complete 4-gigaword
memory map. The program sequencer and DAG2 generate 24-bit
addresses over the PM address bus, limiting addressing to the low
12 megawords (0x0040 0000 to 0x00FF FFFF).

5.2.7 Memory Space Access Restrictions
The ADSP-2106x’s three internal buses, PM, DM, and I/O, can be used
to access the processor’s memory map according to the following rules:

• The DM bus can access all memory spaces.
• The PM bus can access only Internal Memory Space and the lowest

12 megawords of External Memory Space.
• The I/O bus can access all memory spaces except for the memory-

mapped IOP registers (in Internal Memory Space).

➠ Note that in silicon revision 1.0 and earlier pre-modify addressing
operations must not change the memory space of the address; for
example, pre-modification of an address in Internal Memory Space
should not generate an address in External Memory Space. The one
exception to this rule is: an indirect JUMP or CALL instruction with
pre-modify addressing can jump from internal memory to external
memory. Silicon revisions 2.x and later do not have this pre-modify
limitation.
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5.3 INTERNAL MEMORY ORGANIZATION & WORD SIZE
The ADSP-2106x’s internal SRAM memory accommodates the
following word types:

• 48-bit instructions
• 32-bit floating-point data
• 16-bit short word data

40-bit extended-precision floating-point data values are also
accommodated, but are accessed in 48-bit words. The 40 bits are left-
justified in the 48-bit word (bits 47-8).

When the ADSP-2106x processor core accesses its internal memory, the
word width of the access is determined according to the following
rules:

• Instruction fetches always read 48-bit words
• Read/writes using normal word addressing are either 32-bit words or

48-bit words, depending on how the block of memory is configured in
the SYSCON register.

• Read/writes using short word addressing are always 16-bit words
• PM bus (DAG 2) read/writes of the PX register are always 48-bit words

(unless they use short word addressing)
• DM bus (DAG 1) read/writes of the PX register are always 40-bit words

(unless they use short word addressing)

An ADSP-2106x program should not attempt to access the same
physical location in memory as a 32-bit word and as a 48-bit word. The
internal SRAM employs a write-back scheme that will cause errors if
this occurs.

5.3.1 32-Bit Words & 48-Bit Words
Each 2-Mbit block of ADSP-21060 memory is physically organized as
16 columns, each 16 bits wide, with a height of 8K. (On the
ADSP-21062, each 1-Mbit block of memory is similarly organized but
with each column having a height of 4K.) 48-bit instruction words
require three columns of contiguous memory and 32-bit data words
require two contiguous columns.
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When an address is applied to memory for a read or write, the
particular columns selected depends upon the word width of the
access. For 48-bit words, the 16-bit columns are selected in groups of
three. In a memory block consisting entirely of 48-bit instruction
words,

16 columns ÷ 3 columns per group = 5 groups

there are 5 groups to select from and the 16th column is unused. Thus,
an ADSP-21060 2-Mbit memory block that consists entirely of 48-bit
words provides

8K ×  5 groups = 40K words

of instruction storage. For 32-bit data words, the columns are selected
in groups of two. In a memory block consisting entirely of 32-bit
words,

16 columns ÷ 2 columns per group = 8 groups

there are 8 words to select from with no columns unused. Thus, an
ADSP-21060 2-Mbit memory block that consists entirely of 32-bit
words provides

8K ×  8 groups = 64K words

of data storage.

Because the memory on the ADSP-21061 is arranged in eight 16-bit
columns, a similar set of calculations for this processor yields the
following:

4K ×  2 groups = 8K words (of instruction storage)

4K ×  4 groups = 16K words (of data storage)

Figure 5.8 shows the ordering of 16-bit words within 48-bit words
and 32-bit words, and also shows initial addresses for each column of
ADSP-21060 memory. Figure 5.9a shows the same information for the
ADSP-21062, and Figure 5.9b shows this information for the ADSP-
21061.
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|--------------|--------------|--------------|--------------|--------------|----|
| H  | M  | L  | L  | H  | M  | H  | M  | L  | L  | H  | M  | H  | M  | L  |    |
|--------------|--------------|--------------|--------------|--------------|----|
0x20000        0x22000        0x24000        0x26000        0x28000     
|---------|---------|---------|---------|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  |
|---------|---------|---------|---------|---------|---------|---------|---------|
0x20000   0x22000   0x24000   0x26000   0x28000   0x2a000   0x2c000   0x2e000

|--------------|--------------|--------------|--------------|--------------|----|
| H  | M  | L  | L  | H  | M  | H  | M  | L  | L  | H  | M  | H  | M  | L  |    |
|--------------|--------------|--------------|--------------|--------------|----|
0x30000        0x32000        0x34000        0x36000        0x38000     
|---------|---------|---------|---------|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  |
|---------|---------|---------|---------|---------|---------|---------|---------|
0x30000   0x32000   0x34000   0x36000   0x38000   0x3a000   0x3c000   0x3e000

ADSP-21060  (Two blocks of 8Kx16-bit columns)

Block 0

48-bit
words

32/16-bit
words

Block 1

48-bit
words

32/16-bit
words

Figure 5.8  Memory Organization vs. Address (ADSP-21060)

Notes: All addresses denote the first location of each column.

“Non-existant” 48-bit addresses occur when a block is filled with 48-bit instructions. Because there
is a set number of addresses per block (which does not vary with the size of the word at the
address), you can end up with a range of 48-bit “non-existant” addresses (addressable, but having
no contents) at the end of each block. This memory arrangement feature applies to all ADSP-2106x
processors (shown in Figures 5.8, 5.9a, and 5.9b).

|--------------|--------------|--------------|--------------|--------------|----|
| H  | M  | L  | L  | H  | M  | H  | M  | L  | L  | H  | M  | H  | M  | L  |    |
|--------------|--------------|--------------|--------------|--------------|----|
0x20000        0x21000        0x22000        0x23000        0x24000     
|---------|---------|---------|---------|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  |
|---------|---------|---------|---------|---------|---------|---------|---------|
0x20000   0x21000   0x22000   0x23000   0x24000   0x25000   0x26000   0x27000

|--------------|--------------|--------------|--------------|--------------|----|
| H  | M  | L  | L  | H  | M  | H  | M  | L  | L  | H  | M  | H  | M  | L  |    |
|--------------|--------------|--------------|--------------|--------------|----|
0x28000        0x29000        0x2a000        0x2b000        0x2c000     
|---------|---------|---------|---------|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  | H  | L  |
|---------|---------|---------|---------|---------|---------|---------|---------|
0x28000   0x29000   0x2a000   0x2b000   0x2c000   0x2d000   0x2e000   0x2f000

Block 0

48-bit
words

32/16-bit
words

ADSP-21062  (Two blocks of 4Kx16-bit columns)

Block 1

48-bit
words

32/16-bit
words

Figure 5.9a  Memory Organization vs. Address (ADSP-21062)
Note: All addresses denote the first location of each column.
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Figure 5.9b  Memory Organization vs. Address (ADSP-21061)
Note: All addresses denote the first location of each column.

|--------------|--------------|---------|
| H  | M  | L  | L  | H  | M  |         |   
|--------------|--------------|---------|
0x20000        0x21000        0x22000   |   
|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  | 
|---------|---------|---------|---------|
0x20000   0x21000   0x22000   0x23000   |

|--------------|--------------|---------|
| H  | M  | L  | L  | H  | M  |         | 
|--------------|--------------|---------|
0x24000        0x25000        0x26000   |
|---------|---------|---------|---------|
| H  | L  | H  | L  | H  | L  | H  | L  |
|---------|---------|---------|---------|
0x24000   0x25000   0x26000   0x27000   |

Block 0

48-bit
words

32/16-bit
words

ADSP-21061  (Two blocks of 4Kx16-bit columns)

Block 1

48-bit
words

32/16-bit
words

5.3.2 Mixing 32-Bit & 48-Bit Words In One Memory Block
32-bit data words and 48-bit instruction words can be stored in the
same memory block, with the restriction that all instructions must reside
at addresses lower than the data. No instruction may be stored at an
address higher than the lowest address of any data word. This
restriction is necessary to prevent addresses for 32-bit words and 48-bit
words from overlapping.

The rules for combining 48-bit instruction words and 32-bit data words
within the same block of memory are as follows:

• Instruction storage must start at the lowest address in the block.
• Data storage must start on an even column number
• All data must be located at addresses higher than all instructions
• Instructions require three contiguous 16-bit columns
• Data words require two contiguous 16-bit columns
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5.3.3 Basic Examples Of Mixed 32-Bit & 48-Bit Words
Each block of memory is physically organized as 16 columns, each 16
bits wide, with a height of 8K on the ADSP-21060 and 4K on the
ADSP-21062. Figure 5.10 illustrates four basic combinations of mixed
48-bit instructions and 32-bit data within a single block:

A. 3 columns for instructions, 1 unused column, and 12 columns for data.
This provides 8K of instruction storage and 48K of data storage on the
ADSP-21060 (4K of instruction storage and 24K of data storage on the
ADSP-21062). One column is unused because the 32-bit data words
must start on an even column number (in this case column 4).

{Columns one through eight on this example apply to the ADSP-
21061.}

B. 6 columns for instructions and 10 columns for data. This provides 16K
of instruction storage and 40K of data storage on the ADSP-21060
(8K of instruction storage and 20K of data storage on the
ADSP-21062).

{Columns one through eight on this example apply to the ADSP-
21061.}

C. 9 columns for instructions, 1 unused column, and 6 columns for data.
This provides 24K of instruction storage and 24K of data storage on
the ADSP-21060 (12K of instruction storage and 12K of data storage
on the ADSP-21062). One column is unused because the 32-bit data
words must start on an even column number (in this case column 10).

{Because there are only eight columns on the ADSP-21061, this
example does not apply to the ADSP-21061.}

D. 12 columns for instructions and 4 columns for data. This provides 32K
of instruction storage and 16K of data storage on the ADSP-21060
(16K of instruction storage and 8K of data storage on the
ADSP-21062).

{Because there are only eight columns on the ADSP-21061, this
example does not apply to the ADSP-21061.}
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0

3 columns for
48-bit instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

12 columns for 32-bit data

1 column=16 bits

32-bit data must start 
on an even column

9 columns for 48-bit instructions

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

6 columns for 32-bit data

12 columns for 48-bit instructions

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 columns for 32-bit data

32-bit data must start 
on an even column

0

6 columns for 48-bit instructions

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10 columns for 32-bit data

A

B

C

D

8K Instructions (ADSP-21060)
4K Instructions (ADSP-21062)

(ADSP-21060) 8K 
(ADSP-21062) 4K 

(ADSP-21060) 8K 
(ADSP-21062) 4K 

(ADSP-21060) 8K 
(ADSP-21062) 4K 

(ADSP-21060) 8K 
(ADSP-21062) 4K 

48K Data (ADSP-21060)
24K Data (ADSP-21062)

16K Instructions (ADSP-21060)
  8K Instructions (ADSP-21062)

40K Data (ADSP-21060)
20K Data (ADSP-21062)

24K Instructions (ADSP-21060)
12K Instructions (ADSP-21062)

24K Data (ADSP-21060)
12K Data (ADSP-21062)

32K Instructions (ADSP-21060)
16K Instructions (ADSP-21062)

16K Data (ADSP-21060)
  8K Data (ADSP-21062)

Figure 5.10   Basic Examples of Mixed Instructions & Data In A Memory Block
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Table 5.3 shows the addressing in Block 0 (beginning address =
0x0002 0000) for each of the instruction and data combinations of
Figure 5.10, on the ADSP-21060:

48-Bit Instructions 32-Bit Data
start address end address start address end address

A. 0x0002 0000 0x0002 1FFF 0x0002 4000 0x0002 FFFF
B. 0x0002 0000 0x0002 3FFF 0x0002 6000 0x0002 FFFF
C. 0x0002 0000 0x0002 5FFF 0x0002 A000 0x0002 FFFF
D. 0x0002 0000 0x0002 7FFF 0x0002 C000 0x0002 FFFF

Table 5.3  Address Ranges For Instructions & Data (ADSP-21060)

To determine the starting address of the 32-bit data, the following
equations are used (for the ADSP-21060):

Starting Address
 i of 32-Bit Data
 0 B + 8K + m + 1
 1 B + 16K + m + 1
 2 B + 32K + m + 1
 3 B + 40K + m + 1

B= beginning address of memory block
n= number of 48-bit instruction word locations
i= integer portion of [(n – 1) ÷ 8192]
m= (n – 1) mod 8192

Table 5.4 shows the addressing in Block 0 (beginning address =
0x0002 0000) for each of the instruction and data combinations of
Figure 5.10, on the ADSP-21062:

48-Bit Instructions 32-Bit Data
start address end address start address end address

A. 0x0002 0000 0x0002 0FFF 0x0002 2000 0x0002 7FFF
B. 0x0002 0000 0x0002 1FFF 0x0002 3000 0x0002 7FFF
C. 0x0002 0000 0x0002 2FFF 0x0002 5000 0x0002 7FFF
D. 0x0002 0000 0x0002 3FFF 0x0002 6000 0x0002 7FFF

Table 5.4  Address Ranges For Instructions & Data (ADSP-21062)
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To determine the starting address of the 32-bit data, the following
equations are used (for the ADSP-21062 and ADSP-21061):

Starting Address
 i of 32-Bit Data
 0 B + 4K + m + 1
 1 B + 8K + m + 1
 2 B + 16K + m + 1
 3 B + 20K + m + 1

B = beginning address of memory block
n = number of 48-bit instruction word locations
i = integer portion of [(n – 1) ÷ 4096]
m = (n – 1) mod 4096

5.3.4 16-Bit Short Words
Normal word addressing is used for accesses of 32-bit or 48-bit words.
All instruction fetches and 32-bit data accesses are accomplished with
normal word addresses. Short word addresses can be used, however,
to access 16-bit data. Short word addressing increases the amount of
16-bit data that can be stored in internal memory, and also allows
MSW (most significant word) and LSW (least significant word)
addressing of 32-bit words. Bit 0 of the address selects between the
MSW and LSW of the 32-bit word.

A single location in memory (i.e. the lower 16 bits of a 32-bit word) can
be accessed in two ways: with a normal word address or a short word
address. The short word address is a left shift of the corresponding
normal word address. This allows easy conversion between short
word address and normal word address for the same physical location.
Figure 5.11 shows how the short word addresses are related to normal
word addresses for 32-bit words. (Figures 5.9 and 5.10 show how these
addresses are related to normal word addresses for 48-bit words.) Note
that the 16-bit data words are transferred over lines 31-16 of the
internal PM Data Bus and DM Data Bus as well as the external bus
(DATA47-0)

Arithmetically shifting a short word address to the right by one bit
produces the corresponding normal word address. Arithmetically
shifting a normal word address to the left produces the short word
address of the LSW of the 32-bit normal word. To generate the short
word address of the MSW, the left shift is performed and bit 0 is then
set to 1.
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Addr 1

Addr 3

Addr 5

Addr 0

Addr 2

Addr 4

DATA31-16

16

... ...

16-Bit 
Short 

Words

32-Bit Normal Words

16-Bit 
Short 
Words

Addr 0

Addr 1

Addr 2

Figure 5.11  Short Word Addresses

16-bit short words read into ADSP-2106x registers are automatically
extended into 32-bit integers. The upper 16 bits can be zero-filled or
sign-extended, as determined by the value of the SSE bit in the MODE1
register. If SSE=0, the upper 16 bits are zero-filled. If SSE=1, the upper
16 bits are sign-extended (except when reading a short word into the
PX register, which is always zero-filled).

5.3.5 Mixing 32-Bit & 48-Bit Words With Finer Granularity
If 48-bit instructions and 32-bit data words must be mixed with a finer
granularity than the basic combinations described above, an in-depth
understanding of the ADSP-2106x’s internal memory is required. The
following sections describe in detail the low-level organization and
addressing of the internal memory blocks.
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5.3.5.1 Low-Level Physical Mapping Of Memory Blocks
Each block of memory is organized as 16 columns. On the ADSP-21060,
each column contains 8K 16-bit words; on the ADSP-21062, each column
contains 4K 16-bit words. For reads or writes of 48-bit and 32-bit words,
the 13 LSBs of the address select a row from each column. The MSBs of
the address control which columns are selected. For reads or writes of
16-bit short words, the address is right-shifted one place before being
applied to memory (see Figure 5.12). This allows bit 0 of the address to
be used to select between the MSW and LSW of 32-bit data.

When a block is memory is accessed, how many and which columns are
selected depends upon the word width of the access. For 48-bit words,
the 16-bit columns are selected in groups of three and address bits 13-15
determine which group is selected. For 32-bit words, the columns are
selected in groups of two and address bits 13-15 also select the group.

16-bit short word accesses are handled in a slightly different fashion, in
order to provide easy access to the MSW and LSW of 32-bit data. In the
ADSP-2106x’s data address generators (DAGs), a single arithmetic right
shift of the short word address gives the physical address of the 32-bit
word being written to. If the bit shifted out is zero, the access is to the
LSW, otherwise it is to the MSW. This is implemented by selecting
columns in groups of two with address bits 13-15 and then selecting
between the two columns in the group with the short word address bit
shifted out.

Figure 5.12   Preprocessing of 16-Bit Short Word Addresses

Shift Right

017 16 152431

1110  0001

15 0

High/Low
Word (16-bit) Select

Short Word Address

Physical Address Applied
to Memory Block

Block 
Select

13 12

Row AddressColumn
Address
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5.3.5.2 Placement Restrictions For Mixed 32-Bit & 48-Bit Words
32-bit and 48-bit words are grouped differently within a memory block
and try to use the same address area. This may cause errors when
mixing 48-bit instructions and 32-bit data within the same block. (Since
32-bit and 16-bit words use the same grouping structure and different
addresses, they can be freely mixed within a memory block.) The
overall guideline for placement of mixed word sizes is that all 48-bit
instructions must reside at addresses lower than all 32-bit data. This
restriction is necessary to prevent addresses for instructions and data
from overlapping.

Figure 5.13 shows how the 48-bit words fill a memory block and exactly
where 32-bit words can be placed, for the ADSP-21060. Figure 5.14
shows the equivalent information for the ADSP-21062. If the number of
48-bit word locations to be allocated is n and the beginning address of
the block is B, the address where contiguous 32-bit data may begin can be
determined by Table 5.5:

Noncontiguous
Starting Address for Address Range

(n – 1) ÷ 8192 Contiguous 32-Bit Data of Memory Block
0 B + 8K + m + 1 (B + n) to (8K – 1)
1 B + 16K + m + 1 —
2 B + 32K + m + 1 (B + 24K + n) to (32K – 1)
3 B + 40K + m + 1 —
4 B + 56K + m + 1 (B + 48K + n) to (56K – 1)

m=(n – 1) mod 8192

Table 5.5  Starting Address for Contiguous 32-Bit Data (ADSP-21060)

Figure 5.13 also shows that when an odd number of 3-column groups
are allocated for 48-bit words (i.e. one, three, or five 3-column groups),
a usable but discontiguous block of 32-bit memory will exist. This is
also specified in Table 5.5.

To fully use all of the memory block, 48-bit words should be allocated
in 16K word increments (i.e. six columns). Even when all memory is
used, there will exist a range of addresses between the 48-bit word
region and the contiguous 32-bit word region that do not access any
valid word. Any 48-bit write to this non-valid region will corrupt
32-bit data, and any 32-bit write will corrupt 48-bit data.
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Figure 5.13  48-Bit Words & 32-Bit Words Mixed In A Memory Block (ADSP-21060)
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Figure 5.14  48-Bit Words & 32-Bit Words Mixed In A Memory Block (ADSP-21062 or ADSP-21061)
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To determine, however, exactly which addresses are valid again
requires an analysis of how the data is placed in memory. The simplest
solution is to think of the 16-bit words as being mapped into 32-bit
word space and allocate memory with the same method described
above for 32-bit words.

Figure 5.14 shows (for the ADSP-21062 or the ADSP-21061) how the 48-
bit words fill a memory block and exactly where 32-bit words can be
placed. If the number of 48-bit word locations to be allocated is n and the
beginning address of the block is B, the address where contiguous 32-bit
data may begin can be determined by Table 5.6:

Noncontiguous
Starting Address for Address Range

(n – 1) ÷ 4096 Contiguous 32-Bit Data of Memory Block
0 B + 4K + m + 1 (B + n) to (4K – 1)
1 B + 8K + m + 1 —
2 B + 16K + m + 1 (B + 12K + n) to (16K – 1)
3 B + 20K + m + 1 —
4 B + 28K + m + 1 (B + 24K + n) to (28K – 1)

m=(n – 1) mod 4096

Table 5.6  Starting Address for Contiguous 32-Bit Data (ADSP-21062 or ADSP-21061)

5.3.5.3 Shadow Write FIFO
Because the ADSP-2106x’s internal memory must operate at high
speeds, writes to the memory do not go directly into the memory
array, but rather to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, data in the FIFO from
the previous write is loaded into memory and the new data goes into
the FIFO. This operation is normally transparent, since any reads of the
last two locations written are intercepted and routed to the FIFO.
There is only one case in which you need to be aware of the shadow
write FIFO: mixing 48-bit and 32-bit word accesses to the same
locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and mapping of 32-bit words. (See Figures 5.8 and 5.9.) Thus if
you write a 48-bit word to memory and then try to read the data with a
32-bit word access, the shadow FIFO will not intercept the read and
incorrect data will be returned.
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If 48-bit accesses and 32-bit accesses to the same locations absolutely
must be mixed in this way, you must flush out the shadow FIFO with
two dummy writes before attempting to read the data.

5.3.6 Configuring Memory For 32-Bit or 40-Bit Data
Each block of internal memory can be configured to store either single-
precision 32-bit data or extended-precision 40-bit data. This
configuration is selected by setting or clearing the IMDW0 and IMDW1
bits in the SYSCON register. If the IMDWx bit is equal to zero, 32-bit
data is selected; when a data access occurs, a 32-bit access is
performed. If the IMDWx bit is equal to one, 40-bit data is selected;
when a data access occurs, a 48-bit access is performed.

If an ADSP-2106x program attempts to write 40-bit data (in a 48-bit
word) to a memory block configured for 32-bit data, the lower 16 bits
(of the 48-bit word) are truncated. If a 40-bit data read is attempted, the
lower 8 bits will be zeros. The PX register is the only exception to these
rules—all read/writes of the PX register are performed as 48-bit
accesses. If any 40-bit data must be stored in a memory block
configured for 32-bit words, the PX register should be used to access
the 40-bit data in 48-bit words. For 48-bit writes of this kind, from the
PX register to 32-bit memory, be sure that the physical memory space
of the 48-bit destination does not corrupt any 32-bit data.

Changing the value of the IMDWx bits during system operation is
possible, but be aware that any kind of memory access will be affected.
This includes ADSP-2106x–to–ADSP-2106x direct read/writes, host
processor–to–ADSP-2106x direct read/writes, DMA transfers, and
interrupt data areas.

(Note that the word width of data accesses is not related to the value of
the arithmetic precision mode bit, RND32. This allows the occasional
use of 32-bit data in extended-precision 40-bit systems, without having
to toggle the value of RND32 in your program.)

Because the ADSP-2106x’s memory blocks must be configured for
either 32-bit or 40-bit data, DMA transfers automatically read or write
the proper word width. This simplifies setting up DMA channels for a
system. DMA transfers between serial ports and memory are limited to
a 32-bit word width (maximum).

(Note also that 32-bit words and 16-bit short words can be freely mixed
in the same memory block, with no restrictions.)
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5.4 EXTERNAL MEMORY INTERFACING
In addition to its on-chip SRAM, the ADSP-2106x provides addressing of
up to 4 gigawords of off-chip memory through its external port. This
external address space includes multiprocessor memory space, the on-chip
memory of all other ADSP-2106xs connected in a multiprocessor system,
as well as external memory space, the region for standard addressing of
off-chip memory.

Table 5.7 defines the ADSP-2106x pins used for interfacing to external
memory. Memory control signals allow direct connection to fast static
RAM devices. Memory-mapped peripherals and slower memories are
also supported, with a user-defined combination of programmable wait
states and hardware acknowledge signals. The suspend bus tristate pin
(SBTS) and page boundary pin (PAGE) can be used with DRAM
memory.

External memory can hold both instructions and data. The external
data bus (DATA47-0) must be 48 bits wide to transfer instructions
and/or 40-bit extended-precision floating-point data, or 32 bits wide to
transfer single-precision floating-point data. If external memory
contains only data or packed instructions that will be transferred by
DMA, the external data bus width can be either 16 or 32 bits. In this
type of system, the ADSP-2106x’s on-chip I/O processor handles
unpacking operations on data coming into it and packing operations
on data going out. Figure 5.a shows how different data word sizes are
transferred over the external port.

081624324047

DATA47-0

EPROM
Boot

16-Bit Packed

32-Bit Float or Fixed,
D31 - D0,

32-Bit Packed

40-Bit Extended Float

Instruction Fetch

Figure 5.a  External Port Data Alignment
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The internal 32-bit DM Address bus and the I/O processor can access
the entire 4-gigaword external memory space. The 24-bit PM Address
bus, however, can only access 12 megawords of external memory
because of its smaller width.
Pin Type Function
ADDR31-0 I/O/T External Bus Address. The ADSP-2106x outputs addresses for

external memory and peripherals on these pins. In a
multiprocessor system the bus master outputs addresses for
read/writes of the internal memory or IOP registers of other
ADSP-2106xs. The ADSP-2106x inputs addresses when a host
processor or multiprocessing bus master is reading or writing
its internal memory or IOP registers.

DATA47-0 I/O/T External Bus Data. The ADSP-2106x inputs and outputs data
and instructions on these pins. 32-bit single-precision floating-
point data and 32-bit fixed-point data is transferred over bits
47-16 of the bus. 40-bit extended-precision floating-point data
is transferred over bits 47-8 of the bus. 16-bit short word data
is transferred over bits 31-16 of the bus. Pull-up resistors on
unused DATA pins are not necessary.

MS3-0 O/T Memory Select Lines. These lines are asserted (low) as chip
selects for the corresponding banks of external memory.
Memory bank size must be defined in the ADSP-2106x’s
system control register (SYSCON). The MS3-0 lines are
decoded memory address lines that change at the same time as
the other address lines. When no external memory access is
occurring the MS3-0 lines are inactive; they are active,
however, when a conditional memory access instruction is
executed, whether or not the condition is true. MS0 can be
used with the PAGE signal to implement a bank of DRAM
memory (Bank 0). In a multiprocessing system the MS3-0 lines
are output by the bus master.

RD I/O/T Memory Read Strobe. This pin is asserted (low) when the
ADSP-2106x reads from external memory devices or from the
internal memory of other ADSP-2106xs. External devices
(including other ADSP-2106xs) must assert RD to read from
the ADSP-2106x’s internal memory. In a multiprocessing
system RD is output by the bus master and is input by all
other ADSP-2106xs.

Table 5.7  External Memory Interface Signals (cont. on next page)
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Pin Type Function
WR I/O/T Memory Write Strobe. This pin is asserted (low) when the ADSP-

2106x writes to external memory devices or to the internal memory
of other ADSP-2106xs. External devices must assert WR to write to
the ADSP-2106x’s internal memory. In a multiprocessing system
WR is output by the bus master and is input by all other ADSP-
2106xs.

PAGE O/T DRAM Page Boundary. The ADSP-2106x asserts this pin to signal
that an external DRAM page boundary has been crossed. DRAM
page size must be defined in the       ADSP-2106x’s memory control
register (WAIT). DRAM can only be implemented in external
memory Bank 0; the PAGE signal can only be activated for Bank 0
accesses. In a multiprocessing system PAGE is output by the bus
master.

SW I/O/T Synchronous Write Select. This signal is used to interface the
ADSP-2106x to synchronous memory devices (including other
ADSP-2106xs). The ADSP-2106x asserts SW (low) to provide an
early indication of an impending write cycle, which can be aborted
if WR is not later asserted (e.g. in a conditional write instruction). In
a multiprocessing system, SW is output by the bus master and is
input by all other ADSP-2106xs to determine if the multiprocessor
memory access is a read or write. SW is asserted at the same time as
the address output. A host processor using synchronous writes
must assert this pin when writing to the ADSP-2106x(s).

ACK I/O/S Memory Acknowledge. External devices can deassert ACK (low)
to add wait states to an external memory access. ACK is used by  I/
O devices, memory controllers, or other peripherals to hold off
completion of an external memory access. The ADSP-2106x
deasserts ACK as an output to add wait states to a synchronous
access of its internal memory. In a multiprocessing system, a slave
ADSP-2106x deasserts the bus master’s ACK input to add wait
state(s) to an access of its internal memory. The bus master has a
keeper latch on its ACK pin that maintains the input at the level it
was last driven to.

I=Input S=Synchronous (o/d)=Open Drain
O=Output A=Asynchronous (a/d)=Active Drive

T=Tristate (when SBTS or HBR is asserted, or when the ADSP-2106x is a bus slave)

Table 5.7  External Memory Interface Signals
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5.4.1 External Memory Banks
External memory is divided into four banks of equal size, each
associated with its own wait-state generator. This allows slower
peripheral devices to be memory-mapped into a bank for which a
specific number of wait states are specified. By mapping peripherals
into different banks, you can accommodate I/O devices with different
timing requirements.

Bank 0 starts at address 0x0040 0000 in external memory and is
followed in order by Banks 1, 2, and 3. Whenever the ADSP-2106x
generates an address located within one of the four banks, the
corresponding memory select line, MS3-0, is asserted.

The MS3-0 outputs can be used as chip selects for memories or other
external devices, eliminating the need for external decoding logic. MS0
provides a select line for a bank of DRAM memory, when used in
combination with the PAGE signal (see “DRAM Page Boundary
Detection”).

The size of the memory banks can range from 8K words to 256
megawords, and must be a power of two. Selection of memory bank
size is accomplished by setting the MSIZE bit field of the SYSCON
register in the following way:

MSIZE = log2 (desired bank size) – 13

The MS3-0 lines are decoded memory address lines that change at the
same time as the other address lines. When no external memory access
is occurring the MS3-0 lines are inactive; they are active, however,
when a conditional memory access instruction is executed, whether or
not the condition is true. Systems using the SW signal that cannot abort
such accesses should not use conditional memory write instructions, to
ensure proper operation.

(Note that the ADSP-2106x’s internal memory is divided into two
blocks, called Block 0 and Block 1, while the external memory space is
divided into four banks.)

5.4.2 Unbanked Memory
The region of memory above Banks 0-3 is called unbanked external
memory space. No MSx memory select line is asserted for accesses in
this address space. Unbanked memory space accesses can also have
wait states specified, in the UBWS and UBWM fields of the WAIT
register.
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5.4.3 Boot Memory Select (BMSBMS)
The BMS memory select line is asserted (low) only when the ADSP-
2106x is configured for EPROM booting. This allows access of a
separate external memory space for booting. Unbanked memory wait
states and wait state mode are applied to BMS-selected accesses.

The BMS output is only driven by the ADSP-2106x bus master. For
details on EPROM booting, see “Booting” in the System Design chapter
of this manual.

5.4.4 Wait States & Acknowledge
The ADSP-2106x’s WAIT register is used to set up external memory
wait states and response to the ACK signal. The WAIT register is one
of the ADSP-2106x’s IOP control registers.

To simplify the interface to slow external memories and peripherals,
the ADSP-2106x provides a variety of methods for extending off-chip
memory accesses:

• External. The ADSP-2106x samples its acknowledge input (ACK)
during each clock cycle. If it latches a low value, it inserts a wait state by
holding the address and strobes valid for an additional cycle. If the
value of ACK is high, the ADSP-2106x completes the cycle.

• Internal. The ADSP-2106x ignores the ACK input. Control bits in the
WAIT register specify the number of wait states for the access. You can
specify a different number of wait states for each bank of external
memory.

• Both. The ADSP-2106x samples its ACK input in each clock cycle. If it
latches a low value, it inserts a wait state. If the value of ACK is high, it
completes the cycle only if the number of wait states (specified in
WAIT) have expired. In this mode, the WAIT-programmed wait states
specify a minimum number of cycles per access, and an external device
can use the ACK pin to extend the access as necessary. The ACK signal
may be undefined (transitioning) until the internally programmed
waitstates have completed; i.e. ACK is not sampled until the
programmed waitstates have completed. No metastability problems
will occur.
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• Either. The ADSP-2106x completes the cycle as soon as it samples the ACK
input as high or when the WAIT-programmed number of wait states have
expired, whichever occurs first. In this mode, a system with two different
types of peripherals could shorten the access for the faster peripheral using
ACK but use the programmed wait states for the slower peripheral.

The method selected for each bank of memory is independent of the other
banks. Thus, you can map devices of different speeds into different
memory banks for the appropriate wait state control.

5.4.4.1 WAIT Register
The WAIT register is defined in Table 5.8 and shown in Figure 5.15. The
bit values shown in Figure 5.15 are the default initialization; the WAIT
register is initialized to 0x21AD 6B5A after a processor reset.

A bus idle cycle is an inactive bus cycle that is automatically generated to
avoid bus driver conflicts. Such a conflict can occur when a device with a
long output disable time continues to drive after RD is deasserted while
another device begins driving in the following cycle.

To avoid this conflict, the ADSP-2106x will generate an inactive bus cycle
on a transition from a read of a memory bank with bus idle cycle enabled
to an access of any other bank or to a write in the same bank or to MMS
(multiprocessor memory space). In other words, a bus idle cycle is always
generated after a read, except in the case of consecutive reads of the same
bank. A device with a  slow disable time should enable bus idle cycle
generation by using # of wait states  code 001, 010, 011, or 111.

When a bus idle cycle is specified for unbanked memory, an idle cycle is
inserted after every read cycle, not just after a bank change. This allows
several external devices to be used in this region of memory. The ADSP-
2106x cannot distinguish when there is a device change so it inserts an idle
cycle after each read.

A hold time cycle is an inactive bus cycle automatically generated at the end
of a read or write to allow a longer hold time for address and data. The
address and data will remain unchanged and driven for one cycle after the
read or write strobes are deasserted.

A single idle cycle on a page boundary crossing can be enabled by setting
the PAGEIS bit of the WAIT register; the address is asserted in the same
cycle that the PAGE pin is asserted, but read/write strobe assertion is
delayed for one cycle. See “DRAM Page Boundary Detection” for further
details.
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Bit(s) Name Function
1-0 EB0WM External Bank 0 wait state mode*
4-2 EB0WS External Bank 0 number of wait states**
6-5 EB1WM External Bank 1 wait state mode*
9-7 EB1WS External Bank 1 number of wait states**
11-10 EB2WM External Bank 2 wait state mode*
14-12 EB2WS External Bank 2 number of wait states**
16-15 EB3WM External Bank 3 wait state mode*
19-17 EB3WS External Bank 3 number of wait states**
21-20 UBWM Unbanked memory wait state mode*
24-22 UBWS Unbanked memory number of wait states**
27-25 PAGSZ Page size for DRAM (only in Bank 0) †
28 PAGEIS Single idle cycle on DRAM page boundary crossing
29 MMSWS Single wait state for Multiprocessor Memory Space access
30 HIDMA Single idle cycle for DMA handshake ††
31 reserved

Table 5.8  WAIT Register Bit Definitions

†  DRAM page size:

PAGSZ DRAM Page Size
000 256 words
001 512 words
010 1024 words (1K)
011 2048 words (2K)
100 4096 words (4K)
101 8192 words (8K)
110 16384 words (16K)
111 32768 words (32K)
(See “DRAM Page Boundary Detection”
 for more information on DRAM control.)

* Wait state mode:

EBxWM Wait State Mode
00 External acknowledge only (ACK)
01 Internal wait states only
10 Both internal and external acknowledge required
11 Either internal or external acknowledge sufficient

** Number of wait states:

# of Bus Hold
Wait Idle Time

EBxWS States Cycle? Cycle?
000 0 no no
001 1 yes no
010 2 yes no
011 3 yes no
100 4 no yes
101 5 no yes
110 6 no yes
111 0 yes no

Note that the bus idle cycle or hold time cycles will occur if
programmed, regardless of the waitstate mode. For example, the
ACK-only waitstate mode may have a hold time cycle
programmed for it.

††  Setting the HIDMA bit to 1 causes an idle cycle to be inserted after
every read (with DMAGDMAGx asserted) from an external DMA latch.
This allows a device with a slow tristate time to get off the local bus before
the next ADSP-2106x access begins. The idle cycle is inserted for every read
from the DMA latch, not just for a changeover. See “DMA Hardware
Interfacing” in the “External Port DMA” section of the DMA chapter for an
example showing an external DMA latch.
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Figure 5.15  WAIT Register

Figure 5.16 (on the following page) shows the effects of the bus idle cycle,
hold time cycle, and page idle cycle options.

The WAIT register is initialized to 0x21AD 6B5A after processor reset.
This configures the ADSP-2106x for the following:

• no idle state on page boundary crossings
• 6 internal wait states
• dependence on both software-programmed waitstates and external

acknowledge for all memory banks and for unbanked memory
• multiprocessor memory space wait state enabled (see the next section)

Unbanked memory wait states and wait state mode are applied to BMS-
selected accesses.
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Figure 5.16   Bus Idle Cycle, Hold Time Cycle, Page Idle Cycle
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5.4.4.2 Multiprocessor Memory Space Wait States & Acknowledge
Completion of reads and writes to multiprocessor memory space depends
only on the ACK signal. This is facilitated by using the SW signal as an
early indication of whether the access is a write or a read (see Figure 5.19 at
the end of this chapter), as well as the use of the automatic wait state option
for multiprocessor memory space—the MMSWS bit of the WAIT register.

Setting the MMSWS bit (bit 29) of the WAIT register causes the insertion of
a single wait state into all multiprocessor memory space reads and writes.
This option should be used whenever the external system bus is heavily
loaded (i.e. such that the synchronous timing requirements for interprocessor
communications cannot be met; refer to the ADSP-2106x Data Sheet for these
specifications.)

The ADSP-2106x bus master inserts the wait state. The slave ADSP-2106x(s)
respond with ACK (low) in the first cycle, even if they have MMSWS=1. If
MMSWS=1 on the master ADSP-2106x, it will ignore ACK in the first cycle and
respond to it in the second cycle. This setting allows longer set up times for the
following slave SHARC’s signals: ADDR, RD, WR, and DATA (written to the
slave). Also, this setting allows a longer set up time for the master SHARC’s
ACK signal. Other hold and set up times are not influenced by MMSWS=1.
This setting does not change hold time requirements for the slave SHARC’s
RD, WR, or DATA (written to the slave). Also, this setting does not change the
master SHARC’s set up or hold times for DATA (read from the slave).

All of the ADSP-2106xs in a multiprocessor system must have the same
value for the MMSWS bit.

5.4.5 DRAM Page Boundary Detection
Applications with large amounts of data may want to use DRAM memory
for bulk storage. To simplify interfacing to page-mode or static-column
DRAMs, the ADSP-2106x detects page boundary crossings and outputs
the PAGE signal to an external DRAM controller. Page boundaries are user-
defined; they must be programmed in the WAIT register.

Automatic page boundary detection is provided by the ADSP-2106x’s
PAGE signal. DRAM memory must be implemented in bank 0 of external
memory—the PAGE signal is only active within bank 0. The page size for
page boundary detection is specified in the PAGSZ field (bits 27-25) of the
WAIT register:
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PAGSZ DRAM Page Size
000 256 words
001 512 words
010 1024 words (1K)
011 2048 words (2K)
100 4096 words (4K)
101 8192 words (8K)
110 16384 words (16K)
111 32768 words (32K)

The ADSP-2106x asserts its PAGE pin whenever an external access
crosses a page boundary and the address is within bank 0. The
processor detects a boundary crossing by comparing each address
output for bank 0 to the address of the last successful external access
(which is stored in the IOP register ELAST). If a memory access is
aborted, for example due to a conditional write, the PAGE pin is not
asserted and the current page is not updated in ELAST. The PAGE pin
will not be asserted nor the current page updated if the access is to
multiprocessor memory space, or to any memory space other than
bank 0 of external memory space.

The PAGE pin remains asserted as long as the access is active. It is not
asserted if no access is performed.

The current page is automatically invalidated and the PAGE pin
asserted upon the next external access if: 1) the ADSP-2106x loses
mastership of the external bus to another ADSP-2106x or to a host
processor, or 2) the processor is reset. ELAST should not be read in the
cycle immediately after it is written, as it may be in the process of
updating.

A single idle cycle on a page boundary crossing can be enabled in
order to give the DRAM controller enough time to assert the SBTS bus
tristate pin (see “Suspend Bus Tristate” below). This option is enabled
by setting the PAGEIS bit (bit 28) of the WAIT register. The address is
asserted in the same cycle that the PAGE pin is asserted, but read/
write strobe assertion is delayed for one cycle. If wait states are
enabled for the bank, they will begin after the idle cycle. The page
change applies only to Bank 0, thus allowing interleaved reads and
writes of other external memory or peripherals without always
incurring a page change to the DRAM in Bank 0. This option should be
disabled when the PAGE signal is not being used.
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The host bus request pin (HBR) is disabled when the PAGE pin is
asserted. This prevents the possibility of the ADSP-2106x becoming a
bus slave (by means of the deadlock resolution functionality) while the
DRAM controller is servicing a page change. (See “Suspend Bus
Tristate” below.)

Figure 5.17 shows an example of an ADSP-2106x system with DRAM.
Different interfacing methods may be needed in some applications,
however, especially if buffers are needed for the DRAM.
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Figure 5.17  Example DRAM Interface
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5.4.5.1 Suspend Bus Tristate (SBTSSBTS)
External devices can assert the ADSP-2106x’s SBTS input to place the
external bus address, data, selects, and strobes in a high-impedance
state for the following cycle. If the ADSP-2106x attempts to access
external memory while SBTS is asserted, the processor will halt and
the memory access will not be completed until SBTS is deasserted.

SBTS should only be used to recover from DRAM page faults or host
processor/ADSP-2106x deadlock. (See “Deadlock Resolution” in the
“System Bus Interfacing” section of the Host Interface chapter.) In the
case of DRAM page faults, SBTS allows the external DRAM controller
to take control of the external bus.

SBTS causes the following pins to be tristated:

ADDR31-0 RD PAGE
DATA47-0 WR DMAG1
MS3-0 SW DMAG2
BMS ADRCLK

5.4.5.2 Normal SBTSSBTS Operation: HBRHBR Not Asserted
Asserting SBTS places the external bus address, data, selects, and
strobes in a high-impedance state for the following cycle. If an external
access is underway when SBTS is asserted, the access will be held off
(as if ACK were deasserted). If SBTS is asserted while there is no
external access occurring, the external bus pins will tristate and the
ADSP-2106x will continue running until it tries to perform an external
access (at which time it will halt). In this case, the memory access will
begin in the cycle after the deassertion of SBTS.

When SBTS is deasserted, the RD, WR, and DMAGx strobes will be
reasserted (if they had been asserted prior to SBTS) after the external
address has become valid (i.e. at their normal timing within the cycle).
The wait state counter will be reset. This applies even if the processor
is held in reset (RESET asserted).

SBTS differs from HBR in that it takes effect in the next cycle, even if an
external access is occurring (but not finished). SBTS should only be
used when the external access is to a device such as a DRAM or cache
memory, where the access must be held off in order to prepare for it.
Use of SBTS at other times—such as during ADSP-2106x-to-
ADSP-2106x accesses or when DMAGx is asserted—will result in
incorrect operation.
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5.5 EXTERNAL MEMORY ACCESS TIMING
Memory access timing for external memory space and multiprocessor
memory space is described below. For exact timing specifications, refer
to the ADSP-2106x Data Sheet.

5.5.1 External Memory
The ADSP-2106x can interface asynchronously, without reference to
CLKIN, to external memories and and memory-mapped peripherals.
In a multiprocessing system, the ADSP-2106x must be the bus master
in order to access external memory.

Figure 5.18 shows representative timing for an asynchronous read or
write of external memory. Note that the clock signal is shown only to
indicate that the access occurs within a single cycle.

5.5.1.1 External Memory Read – Bus Master
External memory reads occur with the following sequence of events
(see Figure 5.18):

1. The ADSP-2106x drives the read address and asserts a memory select
signal (MS3-0) to indicate the selected bank. The memory select signal is
not deasserted between successive accesses of the same memory bank.

2. The ADSP-2106x asserts the read strobe (unless the access is aborted
because of a conditional instruction).

3. The ADSP-2106x checks whether wait states are needed. If so, the
memory select and read strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal (ACK), the internally programmed wait state count, or a
combination of the two.

4. The ADSP-2106x latches in the data.

5. The ADSP-2106x deasserts the read strobe.

6. If initiating another memory access, the ADSP-2106x drives the address
and memory select for the next cycle.
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CLOCK

ACK

DATA

ADDRESS Read Address / Write Address

MSx , SW

RD or WR

Read Data / Write Data

Figure 5.18  External Memory Access Timing

Note that if a memory read is part of a conditional instruction that is not
executed because the condition is false, the ADSP-2106x still drives the
address and memory select for the read, but does not assert the read
strobe or read any data.

5.5.1.2 External Memory Write – Bus Master
External memory writes occur with the following sequence of events
(refer again to Figure 5.18):

1. The ADSP-2106x drives the write address and asserts a memory select
signal to indicate the selected bank. A memory select signal is not
deasserted between successive accesses of the same memory bank.

2. The ADSP-2106x asserts the write strobe and drives the data (unless
the memory access is aborted because of a conditional instruction).



5 Memory

5 – 50

3. The ADSP-2106x checks whether wait states are needed. If so, the
memory select and write strobe remain active for additional cycle(s).
Wait states are determined by the state of the external acknowledge
signal, the internally programmed wait state count, or a combination
of the two.

4. The ADSP-2106x deasserts the write strobe near the end of the cycle.

5. The ADSP-2106x tristates its data outputs.

6. If initiating another memory access, the ADSP-2106x drives the
address and memory select for the next cycle.

Note that if a memory write is part of a conditional instruction that is not
executed because the condition is false, the ADSP-2106x still drives the
address and memory select for the write, but does not assert the write
strobe or drive any data.

5.5.2 Multiprocessor Memory
Timing for multiprocessor memory accesses is shown in Figure 5.19.
For complete information on multiprocessor memory accesses, see
“Direct Reads & Writes” and “Data Transfers Through The EPBx
Buffers” in the Multiprocessing chapter of this manual.
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Figure 5.19  Multiprocessor Memory Access Timing
Note—Minimum  access time is: 1 wait state (2 cycles) for IOP register reads

3 wait states (4 cycles) for memory reads
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DMA

6.1 OVERVIEW
Direct Memory Access (DMA) provides a mechanism for transferring
an entire block of data. The ADSP-2106x’s on-chip DMA controller
relieves the core processor of the burden of moving data between
internal memory and an external data source or external memory. The
fully integrated DMA controller allows the ADSP-2106x core
processor, or an external device, to specify data transfer operations and
return to normal processing while the DMA controller carries out the
data transfers independently and invisibly to the core.

Figure 6.1 shows a block diagram of the ADSP-2106x’s DMA
controller, I/O processor, external port, and internal memory. Figure
6.2 shows a more detailed block diagram of the external port, the DMA
controller, FIFO buffers, and DMA data paths and control.

The DMA controller can perform several types of data transfers:

• internal memory ↔ external memory and memory-mapped peripherals
• internal memory ↔ internal memory of other ADSP-2106xs
• internal memory ↔ host processor
• internal memory ↔ serial port I/O
• internal memory ↔ link port I/O*
• external memory ↔ external peripherals

* Not applicable to the ADSP-21061.

External bus word packing is used to facilitate compatibility between
the ADSP-2106x’s internal 32/48-bit structure and external 16- and
32-bit peripheral devices. Control of bus packing is accomplished in
each of the four external port DMA Control Registers (DMAC6,
DMAC7, DMAC8, and DMAC9).
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Figure 6.1  ADSP-2106x Block Diagram
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For external DMA requests, the ADSP-2106x includes the DMA
request inputs DMAR1 and DMAR2, along with the DMA grant
outputs DMAG1 and DMAG2, to support DMA transfers to and from
external asynchronous peripheral devices. By pulling a DMARx line
low and waiting for the appropriate DMAGx signal to come back from
the ADSP-2106x, a simple I/O device can transfer data to ADSP-2106x
internal memory or to external memory.
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(Async writes - 4 deep)
(Sync writes - 2 deep)
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*  Note that link ports are not available on the ADSP-21061.

Figure 6.2  DMA Data Paths & Control
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The ten DMA channels of the ADSP-21060 and ADSP-21062 are
numbered as shown in Table 6.1a, which also shows the corresponding
data buffer used with each channel.

DMA Data
Channel# Buffer Description
DMA Channel 0 RX0 Serial Port 0 Receive
DMA Channel 1 RX1 (or LBUF0) Serial Port 1 Receive (or Link Buffer 0)
DMA Channel 2 TX0 Serial Port 0 Transmit
DMA Channel 3 TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)
DMA Channel 4 LBUF2 Link Buffer 2
DMA Channel 5 LBUF3 Link Buffer 3
DMA Channel 6 EPB0 (or LBUF4) Ext. Port FIFO Buffer 0 (or Link Buffer 4)
DMA Channel 7* EPB1 (or LBUF5) Ext. Port FIFO Buffer 1 (or Link Buffer 5)
DMA Channel 8* EPB2 Ext. Port FIFO Buffer 2
DMA Channel 9 EPB3 Ext. Port FIFO Buffer 3

Table 6.1a  ADSP-2106x DMA Channels & Data Buffers
* DMAR1 and DMAG1 are handshake controls for DMA Channel 7.
* DMAR2 and DMAG2 are handshake controls for DMA Channel 8.

The six DMA channels of the ADSP-21061 are numbered as shown in
Table 6.1b, which also shows the corresponding data buffer used with
each channel.

DMA Data
Channel# Buffer Description
DMA Channel 0 RX0 Serial Port 0 Receive
DMA Channel 1 RX1 Serial Port 1 Receive
DMA Channel 2 TX0 Serial Port 0 Transmit
DMA Channel 3 TX1 Serial Port 1 Transmit
DMA Channel 6* EPB0 Ext. Port FIFO Buffer 0
DMA Channel 7* EPB1 Ext. Port FIFO Buffer 1

Table 6.1b  ADSP-2106x DMA Channels & Data Buffers
* DMAR2 and DMAG2 are handshake controls for DMA Channel 6.
* DMAR1 and DMAG1 are handshake controls for DMA Channel 7.
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The following terms are used throughout this chapter, and are defined
below for reference:

external port FIFO buffers EPB0, EPB1, EPB2, and EPB3—the IOP
registers used for external port DMA
transfers and single-word data transfers
(from other ADSP-2106xs or from a host
processor); these buffers are 6-deep FIFOs

DMACx control registers the DMA control registers for the EPBx
external port buffers: DMAC6, DMAC7,
DMAC8, and DMAC9 (corresponding
respectively to EPB0, EPB1, EPB2, and EPB3)

DMA parameter registers the address (IIx), modifier (IMx), count (Cx),
chain pointer (CPx), etc., registers used to set
up a DMA transfer

transfer control block (TCB) a set of DMA parameter register values
stored in memory that are downloaded by
the ADSP-2106x’s DMA controller for
chained DMA operations

TCB chain loading the process in which the ADSP-2106x’s DMA
controller downloads a TCB from memory
and autoinitializes the DMA parameter
registers

6.1.1 DMA Controller Features
The ADSP-2106x’s DMA controller is designed to perform two basic
types of operations: external port block data transfers and I/O port
data transfers. The I/O ports on the ADSP-21060 and ADSP-21062 are
the link ports and serial ports. The I/O ports on the ADSP-21061 are
the serial ports.

External port block data transfers move data between ADSP-2106x
internal memory and external memory. The DMA controller must be
programmed with the internal memory buffer size and address, the
address increment, and the direction of transfer. Once setup
programming is complete, DMA transfers begin automatically and
continue until the entire buffer is transferred to or from internal
memory.
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I/O port DMA transfers handle data transmitted and received through
the ADSP-2106x’s serial ports and link ports. When performing I/O
DMA, the same type of buffer is set up in internal memory, but instead
of accessing the external memory, the DMA controller accesses the I/O
port. The direction of data transfer is determined by the direction of
the I/O port. When data is received at the port, it is automatically
transferred to internal memory. Likewise, when the port needs to
transmit a word, it is automatically fetched from internal memory.

An additional DMA capability allows the ADSP-2106x to support data
transfers between an external device and external memory. This
transfer does not interfere with internal ADSP-2106x operations that
do not use the external port.

External devices can participate in DMA transfers in two ways. The
external device can read or write to a DMA buffer on the ADSP-2106x,
or it can assert a DMA Request input (DMARx) to request service.

In chained DMA operations, a DMA transfer can be programmed to
autoinitialize another DMA operation upon completion.

6.1.2 Setting Up DMA Transfers
DMA operations can be programmed by the ADSP-2106x core
processor, by an external host processor, or by the (external)
ADSP-2106x bus master. The operation is programmed by writing to
the memory-mapped DMA control registers and parameter registers.
A DMA channel is set up by writing a set of memory buffer
parameters to the DMA parameter registers. The II, IM, and C registers
must be loaded with a starting address for the buffer, an address
modifier, and a word count, respectively.

The external ports, link ports, and serial ports each have a DMA enable
bit (DEN) in their main control register. Once a DMA channel is set up
and enabled, data words received are automatically transferred to the
buffer in internal memory. Likewise, when the ADSP-2106x is ready to
transmit data, a word is automatically transferred from internal
memory to the DMA buffer register. These transfers continue until the
entire data buffer is received or transmitted.

DMA interrupts can be generated when an entire block of data has
been transferred. This occurs when the DMA channel’s count register
(C) has decremented to zero (or EC register, in master mode only).
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DMA interrupts are latched and masked in the IRPTL and IMASK
registers, respectively; these registers are located in the ADSP-2106x
processor core, not in the memory-mapped IOP register space.

➠ TO START A NEW DMA SEQUENCE AFTER THE CURRENT ONE IS FINISHED,
YOUR PROGRAM MUST FIRST CLEAR THE DMA ENABLE BIT, WRITE NEW
PARAMETERS TO THE II, IM, AND C REGISTERS, AND THEN SET THE DMA
ENABLE BIT TO RE-ENABLE DMA.

(For chained DMA operations, however, this is not necessary; see
“DMA Chaining.”)

For further details, see the “DMA Controller Operation,” “DMA
Channel Parameter Registers,” and “DMA Interrupts” sections of this
chapter.

6.2 DMA CONTROL REGISTERS
The registers used to control and configure DMA operations are part of
the memory-mapped IOP register set. These registers are accessed by
writing to or (reading from) the appropriate address in memory.

Succeeding sections of this chapter describe the different operating
modes of the DMA controller together with the associated control
registers and bits. For complete information about the IOP registers,
see the Control/Status Registers appendix of this manual.

The DMA control registers and data buffer registers are listed in
Table 6.2. Note that the serial port and link port DMA control bits are
located in the SPORT and link port control registers, not listed in
Table 6.2—these control bits are described below under “Serial Port
DMA Control” and “Link Port DMA Control.”

Two-dimensional DMA mode is enabled by the L2DDMA bit in the
LCOM control register and the D2DMA bit in the SRCTL0 and SRCTL1
registers. These bits should be cleared (to 0) for standard DMA
operations. Note that references to two-dimensional DMA are not
applicable to the ADSP-21061.
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Register Name(s) Width Description
EPB0 48 External Port FIFO Buffer 0
EPB1 48 External Port FIFO Buffer 1
EPB2 48 External Port FIFO Buffer 2
EPB3 48 External Port FIFO Buffer 3
DMAC6 16 DMA Channel 6 Control Register

(Ext. Port Buffer 0 or Link Buffer 4)1, 2

DMAC7 16 DMA Channel 7 Control Register (Ext. Port Buffer 1 or
Link Buffer 5)1, 2

DMAC8 16 DMA Channel 8 Control Register (Ext. Port Buffer 2)3

DMAC9 16 DMA Channel 9 Control Register (Ext. Port Buffer 3)3

DMASTAT 32 DMA Channel Status Register
II0, IM0, C0, CP0 16-18 DMA Channel 0 Parameter Registers (SPORT0 Receive)4

GP0, DB0, DA0
II1, IM1, C1, CP1 16-18 DMA Channel 1 Parameter Registers (SPORT1 Receive or
GP1, DB1, DA1 Link Buffer 0)1, 2, 4, 5

II2, IM2, C2, CP2 16-18 DMA Channel 2 Parameter Registers (SPORT0 Transmit)4, 5

GP2, DB2, DA2
II3, IM3, C3, CP3 16-18 DMA Channel 3 Parameter Registers (SPORT1 Transmit or
GP3, DB3, DA3 Link Buffer 1)1, 2, 4, 5

II4, IM4, C4, CP4 16-18 DMA Channel 4 Parameter Registers (Link Buffer 2)1, 5

GP4, DB4, DA4
II5, IM5, C5, CP5 16-18 DMA Channel 5 Parameter Registers (Link Buffer 3)1, 5

GP5, DB5, DA5
II6, IM6, C6, CP6 16-32 DMA Channel 6 Parameter Registers (Ext. Port Buffer 0 or
GP6, EI6, EM6, EC6 Link Buffer 4)1, 2

II7, IM7, C7, CP7 16-32 DMA Channel 7 Parameter Registers (Ext. Port Buffer 1 or
GP7, EI7, EM7, EC7 Link Buffer 5)1, 2

II8, IM8, C8, CP8 16-32 DMA Channel 8 Parameter Registers (Ext. Port Buffer 2)3

GP8, EI8, EM8, EC8
II9, IM9, C9, CP9 16-32 DMA Channel 9 Parameter Registers (Ext. Port Buffer 3)3

GP9, EI9, EM9, EC9

Table 6.2  DMA Control, Buffer, & Parameter Registers

1. DMA control, buffer, and parameter registers associated with the link ports are not
applicable to the ADSP-21061.

2. There are no shared DMA channels on the ADPS-21061.
3. DMA control, buffer, and parameter registers associated wiht DMA channels 8 and 9 are

not applicalbe to the ADSP-21061.
4. The IM0, IM1, IM2, and IM3 registers contain the fixed value of 1 on the ADSP-21061.
5. The DBx and DAx registers are not available on the ADSP-21061 because there is no 2-D

DMA on the ADSP-21061.
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Figure 6.3  DMACx Registers

6.2.1 External Port DMA Control Registers
Each external port DMA channel has its own control register. The registers
are named DMAC6, DMAC7, DMAC8, and DMAC9, corresponding to
channels 6-9. Note that for the ADSP-21061 only DMA channels 6 and 7 of
the external port are applicable. Table 6.3 shows the contents of the
DMACx registers. All bits are active high unless stated otherwise.

The control bits in the DMACx registers take effect during the second
cycle after the write to the register is completed. The exception to this rule
is the FLSH bit, which takes effect in the third cycle after the write.

To start a new DMA sequence after the current one is finished, your
program must first clear the DEN enable bit, write new parameters to the
II, IM, and C registers, and then set the DEN bit to re-enable DMA. (For
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chained DMA operations, however, this is not necessary.)

Bit(s) Name Definition
0 DEN DMA Enable for External Port
1 CHEN DMA Chaining Enable for External Port
2 TRAN Transmit/Receive (1=transmit, 0=receive)
3-4 PS Pack Status (read-only)
5 DTYPE Data Type (0=data, 1=instructions)
6-7 PMODE Packing Mode (00=none, 01=16/32, 10=16/48, 11=32/48)
8 MSWF Most Significant Word First during packing
9 MASTER Master Mode Enable
10 HSHAKE Handshake Mode Enable (DMARx, DMAGx)
11 INTIO Single-Word Interrupt Enable for external port buffers
12 EXTERN External Handshake Mode Enable
13 FLSH Flush DMA Buffers & Status
14-15 FS External port buffer status (00=empty, 11=full,

10=partially full)
16-31 reserved

Table 6.3  External Port DMA Control Registers (DMACx)

The control and status bits in the DMACx registers are further
described below:

DEN Enables DMA for the external port buffers. (Note that the DMA
channels shared between the external port and link ports,
channels 6 and 7, may also become enabled by the link buffers; see
the “Selection Of Shared DMA Channels” section of this chapter.
Also note that for the ADSP-21061 there are no shared DMA
channels.)

CHEN Enables chained DMA transfers. When CHEN=1 and DEN=0, the
DMA channel is placed in chain insertion mode in which a new
DMA chain can be inserted into the current chain without
affecting the current DMA transfer. This mode of operation is
identical to CHEN=1 and DEN=1 except that automatic chaining
is disabled when the current DMA transfer ends. The complete list
of modes selected by the CHEN and DEN bits are as follows:

CHEN DEN Mode of Operation
0 0 Chaining disabled, DMA disabled
0 1 Chaining disabled, DMA enabled
1 0 Chain Insertion mode (chaining enabled, DMA

enabled, auto-chaining disabled)
1 1 Chaining enabled, DMA enabled, auto-chaining

enabled
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TRAN Transmit (1) or Receive (0). (1=read from ADSP-2106x, 0=write to
ADSP-2106x.) This bit specifies the data transfer direction as
internal-to-external when set to 1. (When EXTERN=1, setting
TRAN=1 specifies a read from external memory and TRAN=0
specifies a write to external memory.)

PS PS is a two-bit status field that indicates whether the packing
buffer is on its first, second, or last pack:

PS Status
00 pack complete
01 1st stage of all pack and unpack modes
10 2nd stage of 16-to-48 bit pack or unpack modes,

or 2nd stage of 32-to-48 bit pack or unpack modes
11 reserved

DTYPE Specifies the type of data being transferred; this information is
used by internal memory to determine the word width. DTYPE=1
overrides the IMDW bits and forces a 48-bit (3-column) memory
transfer. DTYPE=0 defers to the data word setting of the IMDW
bits in the SYSCON register. The data word may be 32-bit or 40-
bit, as determined by the setting of the IMDW bits in the SYSCON
register.

PMODE PMODE is a two-bit value specifying the EPBx buffer packing
mode. For host processor accesses of the EPBx buffers, the HPM
bits of the SYSCON register must be set to correspond to the
external bus width specified by PMODE.

PMODE Packing Mode
00 No packing/unpacking
01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

MSWF Specifies the order in which words are packed, for 16-to-32 bit
packing and 16-to-48 bit packing. MSWF is ignored for 32-to-48 bit
packing. When MSWF=1, packing is done MSW first (most
significant 16-bit word first). When MSWF=0, packing is done
LSW first.

INTIO Used when DEN=0, to allow the external port DMA interrupts to
occur for individual words received and transmitted. Generating
DMA interrupts in this fashion is useful for implementing
interrupt-driven single-word transfers under control of the ADSP-
2106x core processor. Setting INTIO=1 causes the interrupts to
occur when an EPBx input buffer is “not empty” (for TRAN=0) or
when an output buffer is “not full” (for TRAN=1).
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FLSH Reinitializes the state of the DMA channel, clearing the FS and PS
status bits to zero. The external port FIFO buffer and DMA
request counter are flushed and any internal DMA states are reset.
Any partially packed data words are also flushed. The entire
flushing operation has a two-cycle latency. FLSH is a self-clearing
control bit which is not latched and will always read as a 0.

The FLSH bit should only be used to clear the DMA channel when
the channel is inactive. Use of the FLSH bit while the channel is active
may cause unexpected results. The DMASTAT register can be read to
determine if the channel is active. (For a particular channel, the
channel active status bit in DMASTAT will be set if DMA is enabled
and the current DMA sequence has not completed.)

The FLSH bit should only be set to 1 at the same time the DEN
enable bit is cleared, or when the DEN bit is already equal to 0. Do
not set FLSH to 1 in the same write that sets DEN to 1.

FS FS is a two-bit status field that indicates whether data is present in
the EPBx FIFO buffer. When data is being transferred out from the
ADSP-2106x, these status bits indicate whether there is room in
the buffer for more data. When data is being transferred into the
ADSP-2106x, these status bits indicate whether new (unread) data
is available in the buffer.

FS Status
00 empty
01 undefined
10 partially full
11 full

MASTER Master Mode DMA Enable. The MASTER, HSHAKE, and
EXTERN bits are used in combination, as described below.

HSHAKE DMA Handshake Enable. The MASTER, HSHAKE, and EXTERN
bits are used in combination, as described below.

EXTERN Specifies an external memory to external device DMA transfer.
HSHAKE must equal 1 and MASTER equal 0 in this mode.
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The MASTER, HSHAKE, and EXTERN bits configure the DMA mode in the
following manner:

M H E DMA Mode of Operation
0 0 0 Slave Mode. The DMA request is generated whenever the receive

buffer is not empty or the transmit buffer is not full.1
0 0 1 Reserved
0 1 0 Handshake Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) The
DMA request is generated when the DMARx line is asserted. The
transfer occurs when DMAGx is asserted.1

0 1 1 External Handshake Mode. (For the ADSP-21060 and ADSP-
21062, applies to EPB1, EPB2 buffers, channels 7, 8 only. For the
ADSP-21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.)
Identical to Handshake Mode, but with data transferred between
external memory and an external device.

1 0 0 Master Mode. The DMA controller will attempt a transfer
whenever the receive buffer is not empty or the transmit buffer is
not full and the DMA counter is non-zero.1 DMAR1 should be
kept high (inactive) if channel 7 is in master mode, and DMAR2
should be kept high if channel 8 is in master mode on the ADSP-
21060 or ADSP-21062. DMAR2 should be kept high if channel 6 is
in master mode on the ADSP-21061.

1 0 1 Reserved
1 1 0 Paced Master Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) In this
mode the transfers are paced by the DMARx signal—the DMA
request is generated when DMARx is asserted. DMARx requests
operate in the same way as in handshake mode. The bus transfer
occurs when RD or WR is asserted. The address is driven as in
normal master mode. No external gates are required to OR the
RD-DMAGx and WR-DMAGx pairs, thus allowing the buffer
access to be zero-waitstate with no idle states. Waitstates and
acknowledge (ACK) apply to Paced Master Mode transfers; see
Section 5.4.4, “Wait States & Acknowledge” in Chapter 5,
Memory.

1 1 1 Reserved

1. If data is to be read from the ADSP-2106x (i.e. TRAN=1), the EPBx buffer
will be filled as soon as the DEN enable bit is set to 1.
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6.2.2 Serial Port DMA Control
The ADSP-2106x’s two serial ports, SPORT0 and SPORT1, can use
DMA transfers to handle transmit and receive data. DMA channels 0-3
are assigned to the serial ports, with channels 1 and 3 for SPORT1
being shared with link buffers 0 and 1 on the ADSP-21060 and ADSP-
21062. See Table 6.4 below. The direction of SPORT DMA transfers is
hardwired—receive channels send data to internal memory, while
transmit channels take data from internal memory.

DMA Data
Channel # Buffer Description
DMA Channel 0 RX0 Serial Port 0 Receive
DMA Channel 1 RX1 (or LBUF0) Serial Port 1 Receive (or Link Buffer 0)1

DMA Channel 2 TX0 Serial Port 0 Transmit
DMA Channel 3 TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)1

1. There are no shared DMA channels on the ADSP-21061.

Table 6.4  Serial Port DMA Channels

32-bit words are transferred internally between the RX/TX buffers and
memory. If 16-bit serial words are being received or transmitted, they
can be transferred two at a time by using the SPORTs’ packing
capability. See “Data Packing & Unpacking” in the “Data Word
Formats” section of the Serial Ports chapter for details.

Serial port DMA transfers must be set up in the DMA parameter
registers for channels 0-3. Table 6.2 lists these registers. The serial port
DMA enable bits are located in the SPORT transmit and receive control
registers, STCTL0, STCTL1, SRCTL0, and SRCTL1. These registers are
fully described in the Serial Ports chapter. Table 6.5 below shows the
control bits relating to serial port DMA. These bits are active high:
0=disabled, 1=enabled.

Bit Function
SDEN SPORT DMA enable
SCHEN SPORT DMA chaining enable
D2DMA 2-D DMA enable (for receive only, in SRCTLx register)

(Two -dimensional DMA is not available on the ADSP-21061.)

Table 6.5  STCTLx/SRCTLx Control Bits For Serial Port DMA
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The D2DMA bit places the DMA controller in two-dimensional SPORT
DMA mode on the ADSP-21060 and ADSP-21062. Two-dimensional
SPORT DMA mode is not applicable to the ADPS-21061. This bit should
be cleared (to 0) for standard operation.

Each serial port has a transmit DMA interrupt and a receive DMA
interrupt. When serial port DMA is not enabled, a TX interrupt occurs
when the TX buffer is not full and a RX interrupt occurs when the RX
buffer is not empty.

Interrupt
Name Interrupt
SPR0I SPORT0 Receive DMA Channel HIGHEST PRIORITY
SPR1I SPORT1 Receive DMA Channel
SPT0I SPORT0 Transmit DMA Channel
SPT1I SPORT1 Transmit DMA Channel LOWEST PRIORITY

Table 6.6  SPORT DMA Interrupts

6.2.3 Link Port DMA Control
The six link ports on ADSP-21060 and ADSP-21062 DSPs can also use
DMA transfers to handle transmit and receive data. DMA channels 4 and
5 are dedicated to link buffers 2 and 3, respectively. The other link buffers
share DMA channels with the serial ports and external port. [Note that
the discussion in this section applies only to ADSP-21060 and ADSP-
21062 DSPs; the topics here do not apply to the ADSP-21061 DSP because
this DSP does not have link ports.]

DMA Data
Channel # Buffer Description
DMA Channel 1 RX1 (or LBUF0) Serial Port 1 Receive (or Link Buffer 0)
DMA Channel 3 TX1 (or LBUF1) Serial Port 1 Transmit (or Link Buffer 1)
DMA Channel 4 LBUF2 Link Buffer 2
DMA Channel 5 LBUF3 Link Buffer 3
DMA Channel 6 EPB0 (or LBUF4) External Port Buffer 0 (or Link Buffer 4)
DMA Channel 7 EPB1 (or LBUF5) External Port Buffer 1 (or Link Buffer 5)

Table 6.7  Link Port DMA Channels
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Link port DMA operations are set up in the DMA parameter registers
for each channel. Table 6.2 lists these registers. Either 32- or 48-bit
word widths can be used in link port DMA transfers.

The link buffer DMA enable and control bits are located in the LCTL
register. Table 6.8 shows these control bits, which are active high (i.e.
0=disabled, 1=enabled). The LCOM register contains the L2DDMA bit;
this bit places the DMA controller in two-dimensional DMA mode for
the link ports. This bit should be cleared (to 0) for standard operation.

Bit(s) Name Definition
0-3 * Link Buffer 0 controls
4-7 * Link Buffer 1 controls
8-11 * Link Buffer 2 controls
12-15 * Link Buffer 3 controls
16-19 * Link Buffer 4 controls
20-23 * Link Buffer 5 controls
24 LEXT0 Extended word size**
25 LEXT1 Extended word size**
26 LEXT2 Extended word size**
27 LEXT3 Extended word size**
28 LEXT4 Extended word size**
29 LEXT5 Extended word size**
30-31 reserved

Table 6.8  LCTL Control Bits For Link Port DMA
* Each four-bit group includes the following control bits for each link buffer
   (x=0,1,2,3,4,5):

Bit# Name Definition
0+4x LxEN LBUFx enable
1+4x LxDEN LBUFx DMA enable
2+4x LxCHEN LBUFx chaining enable
3+4x LxTRAN LBUFx direction: 1=transmit, 0=receive

** Extended word size: 1=48-bit link port transfers, 0=32-bit link port
transfers

Each link buffer has a DMA interrupt, listed in Table 6.9 below. When
link port DMA is not enabled, an interrupt is generated whenever a
receive buffer is not empty or a transmit buffer is not full.
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Interrupt
Name Interrupt
SPR1I DMA Channel 1 –  SPORT1 Rx (or Link Buffer 0)
SPT1I DMA Channel 3 –  SPORT1 Tx (or Link Buffer 1)
LP2I DMA Channel 4 –  Link Buffer 2
LP3I DMA Channel 5 –  Link Buffer 3
EP0I DMA Channel 6 –  Ext. Port Buffer 0 (or Link Buffer 4)
EP1I DMA Channel 7 –  Ext. Port Buffer 1 (or Link Buffer 5)

Table 6.9  Link Buffer DMA Interrupts

6.2.4 Port Selection For Shared DMA Channels
DMA Channel 1 and Channel 3 are shared by Serial Port 1 and Link
Buffers 0 and 1. Similarly, DMA Channel 6 and Channel 7 are shared by
External Port Buffers 0 and 1 and Link Buffers 4 and 5.  [Note that the
discussion in this section applies only to ADSP-21060 and ADSP-21062
DSPs; the topics here do not apply to the ADSP-21061 DSP because this
DSP does not have shared DMA channels.]

DMA Data
Channel # Buffer Description
DMA Channel 1 RX1 (or LBUF0) SPORT1 Receive (or Link Buffer 0)
DMA Channel 3 TX1 (or LBUF1) SPORT1 Transmit (or Link Buffer 1)
DMA Channel 6 EPB0 (or LBUF4) External Port Buffer 0 (or Link Buffer 4)
DMA Channel 7 EPB1 (or LBUF5) External Port Buffer 1 (or Link Buffer 5)

Channel 1 is assigned to either the SPORT1 Receive buffer or Link Buffer
0 according the following rules:

• If the SPORT1 Receive DMA enable bit is set (SDEN=1), then Channel 1 is
assigned to it.

• If the Link Buffer 0 DMA enable bit is set (L0DEN=1), then Channel 1 is
assigned to it.

• If both enables are set, SPORT1 Receive is selected.
• If neither enable is set, then the interrupts from the two buffers are ORed

together.
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Channel 3 is assigned to either SPORT1 Transmit or Link Buffer 1 in
the same way.

Channel 6 is assigned to either External Port Buffer 0 or Link Buffer 4
according the following rules:

• If the External Port DMA enable bit is set in the DMAC6 control register
(DEN=1), then Channel 6 is assigned to EPB0.

• If the Link Buffer 4 DMA enable bit is set (L4DEN=1), then Channel 6 is
assigned to it.

• If both enables are set, EPB0 is selected.
• If neither enable is set, then the interrupts from the two buffers are

ORed together.

Channel 7 is assigned to either External Port Buffer 1 or Link Buffer 5
in the same way.

6.2.5 DMA Channel Status Register (DMASTAT)
The ADSP-2106x’s DMA controller maintains a 32-bit read-only status
register called DMASTAT, described in Table 6.10. Bits 0-9 of
DMASTAT indicate which DMA channels are active, with bit 0
corresponding to channel 0, and so on. Bits 10-19 indicate DMA
chaining status for each channel. [Note that bits 4, 5, 8, 9, 14, 15, 18, and
19 are not valid for the ADSP-21061.]
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Bit# Definition
0 DMA Channel 0 Status1

1 DMA Channel 1 Status1

2 DMA Channel 2 Status1

3 DMA Channel 3 Status1

4 DMA Channel 4 Status1, 3

5 DMA Channel 5 Status1, 3

6 DMA Channel 6 Status1

7 DMA Channel 7 Status1

8 DMA Channel 8 Status1, 3

9 DMA Channel 9 Status1, 3

10 DMA Channel 0 Chaining Status2

11 DMA Channel 1 Chaining Status2

12 DMA Channel 2 Chaining Status2

13 DMA Channel 3 Chaining Status2

14 DMA Channel 4 Chaining Status2, 3

15 DMA Channel 5 Chaining Status2, 3

16 DMA Channel 6 Chaining Status2

17 DMA Channel 7 Chaining Status2

18 DMA Channel 8 Chaining Status2, 3

19 DMA Channel 9 Chaining Status2, 3

20-31 reserved

Table 6.10  DMASTAT Register

1. Channel Status:  1 (active)=transferring data or waiting to transfer the current
block, and not transferring TCB. 0 (inactive)=DMA disabled, transfer complete, or
transferring TCB.

2. Channel Chaining Status:  1=transferring TCB or waiting to transfer TCB.
0=chaining disabled, or not transferring TCB.

3. Does not apply to the ADSP-21061.

Note 1: Status does not change on the master ADSP-2106x during external port DMA
until the external portion is completed (i.e., the EPBx buffers are emptied).

Note 2: If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status
will never go to 1. Therefore, test channel status to see if it is ready so that your
program can rewrite the chain pointer (CPx register).

For a particular channel, the channel active status bit will be set if DMA
is enabled and the current DMA sequence has not completed. The
chaining status bit will be set if the channel is currently performing
chaining operations or if chaining is pending. There will be a single
cycle of latency between internal status changes and the update of the
DMASTAT register.
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As an alternative to interrupt-driven DMA, polling DMASTAT can be
used to determine when a single DMA sequence has completed:

1. Read DMASTAT.
2. If both status bits for the channel are inactive, the DMA sequence

has completed.

If chaining is enabled, however, polling should not be used since the
next DMA sequence may be under way by the time the polled status is
returned.

6.3 DMA CONTROLLER OPERATION
The following sections discuss the operation of the ADSP-2106x’s
DMA controller and describe how DMA transfers occur.

In the ADSP-2106x, the DMA controller operations are centered on the
internal I/O bus. The serial ports, link ports, and external port are
connected to the internal memory via the I/O Data bus (IOD), and the
DMA controller generates internal memory addresses on the I/O
Address bus (IOA).

The DMA controller maintains 10 DMA channels that are used by the
external port, the link ports, and the serial ports. A DMA channel
consists of a set of parameter registers which specify a data buffer in
internal memory, plus the hardware required by an I/O port to
request DMA service.

To transfer data, the DMA controller accepts internal requests from
I/O ports and sends back an internal grant when they are serviced.
The DMA controller contains priority logic to determine which
channel can drive the bus in any given cycle. The DMA transfer never
conflicts with the core for internal memory accesses because the
internal memory has separate ports for core and I/O accesses.

Each external port DMA channel has a control/status register which is
used to set the operating mode of the channel and to return status
information. All of the DMA control and parameter registers are
accessible to external devices. This allows a host, or another ADSP-
2106x, to set up a DMA channel and initiate transfers without local
ADSP-2106x involvement. The local ADSP-2106x can set up a DMA
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channel on itself by writing to its DMA control and parameter
registers.

The external port and link port DMA channels can be configured to
transmit or receive data from internal memory. The serial port DMA
channels, however, are unidirectional, either transmit or receive only.

6.3.1 DMA Channel Parameter Registers
The DMA channels operate in a similar fashion as the ADSP-2106x’s
Data Address Generators (DAGs). Each channel has of a set of
parameter registers including an index register (IIx) and modify
register (IMx) which are used to set up a data buffer in internal
memory. The index register must be initialized with a starting address
for the data buffer. The address in the index register is output onto the
ADSP-2106x’s IOA (I/O Address) bus and applied to internal memory
during each DMA cycle. (A DMA cycle is defined as a clock cycle in
which a DMA transfer is taking place.)

All addresses in the 17-bit index registers are offset by 0x0002 0000, the
first internal RAM location, before they are used by the DMA
controller. Since the index registers are only 17 bits wide, DMA
transfers cannot be made to short word address space. (16-bit short
word data can be transferred within 32-bit words, however, using the
packing capability of the external port and serial port DMA channels.)

After each data word is transferred to or from internal memory, the
DMA controller adds the modify value to the index register to generate
the address for the next DMA transfer; the modify value is added to
the index value and written back into the index register. The modify
value in the IM register is a signed integer, to allow both incrementing
and decrementing. Note that if the index register is modified past its
maximum 17-bit value (i.e. out of the address range of internal
memory), it will wraparound to zero (offset by 0x0002 0000). The
modify value for DMA channels 0-3 is fixed to 1 on the ADSP-21061;
this DSP does not have the IM0-3 registers.

Each DMA channel has a count register (Cx) which must be initialized
with a word count to be transferred. The count register is decremented
after each DMA transfer on that channel; when the count reaches zero,
the interrupt for that channel can be generated.

Caution: If the count register is initialized with zero, DMA transfers on
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that channel are not disabled. Rather, 216 transfers will be performed.
This occurs because the first transfer is started before the count value is
tested. The correct way to disable a DMA channel is to clear its DMA
enable bit in the corresponding control register.

To start a new DMA sequence after the current one is finished, your program
must first clear the DEN enable bit, write new parameters to the II, IM, and C
registers, and then set the DEN bit to re-enable DMA.

(For chained DMA operations, however, this is not necessary.)

Each DMA channel also has a chain pointer register (CPx) and a
general-purpose register (GPx). The CP register is used in chained
DMA operations (as described below in “DMA Chaining”), and the
GP register can be used for any purpose.

The external port DMA channels each contain three additional
parameter registers, the external index register (EIx), external modify
register (EMx), and external count register (ECx). (These registers are
not included in the serial port and link port DMA channels.) The EI,
EM, and EC registers are used to generate 32-bit addresses driven out
of the external port, for master mode DMA transfers between internal
memory and external memory or devices. Master mode is configured
by the MASTER bit of each DMACx control register. The EC register
must be loaded with the number of external bus transfers to occur (in
master mode only). (Note: This differs from the number of words
transferred by the DMA controller if word packing is used.) EIX may
not index internal memory. If DMA data is broadcast, write space data
is not written to the internal memory of the broadcaster.

Instead of the EI, EM, and EC registers, the serial port and link port
DMA channels have the DA and DB registers. These registers are used
for two-dimensional array addressing in mesh multiprocessing
applications, but may also be used as general-purpose registers in
standard, one-dimensional DMA operations.

Figure 6.4 shows a block diagram of the DMA controller’s address
generator. Table 6.11 defines the DMA parameter registers, and
Table 6.12 lists the parameter registers for each DMA channel. The
parameter registers are uninitialized following a processor reset.
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Parameter #of
Register Bits Function
IIx 17 Internal Index (starting address for data buffer – 0x0002 0000)
IMx 16 Internal Modifier (address increment)1
Cx 16 Internal Count (number of words to transfer)
CPx 18* Chain Pointer (address of next set of buffer parameters)2
GPx 17 General-Purpose (or 2D DMA)3
EIx 32 External Index (Ext. Port DMA channels only)
EMx 32 External Modifier (Ext. Port DMA channels only)
ECx 32 External Count (Ext. Port DMA channels only)
DBx 16 General-Purpose or 2D DMA (Link/SPORT channels only)3

DAx 16 General-Purpose or 2D DMA (Link/SPORT channels only)3

Table 6.11  DMA Parameter Registers
1. The modify value of DMA channels 0-3 is fixed to '1' on the ADSP-21061.
2. Lower 17 bits (bits 16-0) contain memory address of the next set of parameters for chained DMA

operations. Most significant bit (bit 17) is the PCI bit (Program-Controlled Interrupts), which
determines whether the DMA interrupts occur at the completion of each DMA sequence.

3. Two-dimensional DMA is not available on the ADSP-21061; this DSP does not have the DBx or
DAx registers.

Register
Names Description
II0, IM0, C0, CP0 DMA Channel 0 Parameter Registers (SPORT0 Receive)1
GP0, DB0, DA0
II1, IM1, C1, CP1 DMA Channel 1 Parameter Registers (SPORT1 Receive or Link Buffer 0)1
GP1, DB1, DA1
II2, IM2, C2, CP2 DMA Channel 2 Parameter Registers (SPORT0 Transmit)1
GP2, DB2, DA2
II3, IM3, C3, CP3 DMA Channel 3 Parameter Registers (SPORT1 Transmit or Link Buffer 1)1
GP3, DB3, DA3
II4, IM4, C4, CP4 DMA Channel 4 Parameter Registers (Link Buffer 2)2
GP4, DB4, DA4
II5, IM5, C5, CP5 DMA Channel 5 Parameter Registers (Link Buffer 3)2
GP5, DB5, DA5
II6, IM6, C6, CP6 DMA Channel 6 Parameter Registers (Ext. Port Buffer 0 or Link Buffer 4)
GP6, EI6, EM6, EC6
II7, IM7, C7, CP7 DMA Channel 7 Parameter Registers (Ext. Port Buffer 1 or Link Buffer 5)
GP7, EI7, EM7, EC7
II8, IM8, C8, CP8 DMA Channel 8 Parameter Registers (Ext. Port Buffer 2)2
GP8, EI8, EM8, EC8
II9, IM9, C9, CP9 DMA Channel 9 Parameter Registers (Ext. Port Buffer 3)2
GP9, EI9, EM9, EC9

Table 6.12  Parameter Registers For Each DMA Channel

1. The values in the IM0-3 registers are fixed to '1' on the ADSP-21061; this DSP does not have DAx
and DBx registers.

2. These sets of registers are not available on the ADSP-21061.
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Figure 6.4  DMA Address Generation

6.3.2 Internal Request & Grant
The ADSP-2106x’s I/O ports communicate with the DMA controller by
means of an internal DMA request/grant handshake. Each I/O port
(link ports, serial ports, and external port) has one or more DMA
channels, with each channel having a single request and a single grant.
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When a particular I/O port needs to write data to internal memory, it
asserts its request. This request is prioritized with all other valid DMA
requests. See Figure 6.2.

When a channel becomes the highest priority requester, its internal
grant is asserted by the DMA controller. In the next clock cycle, the
DMA transfer is started. When an I/O port wishes to read data from
internal memory, the sequence is the same.

If a DMA channel is disabled, no grants will be given for that channel,
regardless of whether it has data to transfer.

6.3.3 DMA Channel Prioritization
Since more than one DMA channel may have a request active in a
particular cycle, a prioritization scheme is used to select the channel to
service. Prioritization is needed to determine which channel can use
the IOD (I/O Data) bus to access memory. The ADSP-2106x always
uses a fixed prioritization (except for the external port DMA channels,
as described below). Table 6.13 lists in descending order of priority the
possible I/O bus accesses including DMA channels .

– Core Accesses to DA Group Registers HIGHEST PRIORITY
Channel 0 – Serial Port 0 Receive
Channel 1 – Serial Port 1 Receive (or Link Buffer 0)
Channel 2 – Serial Port 0 Transmit
Channel 3 – Serial Port 1 Transmit (or Link Buffer 1)

– TCB Chain Loading Requests1

– External Accesses of Internal Memory (Direct Reads, Direct Writes)2
Channel 4 – Link Buffer 23

Channel 5 – Link Buffer 33

Channel 6 – Ext. Port Buffer 0 (or Link Buffer 4)4
Channel 7 – Ext. Port Buffer 1 (or Link Buffer 5)4
Channel 8 – Ext. Port Buffer 23, 4

Channel 9 – Ext. Port Buffer 33, 4 LOWEST PRIORITY

Table 6.13  Internal Memory I/O Bus Access Priority

1. TCB chain loading uses the I/O bus and therefore requires prioritization. (See
“DMA Chaining” below.)

2. Direct reads and writes use the I/O bus and therefore require prioritization.
(See “Direct Writes” and “Direct Reads” in the Host Interface  chapter.)

3. These DMA channels are not available on the ADSP-21061
4. Rotating priority can be selected for External Port Buffers.
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The DMA controller determines the highest priority requesting
channel during every cycle, between each individual data transfer.
Master/slave bus request prioritization, however, occurs only when
the ADSP-2106x master gives up control of the external bus—this
occurs only after an entire DMA block transfer has completed.

Note that external direct accesses of internal memory and TCB chain
loading are prioritized along with the DMA channels. This is necessary
to prevent I/O bus contention, because these accesses are also
performed over the internal I/O bus. TCB chain loading is given a
higher priority than external port accesses to allow serial port DMA
transfers (which cannot be held off) to be chained, even when the
external port is attempting an access in every cycle. (TCB chain loading
is explained in the section “DMA Chaining” below.)

6.3.3.1 Rotating Priority For Ext. Port Channels
The DMA controller can be programmed to use a rotating priority
scheme for the four external port channels by setting the DCPR bit in
the SYSCON register:

Bit Function
DCPR Enables rotating priority for external port DMA channels 6-9

on the ADSP-21060 and ADSP-21062. Enables rotating
priority for external port DMA channels 6-7 on the ADSP-
21061. (0=disabled, 1=enabled)

When rotating priority is enabled, high priority shifts to a new channel
after each single-word transfer. The order of channel priority then
rotates. Thus, a single-word transfer is serviced, then priority rotates to
the next higher-numbered channel, and so on until all four are
serviced. Figure 6.5 illustrates this process, according to the following
example (applies to the ADSP-21060 and ADSP-21062):

1) After reset, the default priority ordering from high to low is 6, 7, 8, 9.
2) A single transfer is performed on channel 7.
3) Assuming that rotating priority is enabled (DCPR=1), the priority

ordering then changes to 8, 9, 6, 7.

For the ADSP-21061, rotating priority works in the same manner
described above, except there are only two DMA channels (6-7).
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The external port channel priorities do not change relative to the serial
port and link port channel priorities. At reset, the DCPR bit is cleared
and rotating priority is disabled.

Note: Even though the external port channel DMA priority can rotate,
the interrupt priorities of all DMA channels are fixed.

When using fixed priority for the external port DMA channels, the
highest priority of the four is assigned to Channel 6 and the lowest
priority is assigned to Channel 9 (as shown in Table 6.13) for the
ADSP-21060 and ADSP-21062. The lowest priority channel on the
ADSP-21061 is channel 7. This order of priority can be redefined by
assigning one of the other channels the highest priority. To change the
fixed priority sequence of the external port DMA channels, use the
following procedure:

1) Disable all external port DMA channels except the one which is to have
lowest priority.

2) Select rotating priority.
3) Cause at least one transfer to occur on the enabled channel.
4) Disable rotating priority and re-enable all of the external port DMA

Figure 6.5  Rotating Priority Example (ADSP-21060 & ADSP-21062)
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channels.

The channel immediately after the selected channel will now have the
highest fixed priority, for example (ADSP-21060 & ADSP-21062):

HIGHEST LOWEST

Priority at Reset: DMA6 DMA7 DMA8 DMA9

     Follow steps 1-4 above to make DMA7 the lowest priority.

New Priority Ordering: DMA8 DMA9 DMA6 DMA7

6.3.4 DMA Chaining
DMA chaining allows the ADSP-2106x’s DMA controller to
autoinitialize itself between multiple DMA transfers. Using chaining,
you can set up multiple DMA operations in which each operation can
have different attributes.

In chained DMA operations, the ADSP-2106x automatically sets up
another DMA transfer when the entire contents of the current buffer
have been transmitted or received. The chain pointer register (CP) is
used to point to the next set of DMA parameters stored in internal
memory.   This new set of parameters is called a transfer control block
(TCB). The ADSP-2106x’s DMA controller automatically reads the TCB
from internal memory and loads the values into the channel parameter
registers to set up the next DMA sequence; this process is called TCB
chain loading.

A DMA sequence is defined as the sum of the DMA transfers for a
single channel, from the parameter registers initialization to when the
count register decrements to zero.

Each DMA channel has a chaining enable bit (CHEN) in the
corresponding control register. This bit must be set to 1 to enable
chaining. Writing all zeros to the address field of the chain pointer
register (CP) also disables chaining.

When chaining is enabled, DMA transfers are initiated by writing a
memory address to the CP register. This is also an easy way to start a
single DMA sequence, with no subsequent chained DMAs. The CP
register can be loaded at any time during the DMA sequence—this
allows a DMA channel to have chaining disabled (CP register address
field = 0x0000) until some event occurs that loads the CP register with
a non-zero value. DMA chaining operations may only occur within the
same channel; cross-channel chaining is not supported.
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The CP register is 18 bits wide, of which the lower 17 bits are the
memory address field. The memory address field is offset by
0x0002 0000 before it is used by the DMA controller. The most
significant bit (bit 17) of the CP register is a control bit called PCI
(Program-Controlled Interrupts). The PCI bit selects whether or not an
interrupt occurs at the completion of the current DMA sequence (in
addition to the interrupt’s mask bit in IMASK). When PCI=1, the
corresponding DMA channel interrupt is enabled and will occur when
the count register reaches zero. When PCI=0, the channel’s interrupt is
disabled. Note that the PCI bit only affects DMA channels for which
chaining is enabled (i.e. CHEN bit set to 1). For non-chained DMA
operations, the IMASK register must be used to disable the interrupt.
Interrupt requests enabled by the PCI bit can still be masked out (i.e.
disabled) in the IMASK register. Figure 6.6 illustrates the PCI bit
within the CPx register.

Caution: Because the PCI bit is not part of the memory address in the
CP register, care should be taken when writing and reading addresses
to and from the register. To prevent errors, it is a good practice to
mask out the PCI bit (bit 17) when copying the address in CP to
another address register.

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

PCI bit

17 16

Memory Address Field
 (address of next TCB)

CPx

Figure 6.6  Chain Pointer Register & PCI Bit

The general-purpose register (GP) can be useful during chained DMA
sequences. It is loaded from memory with the other parameter
registers, and can be used to point to the last DMA sequence that was
completed. This allows a program to determine where the last full (or
empty) data buffer is located. Since it is a general-purpose register
with no dedicated functionality, it can be used for any purpose.
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6.3.4.1 Transfer Control Blocks & Chain Loading
During TCB chain loading, the DMA channel parameter registers are
loaded with values retrieved from internal memory. The CP register
contains the chain pointer—the highest address of the TCB. The TCB is
stored in consecutive locations.

Table 6.14 below shows the TCB-to-register loading sequence for the
external port, link port, and serial port DMA channels (i.e. the order in
which the DMA controller reads each word of the TCB and loads it
into the corresponding register.) Figure 6.7 shows how you must set
up the TCB in memory (for an external port DMA chain), referenced to
the address pointer contained in the CP register of the previous DMA
operation of the chain.

External Port & Serial Ports &
Address_____________ Link Buffers 4,5 Link Buffers 0,1,2,3
CPx +  0x0002 0000 IIx IIx
CPx –  1 +  0x0002 0000 IMx IMx
CPx –  2 +  0x0002 0000 Cx Cx  (and DAx for 2D DMA)
CPx –  3 +  0x0002 0000 CPx CPx
CPx –  4 +  0x0002 0000 GPx GPx
CPx –  5 +  0x0002 0000 EIx DBx  (loaded during 2D DMA only)
CPx –  6 +  0x0002 0000 EMx LPATH1 (mesh multiproc. links only)
CPx –  7 +  0x0002 0000 ECx LPATH2 (mesh multiproc. links only)
CPx –  8 +  0x0002 0000   – LPATH3 (mesh multiproc. links only)

Table 6.14  TCB Chain Loading Sequence

Notes:

1. An “x” denotes the DMA channel number.
2. The DAx and DBx registers are not loaded during chaining in normal, one-

dimensional DMA. In 2D DMA operations, only DBx is loaded. The DAx register
is automatically loaded with the same value as the Cx register. (2D DMA
operations are not applicable to the ADSP-21061.)

3. The link transmit chain also downloads the LPATH1,  LPATH2, and LPATH3
registers when the LMSP bit in the LCOM  control register is set, enabling mesh
multiprocessing. (These registers are not available of the ADSP-21061.)

4. Link Buffers 4 and 5 use the same chaining registers as the external port. All 8
registers are always loaded when chaining on DMA channels 6-9, but EIx, EMx,
and ECx are not used when Link Buffers 4 and 5 are enabled. (Link buffers 4-5
are not available on the ADSP-21061.)

A working register is loaded from the CP register before the chain
loading sequence begins, and is decremented after each register is
loaded. The working register allows the CP register to be updated with
the new CP value without interfering with the current register loading.
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When the chain loading is complete, the working register is loaded
with the new CP value. This allows chained DMA sequences to be set
up in a continuous loop. (Note: The contents of the working register
are not accessible.)

TCB chain loading is requested like all other DMA operations. A TCB
loading request is latched and held in the DMA controller until it
becomes the highest priority request. The IOP individually prioritizes
and transfers the TCB register like normal DMA. If multiple chaining
requests are present, the TCB registers for the highest priority DMA
channel are transferred first. A channel which is in the process of chain
loading cannot be interrupted by a higher priority channel. Refer to
Table 6.13 for the DMA channel request priorities.

ECx

EMx

EIx

Address

CPx

Cx

IIx

GPx

IMx

Address pointer 
to next TCB

Lowest addressCPx – 7

CPx – 6

CPx – 5

CPx – 4

CPx – 3

CPx – 2

CPx – 1

CPx Highest address

Figure 6.7  TCB Setup In Memory (For External Port DMA Channel)

6.3.4.2 Setting Up & Starting The Chain
To setup and initiate a chain of DMA operations, your program should
follow this sequence:

1. Set up all TCBs in internal memory.

2. Write to the appropriate DMA control register, setting the DEN
enable bit to 1 and the CHEN chaining enable bit to 1.

3. Write the last address (i.e. the address of the IIx register value) of
the first TCB to the CPx register—this will start the chain.
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The DMA controller will autoinitialize itself with the first TCB and
then start the first transfer. When this transfer is completed, the next
one will begin if the current chain pointer address is non-zero. This
address will be used as the pointer to the next TCB.

Remember that the address field of the CPx registers is only 17 bits
wide. If a symbolic address is written directly to CPx, bit 17 may
conflict with the PCI bit. Be sure to clear the upper bits of the address,
then AND in the PCI bit separately if needed.

6.3.4.3 Chain Insertion
A high priority DMA operation or chain can be inserted into an active
DMA chain. When CHEN=1 and DEN=0, the DMA channel is placed
in chain insertion mode in which a new DMA chain can be inserted into
the current chain without affecting the current DMA transfer. The new
chain is inserted by the ADSP-2106x core writing a TCB into the
channel parameter registers. This mode of operation is identical to that
selected by CHEN=1 and DEN=1; except that when the current DMA
transfer ends, automatic chaining is disabled and an interrupt request
occurs. This interrupt request is independent of the PCI bit state.

The following sequence should be used to insert a DMA subchain
while another chain is active:

1. Enter chain insertion mode by setting CHEN=1 and DEN=0 in the
appropriate DMA control register.

2. The DMA interrupt will indicate when the current DMA sequence has
completed.

3. Write the CPx register value into the CP position of the last TCB in the
new chain.

4. Set DEN=1 and CHEN=1.

5. Write the start address of the first TCB of the new chain into the CP
register.

Chain insertion should not be set up as an initial mode of operation; it
is intended for use only while another DMA operation is in progress.
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6.3.5 DMA Interrupts
When the count register (C) of an active DMA channel decrements to
zero, an interrupt is generated. For the external port DMA channels,
both the C and EC (external count) registers must equal zero before the
interrupt is generated (EC register only in MASTER mode). The count
register(s) must be decremented to zero as a result of actual DMA
transfers in order for a DMA interrupt to be generated—writing zero
to a count register will not generate the interrupt.

Each DMA channel has its own interrupt; the DMA interrupts are
latched in the IRPTL and are enabled in the IMASK register. Table 6.15
shows the IRPTL and IMASK bits of the ten DMA channel interrupts,
in order of priority. (Note: Although the external port channel access
priority can rotate, the interrupt priorities of all DMA channels are
fixed.)

IRPTL/
IMASK Vector Interrupt
Bit # Address1 Name DMA Channel Interrupt
10 0x28 SPR0I DMA Channel 0 – SPORT0 Receive HIGHEST
PRIORITY
11 0x2C SPR1I DMA Channel 1 –  SPORT1 Receive (or Link Buffer 0)
12 0x30 SPT0I DMA Channel 2 –  SPORT0 Transmit
13 0x34 SPT1I DMA Channel 3 –  SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 –  Link Buffer 22

15 0x3C LP3I DMA Channel 5 –  Link Buffer 32

16 0x40 EP0I DMA Channel 6 –  Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1I DMA Channel 7 –  Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 –  Ext. Port Buffer 22

19 0x4C EP3I DMA Channel 9 –  Ext. Port Buffer 32 LOWEST
PRIORITY

Table 6.15  DMA Interrupt Vectors & Priority

1. Offset from base address: 0x0002 0000 for interrupt vector table in internal
memory, 0x0040 0000 for interrupt vector table in external memory

2. These locations are reserved, not used, on the ADSP-21061.

In addition to IMASK, DMA interrupts for each channel can be
enabled or disabled by the PCI bit of the CP register, when DMA
chaining is enabled. When PCI=1, DMA interrupt requests occur when
the count register reaches zero. When PCI=0, no DMA interrupts are
generated. The PCI bit is valid only when DMA chaining is enabled. If
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chaining is disabled, the IMASK register must be used to disable
interrupts. Interrupt requests enabled by PCI can still be masked out
by the IMASK register.

DMA interrupts can also be generated by ADSP-2106x’s I/O ports
without using DMA. In this case, a DMA interrupt is generated
whenever data becomes available at the receive buffer, or whenever
the transmit buffer does not have new data to transmit. Generating
DMA interrupts in this fashion is useful for implementing interrupt-
driven I/O under control of the ADSP-2106x core processor. Multiple
interrupts can occur if several I/O ports transmit or receive data in the
same cycle. To perform single-word, non-DMA, interrupt-driven
transfers on the external port, the INTIO bit must be set in a DMACx
control register.

The following list describes the various conditions for which an
interrupt will be generated by a DMA channel or its corresponding
I/O port:

Interrupt
Condition Mask
Chaining disabled, current DMA sequence completes IMASK
Chaining enabled, current DMA sequence completes IMASK & PCI
Chain insertion mode, current DMA sequence completes IMASK
DMA disabled and a buffer is accessed by the I/O port* IMASK
* INTIO bit must be set in DMACx control register for external port.

If the interrupt mask is a 1 (i.e. unmasked), the interrupt is enabled and
will be acknowledged.

The IMASK register is not directly accessible to external devices, via
the external port, because it is one of the universal registers in the
ADSP-2106x processor core (and is not memory-mapped like the IOP
registers). IMASK may be read or written via the external port,
however, by using an interrupt vector to a routine set up to handle this
task. The VIRPT vector interrupt register may be used for this purpose.

As an alternative to interrupts, polling DMASTAT can be used to
determine when a single DMA sequence has completed:

1. Read DMASTAT.
2. If both status bits for the channel are inactive, the DMA sequence has

completed.



6DMA

6 – 35

If chaining is enabled, however, polling DMASTAT should not be used
since the next DMA sequence may be under way by the time the
polled status is returned.

6.3.6 Starting & Stopping DMA Sequences
DMA sequences are started in different ways depending on whether
DMA chaining is enabled. When chaining is not enabled, only the
DMA enable bit (DEN) allows DMA transfers to occur.

A DMA sequence starts when one of the following occurs:

• Chaining is disabled and the DMA enable bit (DEN) transitions from
low to high.

• Chaining is enabled, DMA is enabled (DEN=1), and the CP register
address field is written with a non-zero value. (In this case, TCB
chain loading of the channel parameter registers occurs first.)

• Chaining is enabled, the CP register address field is non-zero, and
the current DMA sequence finishes. (Again, TCB chain loading
occurs.)

A DMA sequence ends when one of the following occurs:

• The count register decrements to zero (both C and EC for external
port channels).

• Chaining is disabled and the channel’s DEN bit transitions from
high to low. If the DEN bit goes low and chaining is enabled, the
channel enters chain insertion mode and the DMA sequence
continues. (See “Chain Insertion” for details.)

Note that whenever the DEN bit goes high again, the DMA sequence
continues from where it left off (for non-chained operations only).

To start a new DMA sequence after the current one is finished, your
program must first clear the DEN enable bit, write new parameters to
the II, IM, and C registers, and then set the DEN bit to re-enable DMA.
(For chained DMA operations, however, this is not necessary; see
“DMA Chaining.”)

Warning: If a DMA operation completes and the count register is
rewritten before the DMA enable bit is cleared, the DMA transfer will
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restart at the new count.

6.4 EXTERNAL PORT DMA
Channels 6, 7, 8, and 9 are the external port DMA channels, which are
available on the ADSP-21060 and ADSP-21062. On the ADSP-21061,
only channels 6-7 are available. These DMA channels allow efficient
data transfers between the ADSP-2106x’s internal memory and external
memory or devices.

6.4.1 External Port FIFO Buffers (EPBx)
DMA Channels 6, 7, 8, and 9 are associated with the external port FIFO
data buffers, EPB0, EPB1, EPB2, and EPB3. Each buffer acts as a six-
location FIFO. It has two ports, a read port and a write port. Each port
can be connected to either the EPD (External Port Data) bus or to a local
bus which in turn can connect to the IOD (I/O Data) bus,          PM Data
bus, or DM Data bus. (See Figure 6.2.) This structure allows data to be
written to the FIFO on one port while it is being read from the other
port—allowing DMA transfers at the full processor clock frequency.

The external port FIFO buffers can also be used for non-DMA, single-
word data transfers, as described in the Host Interface chapter of this
manual.

Caution: The ADSP-2106x core should not attempt to read or write an
EPBx buffer when a DMA operation using that buffer is in progress;
this will corrupt the DMA data.

Each external port buffer can be flushed (i.e. cleared) by writing a 1 to the
FLSH bit in the corresponding DMACx control register. This should only be
done when DMA is disabled for the channel. The FLSH bit is not latched
internally and will always be read as a 0. Status can change in the following
cycle. An external port buffer should not be enabled and flushed in the
same cycle.

6.4.1.1 External Port DMA Data Packing
Each external port buffer contains data packing logic to allow 16-bit or
32-bit external bus words to be packed into 32-bit or 48-bit internal
words. The packing logic is also fully reversible, depending on the
setting of the TRAN bit in the DMACx control register, so that 32-bit or
48-bit internal data can be unpacked into 16-bit or 32-bit external word
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widths. The packing mode is selected by the PMODE bits in the
DMACx control register for each external port buffer.

PMODE Packing Mode
00 No packing/unpacking
01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

The external port buffer can pack data most significant word (MSW)
first or least significant word (LSW) first. Setting the MSWF bit to 1 in
the DMACx control register selects MSW-first. When MSWF is set,
data is also unpacked MSW-first. The MSWF bit has no effect when
PMODE=11 or PMODE=00.

The packing sequence for downloading ADSP-2106x instructions from
a 32-bit bus (PMODE=11) takes 3 cycles for every 2 words, as shown
below. (Note that for host processor transfers to or from the EPBx
buffers, the HPM bits of the SYSCON register must be set to
correspond to the external bus width specified by PMODE.) 32-bit data
is transferred on data bus lines 47-16. If an odd number of instruction
words are transferred, the packing buffer must be flushed by a dummy
access to remove the unused word.

32-Bit to 48-Bit Word Packing  (External Bus ↔ ADSP-2106x):
Data Bus Pins 47-32  Data Bus Pins 31-16

1st DMA transfer Word1  bits 47-32 Word1  bits 31-16
2nd DMA transfer Word2  bits 15-0 Word1  bits 15-0
3rd DMA transfer Word2  bits 47-32 Word2  bits 31-16

The MSWF bit of the DMACx control register is ignored for 32-to-48-
bit packing.

The packing sequence for downloading ADSP-2106x instructions from
a 16-bit bus is shown below. The MSWF bit determines whether the
most significant 16-bit word or least significant 16-bit word is packed
first.

16-Bit to 48-Bit Word Packing w/MSWF=1  (External Bus ↔ ADSP-
2106x):

Data Bus Pins 31-16
1st DMA transfer Word1  bits 47-32
2nd DMA transfer Word1  bits 31-16
3rd DMA transfer Word1  bits 15-0
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40-bit extended precision data may be transferred using the 48-bit
packing mode. Refer to the Memory chapter of this manual for a
description of memory allocation for different word widths.

6.4.1.2 Packing Status
Each external port DMA control register also contains a two-bit PS
field which contains the number of short words currently packed in
the EPBx buffer. During unpacking, the PS status behaves the same as
for packing. All of the packing functions are available for any type of
DMA transfer.

6.4.2 Internal & External Address Generation
DMA transfers between ADSP-2106x internal memory and external
memory require the DMA controller to generate addresses for both.
The external port DMA channels contain EI (External Index) and EM
(External Modifier) registers to perform external address generation.
The EI register provides the external port address for the current DMA
cycle, and is updated with the modifier value in EM for the next
external memory access.

In order to support the wide range of data packing operations
provided for external DMA transfers, the EI and EM registers are able
to generate addresses at a different rate than the internal address
registers (II and IM). For this reason the internal and external address
generators are decoupled from each other, and the EC (External Count)
register is used as the external DMA word counter.

If, for example, a 16-bit DMA device is reading data from ADSP-2106x
internal memory, then two external 16-bit transfers will occur for each
32-bit internal memory word and the EC (external) word count should
be twice the value of the C (internal) word count.

6.4.3 External Port DMA Modes
The MASTER, HSHAKE, and EXTERN bits of each DMACx control
register are used to select the DMA mode of operation. Each external
port DMA channel can be set up to operate in one of five DMA modes.
The master mode initiates transfers while the other modes act as
“slaves” where an external device must initiate each transfer.

The MASTER, HSHAKE, and EXTERN bits configure the DMA mode
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in the following manner:

M H E DMA Mode of Operation1

0 0 0 Slave Mode. The DMA request is generated whenever the receive
buffer is not empty or the transmit buffer is not full.2

0 0 1 Reserved
0 1 0 Handshake Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) The
DMA request is generated when the DMARx line is asserted. The
transfer occurs when DMAGx is asserted.1

0 1 1 External Handshake Mode. (For the ADSP-21060 and ADSP-
21062, applies to EPB1, EPB2 buffers, channels 7, 8 only. For the
ADSP-21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.)
Identical to Handshake Mode, but with data transferred between
external memory and an external device.

1 0 0 Master Mode. The DMA controller will attempt a transfer
whenever the receive buffer is not empty or the transmit buffer is
not full and the DMA counter is non-zero.1 DMAR1 should be
kept high (inactive) if channel 7 is in master mode, and DMAR2
should be kept high if channel 8 is in master mode on the ADSP-
21060 or ADSP-21062. DMAR2 should be kept high if channel 6 is
in master mode on the ADSP-21061.

1 0 1 Reserved
1 1 0 Paced Master Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) In this
mode the transfers are paced by the DMARx signal—the DMA
request is generated when DMARx is asserted. DMARx requests
operate in the same way as in handshake mode. The bus transfer
occurs when RD or WR is asserted. The address is driven as in
normal master mode.  No external gates are required to OR the
RD-DMAGx and WR-DMAGx pairs, thus allowing the buffer
access to be zero-waitstate with no idle states. Waitstates and
acknowledge (ACK) apply to Paced Master Mode transfers; see
Section 5.4.4, “Wait States & Acknowledge” in Chapter 5,
Memory.

1 1 1 Reserved

1. When an external port DMA channel is configured for output (i.e.,
TRAN=1), the EPBx buffer will start to fill as soon as that DMA channel is
enabled. The EPBx buffer will start to fill up even if no DMAR assertions or
slave mode DMA buffer reads have been made yet.

2. If data is to be read from the ADSP-2106x (i.e. TRAN=1), the EPBx buffer
will be filled as soon as the DEN enable bit is set to 1.
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6.4.3.1 Master Mode
When the DMACx bits are set such that MASTER=1,
HANDSHAKE=0, and EXTERN=0, then the corresponding DMA
channel operates in master mode. This means that the ADSP-2106x’s
DMA controller will generate internal DMA requests for that channel
until the DMA sequence is completed. Master mode can be specified
independently for each external port DMA channel.

Examples of DMA master mode operations include transfers between
internal memory and external memory and transfers from internal
memory to external devices. In both cases, the data is set up in memory
so that the ADSP-2106x can run the complete sequence without
interaction with other devices.

Note: The serial port and link port DMA channels do not have the
MASTER control bit and do not operate in master mode.

6.4.3.2 Paced Master Mode
In paced master mode, the DMARx requests operate in the same way
as in handshake mode but DMAGx is not active. The ADSP-2106x
responds to the requests only with the RD or WR strobe; this method
allows the same buffer to be shared for both DMA and core processor
I/O without external gating. Paced Master Mode accesses can be
extended by the ACK pin, by waitstates programmed in the WAIT
register, and by holding the DMARx pin low.

6.4.3.3 Slave Mode
When the DMACx bits MASTER, HANDSHAKE, and EXTERN are
cleared, then the corresponding DMA channel is configured as a slave.
This means that the particular DMA channel cannot independently
initiate external memory transfers no matter what the programmed
direction of data transfer. To initiate a DMA transfer to or from an
ADSP-2106x configured in slave mode, an external device must read or
write to the appropriate EPBx buffer.

If the DMA channel is in slave mode and the direction of data transfer
is internal to external, the channel will automatically perform enough
transfers from internal memory to keep the EPBx buffer full.
(Remember that each EPBx buffer is a six-location FIFO.) On the other
hand, if the direction of data transfer is external to internal, then the
DMA channel will not initiate any internal DMA transfers until the
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EPBx buffer has valid data.

The EI, EM, and EC registers are not used in slave mode DMA.

External to Internal
To explore the operation of slave mode DMA, consider the case where
an external device wishes to transfer a block of data into the ADSP-
2106x’s internal memory. First the external device would write to the
DMA channel parameter registers, II, IM, and C, and to the DMACx
control register to initialize the channel. Then the device would begin
writing data to the EPBx buffer.

When the EPBx buffer contains a valid data word (requiring one or
more external memory cycles, depending on the packing mode
selected), it signals the ADSP-2106x’s DMA controller to request an
internal DMA cycle. When granted, the internal DMA transfer occurs
and the EPBx buffer FIFO is emptied. If the internal DMA transfer was
held off for some reason, the external device could still write to the
EPBx buffer again because of its six-deep FIFO. When the EPBx FIFO
eventually becomes full, the external device will be held off with the
ACK signal (for synchronous accesses) or with the REDY signal (for
asynchronous, host-driven accesses).

This state continues until the internal DMA transfer is completed and
space freed up in the EPBx buffer. For the buffer to operate in this
fashion, the BHD (Buffer Hang Disable) bit must be cleared (to 0) in the
SYSCON register.

Internal to External
Now consider the case where the transfer direction is from internal
memory to the external port. Immediately after the DMA channel is
enabled, it will request internal DMA transfers to fill up the EPBx FIFO
buffer. Once the buffer is filled, the request will be deasserted. When
the external device reads the buffer (one or more times depending on
the packing mode), it becomes “partially empty” and the internal
DMA request is asserted again. If the internal DMA transfers cannot
fill the EPBx FIFO buffer at the same rate as the external device
empties it (e.g. due to internal bus conflicts), the external device will be
held off with the ACK signal (for synchronous accesses) or with the
REDY signal (for asynchronous, host-driven accesses) until valid data
can be transferred to the EPBx buffer. Again, for the buffer to operate
in this fashion, the BHD (Buffer Hang Disable) bit must be cleared (to
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0) in the SYSCON register.

Note that ACK (or REDY) is only deasserted during a write when the
EPBx FIFO buffer is full. ACK (or REDY) remains asserted at the end of
a completed block transfer if the EPBx buffer is not full. When reading,
the buffer will be empty at the end of the block transfer and ACK (or
REDY) will be deasserted if an additional read is attempted.

System-Level Considerations
Slave mode DMA is useful in systems with a host processor because it
allows the host to access any ADSP-2106x internal memory location
while limiting the address space the host must recognize—only the
address space of the ADSP-2106x’s IOP registers. Slave mode DMA is
also useful for ADSP-2106x to ADSP-2106x DMA transfers.

Slave mode DMA has one drawback when interfacing to a slow host—
the fact that the external bus is held up during the transfer (whether
initiated by the ADSP-2106x or the host) and no other transactions can
proceed. To overcome this, the handshake DMA mode may be used. In
handshake mode, the host does not have to master the bus in order to
make a DMA request, nor does the ADSP-2106x (in master mode) have
to wait on the bus for the transfer to complete. Instead, the host asserts
the DMARx pin. When the ADSP-2106x is ready to make the transfer,
it can complete it in one bus cycle. The following section provides
further details.

6.4.3.4 Handshake Mode
On the ADSP-21060 or ADSP-21062, DMA channels 7 and 8, for
external port buffers EPB1 and EPB2, each have a set of external
handshake controls. DMAR1 and DMAG1 are the request and grant
signals for EPB1 and channel 7, and DMAR2 and DMAG2 are the
request and grant signals for EPB2 and channel 8.

On the ADSP-21061, DMA channels 7 and 6, for external port buffers
EPB1 and EPB0, each have a set of external handshake controls.
DMAR1 and DMAG1 are the request and grant signals for EPB1 and
channel 7, and DMAR2 and DMAG2 are the request and grant signals
for EPB0 and channel 6.

These signals serve as a hardware handshake to facilitate DMA
transfers between the ADSP-2106x and an external peripheral device
that does not have bus mastership capability.

➠ If external port DMA channel is enabled but the handshake
signals will not be used, the corresponding DMARx signal
should be kept high.
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Handshake mode DMA is enabled when the HSHAKE bit is set to 1 in
the corresponding DMACx control register (DMAC7 or DMAC8 on an
ADSP-21060 or ADSP-21062; DMAC7 or DMAC6 on an ADSP-21061).
If the MASTER bit is 0, the ADSP-2106x handshakes by returning
DMAGx. If the MASTER mode bit is 1, the DMA operates in paced
master mode.

DMA handshaking operates asynchronously at up to the full clock
speed of the ADSP-2106x. The data source/destination can be selected
to be either ADSP-2106x internal memory or external memory. It is
important to load the EC external count register whenever external
DMA transfers are being made.

The MS3-0 memory select lines are deasserted during DMA transfers
between an external device and an ADSP-2106x because there is no
external memory space being accessed. The MS3-0 lines are, however,
asserted by the ADSP-2106x in external handshake mode because it is
providing the address and strobes for transfers between an external
DMA device and external memory.

Refer to Figure 6.8, DMA Handshake Timing with Asynchronous Requests.
The DMA handshake uses the rising and falling edges of DMARx. The
ADSP-2106x interprets a falling edge to mean “begin a DMA access”
and interprets the rising edge to mean “complete the DMA access.”

To request an access of the EPBx buffer, the external device pulls
DMARx low. The falling edge is detected by the ADSP-2106x and
synchronized to the processor’s system clock. To be recognized in a
particular cycle, the DMARx low transition must meet the setup time
specified in the data sheet; otherwise it may take effect in the following
cycle. When the ADSP-2106x recognizes the request, it begins to
arbitrate for the external bus, if it is not already the bus master or if the
buffer is not blocked (see discussion of blocked condition below). When
the ADSP-2106x becomes the bus master, it drives DMAGx low. The
ADSP-2106x will keep DMAGx asserted until it sees DMARx
deasserted. This allows the external device to hold the ADSP-2106x
until it is ready to proceed. Provided there are no pipelined requests,
DMAGx will deassert in the cycle after DMARx is deasserted. If the
external device does not wish to extend the grant cycle, it can deassert
DMARx immediately after asserting it, provided it meets the minimum
pulse width timing requirements specified in the data sheet. In this
case, DMAGx will be a short pulse and the external bus will only be
used for one cycle.
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The DMA controller has a three-cycle pipeline, similar to the
fetch–decode–execute pipeline of the core processor’s program
sequencer. The DMA request and arbitration occur in the fetch cycle.
The DMA address generation and bus arbitration occur in the decode
cycle and the data transfer occurs in the execute cycle. Use of the rising
and falling edges of DMARx allows better utilization of the pipeline
and, if desired, allows data transfers at up to the full clock rate of the
ADSP-2106x.

The external device does not have to wait for the DMAGx grant signal
before making another request. The requests are stored in a working
counter maintained internally by the ADSP-2106x. The counter holds a
maximum of seven requests, so the external device can make up to
seven requests before the first one has been serviced. Note that more
than seven requests without a grant will cause unpredictable results.
DMAGx will be asserted in response to DMARx only for the number
of transfers specified in the counter. If more requests than this are
made, DMAGx will remain deasserted. The flush bit (FLSH) in the
DMACx control register should be used to clear any extra requests.

The external device must make sure that when the DMAGx grant
signal arrives, the data for each write request is immediately available
(or that it can accept each word for a read). This can be accomplished
by placing the data in an external FIFO. When DMAing data at the full
clock speed of the ADSP-2106x, a two- or three-deep data pipeline may
be needed to handle the latency between request and grant. Thus, the
external device might issue three requests rapidly and condition the
fourth request on whether a grant has been given in the meantime.
Given this caveat, handshake DMA can occur at up to the full clock
rate of the ADSP-2106x for both reads and writes. The stored requests
are cleared when a 1 is written to the flush bit (FLSH) in the DMACx
control register.

Since the external device can control the completion of a request, it
does not need to have data available before making a request. If,
however, the data is not available within two cycles and DMARx is
kept low for this time, the ADSP-2106x and the external bus may be
held inactive. The external bus is occupied for only one cycle for each
DMA transfer if the request is deasserted before the grant has been
asserted. Otherwise the external bus is held as long as DMARx is
asserted.
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Figure 6.8  DMA Handshake Timing With Asynchronous Requests

Notes:

– DMA requests (DMARx) can be asynchronous. The DMARx falling edge initiates a
DMA request on the ADSP-2106x. When writing, data must be provided by the
device before DMAGx has been deasserted. If data is not available, the device may
hold DMARx asserted (low) until the data is available. When this happens, the
ADSP-2106x will attempt to service the request but will be delayed until the DMARx
rising edge.
– There is a minimum delay of three cycles before DMAGx is asserted and the
transfer from the external DMA device to the ADSP-2106x (or to external memory)
occurs. However, the ADSP-2106x may not be able to issue a DMAGx grant for
several cycles after a DMA request if a higher priority DMA operation is requesting
service or if the bus is currently being used by another ADSP-2106x. Thus the
external DMA device must not assume that the grant will arrive within two cycles
unless higher priority DMA operations are disabled and the external bus is available
for the transfer.

– DMA requests are pipelined in the ADSP-2106x. The ADSP-2106x keeps track of up
to seven requests if it cannot service them immediately. It then services them on a
prioritized basis. The request tracking allows DMA transfers at up to the full clock
rate of the ADSP-2106x. The external DMA device is responsible for keeping track of
requests, monitoring grants, and pipelining the data when operating at full speed.
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The ADSP-2106x will not begin external bus arbitration in response to
DMARx if the EPBx buffer is full during a write or empty during a
read. This is a blocked condition. Bus arbitration will begin when the
EPBx buffer is serviced by the DMA controller and the full or empty
state changes (i.e. becomes unblocked).

If an external port DMA channel is disabled, its corresponding
DMARx and DMAGx pins are disabled and DMARx assertions are
ignored for a maximum of 2 cycles after the instruction that enables
DMA (setting DEN=1) in handshake mode. See Figure 6.9. DMAGx
will be held high by the ADSP-2106x.

The DMARx input must be kept high (not low or changing) during the
instruction that enables DMA in handshake mode (see Figure 6.9.)

Several ADSP-2106xs in a multiprocessing cluster may share a DMAGx
signal. DMAGx is only driven by the bus master and is tristated
otherwise, or when HBG is asserted. This eliminates the need for
external gating if more than one ADSP-2106x or the host needs to drive
the DMA buffer. A pullup resistor may be needed on this line if the
host is not connected to the pin and does not drive it when it acquires
the bus. DMAGx has the same timing and transitions as the RD and
WR strobes and responds to the SBTS and HBR signals in the same
way as RD and WR.

6.4.3.5 External Handshake Mode
External devices can also use the DMARx and DMAGx handshake
signals to control DMA transfers between an external device and
external memory (instead of ADSP-2106x internal memory). In this
mode, the ADSP-2106x operates as an independent DMA controller.
This mode is configured by setting the EXTERN bit in the DMAC7 or
DMAC8 control register; the corresponding HSHAKE bit must equal 1
and MASTER bit equal 0. External handshake mode transfers are
similar to standard DMA transfers, but with some differences.

External handshake mode transfers require the ADSP-2106x’s DMA
controller to generate external memory access cycles. DMARx and
DMAGx retain the same functionality in this mode but instead of
simply generating DMAGx, the ADSP-2106x also outputs addresses,
MS3-0 memory selects, and RD/WR strobes, and responds to ACK.
(DMAGx will be held low until the ACK line is released or any
waitstates complete.) The external memory access behaves exactly as if
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Figure 6.9  DMARDMARx Delay After Enabling Handshake DMA

the ADSP-2106x core had requested it. The ADSP-2106x’s EPBx buffers
do not latch or drive any data, however, and no internal memory DMA
transfers are performed. The EI, EM, and EC parameter registers (of
the DMA channel) must be preloaded to generate the external memory
addresses and word count.

Since internal DMA transfers do not occur in this mode, the PCI bit of
the CP register cannot be used to disable the DMA interrupt—the
IMASK register must be used. The DMA interrupt is always enabled
and generated, unless it is masked out in IMASK. Also, because data
does not pass through the ADSP-2106x in external handshake mode it
cannot be packed or unpacked into different word widths.

6.4.4 System Configurations For ADSP-2106x Interprocessor DMA
Figure 6.10 shows the different ways you can set up external port
DMA transfers between two ADSP-2106xs. The advantages and
disadvantages of each configuration should be taken into account
when designing a multiprocessor system.

6.4.5 DMA Hardware Interfacing
Figure 6.11 shows a typical DMA interface between two
multiprocessing ADSP-2106xs and an external device. The
ADSP-2106xs are configured for handshake mode operation. The
external latches acts as a mailbox between the external device and the
ADSP-2106xs. The latch allows a DMA transfer to take only one
ADSP-2106x bus cycle, even with a slow external device. The latch is
directly controlled by the DMARx and the DMAGx signals.
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If the external device is writing data to the latch, the DMAGx signal is
used as the output enable signal for the latch. If the external device is
reading from the latch, DMAGx is used to clock the data on its rising
edge. Figure 6.12 shows the timing relationships between DMARx,
DMAGx, and the data transfer. Refer to the ADSP-2106x Data Sheet for
exact specifications.

6.5 DMA THROUGHPUT
This section discusses overall DMA throughput when several DMA
channels are trying to access internal or external memory at the same
time.

Internal Memory DMA
The DMA channels arbitrate for access to the ADSP-2106x’s internal
memory. The DMA controller determines, on a cycle-by-cycle basis,
which channel is allowed access to the internal I/O bus and
consequently which channel will read or write to internal memory.
(The priority of the DMA channels is shown in Table 6.13 in the “DMA
Channel Prioritization” section of this chapter.)

Each DMA transfer takes one clock cycle even when different DMA
channels are being allowed access on sequential cycles; i.e. there is no
overall throughput loss in switching between channels. Thus, four link
port DMA channels, each transferring one byte per cycle, would have
the same I/O transfer rate as one external port DMA channel
transferring data to internal memory on every cycle. Any combination
of link ports, serial ports, and external port transfers has the same
maximum transfer rate.

External Memory DMA
When the DMA transfer is between ADSP-2106x internal memory and
external memory, the external memory may have one or more wait
states. External memory wait states, however, do not reduce the
overall internal DMA transfer rate if other channels have data
available to transfer. In other words, the ADSP-2106x’s internal I/O
data bus will not be held up by an incomplete external transfer.
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ADSP-2106x ADSP-2106x
Configuration Configuration Throughput Advantages,
(Data Source) (Data Destination) (cycles/transfer) Disadvantages

Bus Master Bus Slave 1 Advantage: Destination automatically generates
DMA Master Mode (MASTER=1) DMA Slave Mode (MASTER=0) interrupt upon completion.
TRAN=1 TRAN=0
EIx = address of EPBx buffer Disadvantage: DMA must be programmed on
          in destination both source and destination.
EMx=0

Bus Master Bus Slave 1 Advantage: No programming required for destination.
DMA Master Mode (MASTER=1) Direct Write
TRAN=1 Disadvantage: No interrupt generated upon completion—
EIx = MMS address in destination * source must issue vector interrupt to
EMx=1 destination.

Bus Slave Bus Master 2 Advantage: Source  automatically generates interrupt
DMA Slave Mode (MASTER=0) DMA Master Mode (MASTER=1) upon completion.
TRAN=1 TRAN=0

EIx = address of EPBx buffer Disadvantages: Slower throughput. DMA must be
          in source programmed on both source and
EMx=0 destination.

Bus Slave Bus Master 4 Advantage: No programming required for source.
Direct Read DMA Master Mode (MASTER=1)

TRAN=0 Disadvantages: Slowest throughput. No interrupt
EIx = MMS address in source * generated upon completion—destination
EMx=1 must issue vector interrupt to source.

**

Figure 6.10  System Configurations For ADSP-2106x-To-ADSP-2106x DMA
* MMS=Multiprocessor Memory Space
** Assumes that no MMS wait state is configured in WAIT register. If the
    single MMS wait state is selected, add 1 to each throughput value.
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Figure 6.11 Example DMA Hardware Interface

Notes:
– Because DMARx and DMAGx are tied together, only one of the ADSP-2106xs may
   have DMA enabled at a time.
– DMAGx is only driven by the ADSP-2106x bus master.
– The DMA Write Grant signal can be the combination of RD and MSx instead of DMAG2
    if paced master mode is used.
– The DMA Read Grant signal can be the combination of WR and MSx instead of DMAG1
    if paced master mode is used.
– DMA transfers may be to either ADSP-2106x or to external memory
   (in external handshake mode).
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fetch/decode cycles — two cycles minimum

CLKIN

DMARx

DMAGx

DATA47-0 valid

Figure 6.12   DMARDMARx/x/DMAGDMAGxx Timing

Notes:
– DMARx setup times relate to the use of the signal in that cycle by the ADSP-2106x.
   DMA requests may be asserted asynchronously to CLKIN.
– DMAGx drives DATA47-0 if ADSP-2106x is receiving. DMAGx latches DATA47-0
   if ADSP-2106x is transmitting.

When data is to be transferred from internal to external memory, the
internal memory data is first placed in the external port’s EPBx buffer
by the DMA controller; the external memory access is then begun
independently. (Likewise for external-to-internal DMA, the internal
DMA request will not be made until the external memory data is in the
EPBx buffer.) In both cases, the external DMA address generator—the
EI and EM parameter registers—maintains the external address until
the data transfer is completed. The internal and external address
generators of a DMA channel are decoupled and operate
independently.

When EXTERN mode DMA transfers occur between an external device
and external memory, no internal resources of the ADSP-2106x are
utilized and internal DMA throughput is not affected.
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6.6 TWO-DIMENSIONAL DMA
This section describes the changes in functionality that occur when the
ADSP-21060 or ADSP-21062 is placed in two-dimensional DMA mode.
(Note that two-dimensional DMA mode does not apply to the ADSP-
21061.) 2-D DMA mode is enabled by the L2DDMA bit in the LCOM
control register and the D2DMA bit in the SRCTL0 and SRCTL1
registers. If a particular mode of operation is not explicitly mentioned
below, then it is unchanged in 2-D mode.

6.6.1 2-D DMA Channel Organization
In 2-D mode, two-dimensional DMA array addressing can be
performed for the link buffers and serial ports. DMA channels 0-5
support 2-D DMA. Link buffers 4 and 5 (DMA channels 6 and 7) do
not support 2-D DMA. Table 6.16 shows the 2-D registers and their
mapping into the DMA channel registers. For the purpose of
discussion here, the 2-D array is addressed in row-major order.

DMA
2-D Channel
Function Register
Index (address) IIx
X Increment IMx
X Count Cx
Next Pointer CPx
Y Increment DBx
Y Count GPx
X Initial Count DAx (not part of chain; loaded by Cx)

Table 6.16  2-D Register Mapping

In Table 6.16 the DMA channel number, x, is distinguished from the
standard numbering of serial ports and link ports as follows:

Transmit Link Buffer – Uses DMA Channel 5
Receive Link Buffer – Uses DMA Channel 4
Transmit SPORT – Uses DMA Channel 3 or 1
Receive SPORT – Uses DMA Channel 2 or 0

The Index register (II) is loaded with the first address in the data array and
maintains the current address by subtracting the X increment after each
transfer. The X Increment register (IM) contains the offset added to the
current address to point to the next element in the X dimension (next
column). The X Initial Count register (DA) contains the number of data
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elements in the X dimension. This is used to reload the X count register
when it decrements to zero. The X Count register (C) contains the number
of data elements left in the current row. This initially has the same value
as X initial count. It is decremented after each transfer.

The Y Increment register (DB) contains the offset added to the current
address to point to the next element in the Y dimension (first location
in next row). When the X count register reaches zero, this register is
added to the current address on the following cycle and the Y count
register is decremented. The value of DB should be the row distance
minus the column distance since both the X and Y increments are done
on a row change. Note that two DMA cycles are required for a row
change.

The Y Count register (GP) initially contains the number of data
elements in the Y dimension (number of rows). It is decremented each
time the X count register reaches zero. When Y Count reaches zero, the
DMA block transfer is done. The Next Pointer register (CP) points to
the start of a buffer in internal memory containing the next set of DMA
parameters.

The DMA controller and the link ports communicate via the same
internal DMA request/grant handshake as is used by the other I/O
ports. The receive link buffer uses channel 4 while the transmit link
buffer uses channel 5. For more information, refer to the Link Ports
chapter of this manual. The DMA controller and the serial port also
communicate via the same internal DMA request/grant handshake as
is used by the other I/O ports. For more information, refer to the Serial
Ports chapter.

6.6.2 2-D DMA Operation
A two-dimensional DMA transfer occurs in the following manner:

First cycle:
• The current address stored in the II register is output and a DMA

memory cycle is started.
• In the same cycle, the X Increment value stored in the IM register is

added to the current address in the II register.
• The X Count in the C register is decremented.
• If the decremented X Count is zero, do the second cycle.
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 Second cycle:
• The X Count is restored into the C register from the DA register.
• The Y Increment value in the DB register is added to the current

address in II.
• The Y Count in GP is decremented.
• If the Y Count is zero, the DMA sequence is ended and the channel

becomes inactive until the Next Pointer is written again.

A key point about the 2-D DMA sequence (or any DMA sequence) is
that the first DMA transfer begins before the address is modified. This
means that DMA cannot be disabled by setting either the X Count or
the Y Count to zero. To do one-dimensional DMA transfers in 2-D
mode, the Y Count must be initialized to one.

When the X Count becomes zero but the Y Count is non-zero, the
X Count must be reloaded with the original value. The C register
functions as the working count register. The DA register holds the
original count value. C is loaded from DA to restore the count. The DA
register is written automatically whenever the C register is written.
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Multiprocessing

7.1 OVERVIEW
The ADSP-2106x includes functionality and features that allow the design
of multiprocessing DSP systems. These features include distributed on-chip
arbitration for bus mastership and multiprocessor accesses of the internal
memory and IOP registers of other ADSP-2106xs. The ADSP-2106x also has
the ability to lock the bus in order to perform indivisible read-modify-write
sequences for semaphores.

In a multiprocessor system with several ADSP-2106xs sharing the external
bus, any of the processors can become the bus master. The bus master has
control of the bus, which consists of the DATA47-0, ADDR31-0, and
associated control lines. Figure 7.1 illustrates a basic multiprocessing
system.

Table 7.1 shows which pins are connected between the SHARC processors.

DATA47-0 ADDR31-0 MS3-0
RD WR ACK
PAGE SBTS SW
ADRCLK BMS BR6-1
RESET HBR† HBG†
REDY† CPA‡ CLKIN

† If Host Interface is used.
‡ If Core Priority Access function is used.

Table 7.1  Pin Connections For Cluster Multiprocessor System

The internal memory and IOP registers of the system’s ADSP-2106xs is
called multiprocessor memory space. Multiprocessor memory space is
mapped into the unified address space of each ADSP-2106x.

Once an ADSP-2106x becomes the bus master, it can directly read and write
the internal memory of any other (slave) ADSP-2106x. It can also read and
write to any of the slave’s IOP registers, including their external port FIFO
data buffers. The master ADSP-2106x may write to a slave’s IOP registers to
set up DMA transfers, for example, or to send a vector interrupt.
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Figure 7.1  ADSP-2106x Multiprocessor System
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The following terms are used throughout this chapter, and are defined
below for reference:

external bus DATA47-0 , ADDR31-0 , RD, WR, MS3-0, BMS,
ADRCLK, PAGE, SW, ACK, and SBTS signals

multiprocessor system a system with multiple ADSP-2106xs, with or
without a host processor; the ADSP-2106xs are
connected by the external bus and/or link ports

multiprocessor memory space portion of the ADSP-2106x’s memory map that
includes the internal memory and IOP registers
of each ADSP-2106x in a multiprocessing system;
this address space is mapped into the unified
address space of the ADSP-2106x

IOP register one of the control, status, or data buffer registers
of the ADSP-2106x’s on-chip I/O processor

bus slave or slave mode an ADSP-2106x can be a bus slave to another
ADSP-2106x or to a host processor

direct reads & writes a direct access of the ADSP-2106x’s internal
memory or IOP registers by another ADSP-2106x
or by a host processor

single-word data transfers reads and writes to the EPBx external port
buffers, performed externally by the ADSP-2106x
bus master or internally by the ADSP-2106x
slave’s core; these occur when DMA is disabled
in the DMACx control register

bus transition cycle (BTC) a cycle in which control of the external bus is
passed from one ADSP-2106x to another

external port FIFO buffers EPB0, EPB1, EPB2, and EPB3, the IOP registers
used for external port DMA transfers and
single-word data transfers (from other
ADSP-2106xs or from a host processor); the EPBx
buffers are 6-deep FIFOs

DMACx control registers the DMA control registers for the EPBx external
port buffers: DMAC6, DMAC7, DMAC8, and
DMAC9, corresponding respectively to EPB0,
EPB1, EPB2, and EPB3 (see the DMA chapter or
Control/Status Registers appendix of this manual
for a complete description of the DMACx control
registers)
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7.2 MULTIPROCESSING SYSTEM ARCHITECTURES
Multiprocessor systems typically use one of two schemes to
communicate between processor nodes. One scheme uses dedicated
point-to-point communication channels. In the other, nodes
communicate through a single shared global memory via a parallel
bus.

The ADSP-2106x SHARC supports the implementation of point-to-
point communication through its six link ports. It also supports an
enhanced version of shared parallel bus communication called cluster
multiprocessing. Cluster multiprocessing features of the ADSP-2106x
are described in this chapter, while point-to-point connections are
described in the Link Ports chapter of this manual.

Multiprocessing systems must overcome two problems: interprocessor
communication overhead and data bandwidth bottlenecks. The ADSP-
2106x SHARC architecture addresses these concerns in several ways,
as illustrated in the following discussion of three basic multiprocessing
topologies.

7.2.1 Data Flow Multiprocessing
Data flow multiprocessing is best suited for applications requiring
high computational bandwidth but only limited flexibility.
Programmers partition their algorithm sequentially across multiple
processors and pass data linearly down an “assembly line” of
processors, as shown in Figure 7.2.
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Link
Port

Link
Port

Figure 7.2  Data Flow Multiprocessing
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The ADSP-2106x SHARC is ideally suited for data flow
multiprocessing applications because it eliminates the need for
interprocessor data FIFOs and external memory. The internal memory
of the SHARC is usually large enough to contain both code and data
for most applications using this topology. All a data flow system
requires are a number of SHARC processors and point-to-point signals
connecting them. This yields a substantial savings in complexity, board
space, and system cost.

7.2.2 Cluster Multiprocessing
Cluster multiprocessing is best suited for applications where a fair
amount of flexibility is required. This is especially true when a system
must be able to support a variety of different tasks, some of which may
be running concurrently. The cluster multiprocessing configuration is
shown in Figure 7.3. SHARC processors also have an on-chip host
interface that allows a cluster to be easily interfaced to a host processor
or even to another cluster.
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Figure 7.3  Cluster Multiprocessing
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Cluster multiprocessing systems include multiple SHARC processors
connected by a parallel bus that allows interprocessor access of on-chip
memory as well as access to shared global memory. In a typical cluster
of SHARCs, up to six processors and a host can arbitrate for the bus.
The on-chip bus arbitration logic allows these processors to share the
common bus. The SHARC’s other on-chip features help eliminate the
need for any extra hardware in the cluster multiprocessor
configuration. External memory, both local and global, can frequently
be eliminated in this type of system.

Both fixed and rotating priority schemes are supported as well as bus
locking, timed release, and core processor access preemption of
background DMA transfers. The on-chip arbitration logic allows
transitions in bus mastership to take up to only one cycle of overhead.
Bus requests are generated implicitly whenever a processor accesses an
external address. Because each processor monitors all bus requests and
applies the same priority logic to the requests, each can independently
determine who will be the next bus master. With complete bus sharing
features built into the processor, designers are spared the time and risk
of developing their own shared-bus logic and timing.

Once a SHARC gains mastership of the bus, it can access not only
external memory but also the internal memory and IOP registers of all
other processors. A processor can directly transfer data to another
processor or set up a DMA channel to transfer the data. Each of the
processors are mapped into a common memory map—to identify the
address space of each processor within the unified memory map of the
system cluster, each processor has a unique ID. The SHARC’s IOP
registers, internal memory, and external memory are all part of the
unified address space. This shared on-chip memory eliminates the
need to use external memory for message passing between processors
and simplifies software communications. Processors can write directly
into each other’s memory, saving an extra transfer step. Local memory
may also no longer be needed due to the SHARC’s large amount of on-
chip SRAM. For larger applications, however, blocks of data and code
can be stored in shared bulk memory and transparently swapped in
and out of a processor’s internal memory.
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Communication between processors is also facilitated by the ability of
a processor to broadcast a write to all processors simultaneously. This
can be used to implement reflective semaphores, where a processor
polls its own internal copy of the semaphore and only uses the external
bus for a broadcast write to all other processors when it wants to
change it. This reduces communications traffic on the external bus.

The cluster configuration allows the SHARCs to have a very fast node-
to-node data transfer rate. It also allows for a simple, efficient, software
communication model. For example, all of the required setup
operations for a DMA transfer can be accomplished by a single
SHARC on one side of the transfer. The other processor is not
interrupted until the DMA transfer is complete.

The SHARC’s internal memory is designed to facilitate the I/O needs
of multiprocessor systems. The on-chip dual-ported RAM allows full-
speed interprocessor transfers concurrent with dual accesses by the
processor’s computational core. No cycles are stolen from the core, and
the processor’s full 40 MIPS, 120 MFLOPS performance is maintained.

7.2.2.1 Link Port Data Transfers In A Cluster
A bottleneck exists within the cluster because only two processors can
communicate over the shared bus during each cycle—other processors
are held off until the bus is released. Since the SHARC can also
perform point-to-point link port transfers within a cluster, this
bottleneck is easily eliminated. Data links between processors can be
dynamically set up and initiated over the common bus. All six link
ports can operate simultaneously on each processor.

A disadvantage of the link ports is that individual transfers occur at
only 40 Mbyte/sec (for a 40 MHz system clock), a lower rate than that
of the shared parallel bus. Since the link ports’ 4-bit data path is
smaller than the processor’s native word size, the transfer of each word
requires multiple clock cycles. Link ports may also require more
software overhead and complexity because they must be set up on
both sides of the transfers before they can occur.



7 Multiprocessing

7 – 8

7.2.3 SIMD Multiprocessing
For certain classes of applications such as radar imaging, a SIMD array
may be the most efficient topology to coordinate a large number of
processors in a single system. The SIMD array of Figure 7.3 consists of
multiple SHARCs connected in a 2-D or 3-D mesh. The data link ports
provide nearest neighbor communications as well as through-routing
of data. A single master SHARC provides the instruction stream that
the array executes. Data flow in and out the array can be managed
through multiple serial port streams.
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7.3 MULTIPROCESSOR BUS ARBITRATION
Multiple ADSP-2106xs can share the external bus with no additional
arbitration circuitry. Arbitration logic is included on-chip to allow the
connection of up to six ADSP-2106xs and a host processor.

Bus arbitration is accomplished with the use of the BR1–BR6, HBR, and
HBG signals. BR1–BR6 arbitrate between multiple ADSP-2106xs, and
HBR–HBG pass control of the bus from the ADSP-2106x bus master to
the host (and back). The priority scheme for bus arbitration is
determined by the setting of the RPBA pin. Table 7.2 defines the
ADSP-2106x pins used in multiprocessing systems.

Signal Type Definition

BR6-1 I/O/S Multiprocessing Bus Requests. Used by
multiprocessing ADSP-2106xs to arbitrate for bus
mastership. An ADSP-2106x only drives its own BRx
line (corresponding to the value of its ID2-0 inputs) and
monitors all others. In a multiprocessor system with less
than six ADSP-2106xs, the unused BRx pins should be
tied high; the processor’s own BRx line must not be tied
high or low because it is an output.

ID2-0 I Multiprocessing ID. Determines which multiprocessing
bus request (BR1 – BR6) is used by ADSP-2106x. ID=001
corresponds to BR1, ID=010 corresponds to BR2, etc.
ID=000 in single-processor systems. These lines are a
system configuration selection which should be
hardwired or only changed at reset.

RPBA I/S Rotating Priority Bus Arbitration Select. When RPBA
is high, rotating priority for multiprocessor bus
arbitration is selected. When RPBA is low, fixed priority
is selected. This signal is a system configuration
selection which must be set to the same value on every
ADSP-2106x. If the value of RPBA is changed during
system operation, it must be changed in the same
CLKIN cycle on every ADSP-2106x.

CPA (o/d) I/O Core Priority Access. Asserting its CPA pin allows the
core processor of an ADSP-2106x bus slave to interrupt
background DMA transfers and gain access to the
external bus. CPA is an open drain output that is
connected to all ADSP-2106xs in the system. The CPA
pin has an internal 5 Kohm pullup resistor. If core
access priority is not required in a system, the CPA pin
should be left unconnected.

Table 7.2  ADSP-2106x Multiprocessor Signals
I=Input S=Synchronous (o/d)=Open Drain
O=Output A=Asynchronous (a/d)=Active Drive
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The ID2-0 pins provide a unique identity for each ADSP-2106x in a
multiprocessing system. The first ADSP-2106x should be assigned
ID=001, the second should be assigned ID=010, and so on. One of the
ADSP-2106xs must be assigned ID=001 in order for the bus
synchronization scheme to function properly. This processor also holds
the external bus control lines stable during reset.

When the ID2-0 inputs of an ADSP-2106x are equal to 001, 010, 011, 100,
101, or 110, it configures itself for a multiprocessor system and maps its
internal memory and IOP registers into the multiprocessor memory
space. ID=000 configures the ADSP-2106x for a single-processor
system. ID=111 is reserved and should not be used.

An ADSP-2106x in a multiprocessor system can determine which
processor is the current bus master, by reading the CRBM(2:0) bits of
the SYSTAT register. These bits give the value of the ID2-0 inputs of the
current bus master.

Conditional instructions can be written that depend upon whether the
ADSP-2106x is the current bus master in a multiprocessor system. The
assembly language mnemonic for this condition code is BM, and its
complement is NBM (not bus master). The BM condition indicates
whether the ADSP-2106x is the current bus master. For a complete list
of condition codes, see “Conditional Instruction Execution” in the
Program Sequencer chapter of this manual. To enable the use of the bus
master condition, bits 17 and 18 of the MODE1 register must both be
zeros; otherwise the condition is always evaluated as false.

7.3.1 Bus Arbitration Protocol
The BR1–BR6 pins are connected between each ADSP-2106x in a
multiprocessing system, with the number of BRx lines used equal to
the number of ADSP-2106xs in the system. Each processor drives the
BRx pin corresponding to its ID2-0 inputs and monitors all others. If
less than six ADSP-2106xs are used in the system, the unused BRx pins
should be tied high.

When one of the slave ADSP-2106xs needs to become bus master, it
automatically initiates the bus arbitration process by asserting its BRx
line at the beginning of the cycle. Later in the same cycle it samples the
value of the other BRx lines.
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The cycle in which mastership of the bus is passed from one
ADSP-2106x to another is called a bus transition cycle. A bus transition
cycle occurs when the current bus master’s BRx pin is deasserted and
one of the slave’s BRx pins is asserted. The bus master can therefore
retain bus mastership by keeping its BRx pin asserted. Also, the bus
master does not always lose bus mastership when it deasserts its BRx
line—another BRx line must be asserted by one of the slaves at the
same time. In this case, when no other BRx is asserted, the master will
not lose any bus cycles.

By observing all of the BRx lines, each ADSP-2106x can detect when a
bus transition cycle occurs and which processor has become the new
bus master. A bus transition cycle is the only time that bus mastership
is transferred.

Once it is determined that a bus transition cycle will occur, the priority
of each BRx line asserted within that cycle is evaluated (on every
ADSP-2106x). (Refer to the following section for a description of bus
arbitration priority.) The ADSP-2106x with the highest priority request
becomes the bus master on the following cycle, and all of the
ADSP-2106xs update their internal record of who the current bus
master is. This information can be read from the current bus master
field, CRBM, of the SYSTAT register.

Figure 7.5 shows typical timing for bus arbitration.

The actual transfer of bus mastership is accomplished by the current
bus master tristating the external bus—DATA47-0, ADDR31-0,
ADRCLK, RD, WR, MS3-0, PAGE, HBG, DMAG1, and DMAG2—at the
end of the bus transition cycle and the new bus master driving these
signals at the beginning of the next cycle. MS3-0 is driven high
(inactive) before tristating occurs. See Figure 7.6.

Execution of external accesses will be delayed during transfers of bus
mastership. When one of the slave ADSP-2106xs needs to perform an
external read or write, for example, it automatically initiates the bus
arbitration process by asserting its BRx line; the read or write is
delayed until the processor receives bus mastership. If the read or
write was generated by the ADSP-2106x’s processor core (not the DMA
controller), program execution stops until the instruction is completed.
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The following steps summarize the actions a slave takes to acquire bus
mastership and perform an external read or write over the bus (see
Figure 7.6):

1. The slave determines that it is executing an instruction which
requires an   off-chip access. It asserts its BRx line at the beginning of
the cycle. Extra  cycles are generated by the core processor (or DMA
controller) until the   slave acquires bus mastership.

2. To acquire bus mastership, the slave waits for a bus transition cycle
in    which the current bus master deasserts its BRx line. If the slave
has the highest priority request in the bus transition cycle, it
becomes the bus    master in the next cycle. If not, it continues
waiting.

Figure 7.5  Bus Arbitration Timing
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3. At the end of the bus transition cycle the current bus master releases
the bus and the new bus master starts driving.

Whenever the bus master stops using the bus its BRx line is deasserted,
allowing other ADSP-2106xs to arbitrate for mastership if they need it.
If no other ADSP-2106xs are asserting their BRx line when the master
deasserts his, the master retains control of the bus and continues to
drive the memory control signals until: 1) it needs to use the bus again,
or 2) another ADSP-2106x asserts its BRx line.

Note: An ADSP-2106x will try to become bus master whenever it
executes a conditional external access, even if the access is aborted.

Figure 7.6  Bus Request & Read/Write Timing
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While a slave waits to be a master for a DMA transfer, it asserts BRx. If
that slave’s core accesses the DA group regsiters, the BRx will be
deasserted during that access..

7.3.2 Bus Arbitration Priority (RPBA)
Two different priority schemes are available to resolve competing bus
requests, fixed and rotating. The RPBA pin selects which scheme is
used: when RPBA is high, rotating priority bus arbitration is selected
and when RPBA is low, fixed priority is selected.

The RPBA pin must be set to the same value on each ADSP-2106x in a
multiprocessing system. If the value of RPBA is changed during
system operation, it must be changed synchronously to CLKIN and
must meet a setup time (specified in the data sheet) to allow all
ADSP-2106xs to recognize the change in the same cycle. The priority
scheme will change in that (same) cycle.

In the fixed priority scheme, the ADSP-2106x with the lowest ID
number among the competing bus requests becomes the bus master. If,
for example, the processor with ID=010 and the processor with ID=100
request the bus simultaneously, the processor with ID=010 becomes
bus master in the following cycle. Each ADSP-2106x knows the ID of
the other processor(s) requesting the bus because their ID corresponds
to the BRx line being used.

The rotating priority scheme gives roughly equal priority to each
ADSP-2106x. When rotating priority is selected, the priority of each
processor is reassigned after every transfer of bus mastership. Highest
priority is rotated from processor to processor as if they were arranged
in a circle—the ADSP-2106x located next to (one place down from) the
current bus master is the one that receives highest priority. Table 7.3
shows an example of how rotating priority changes on a cycle-by-cycle
basis.

Hardwired Processor IDs:
Cycle# ID1 ID2 ID3 ID4 ID5 ID6
1 M 1 2BR 3 4 5 Initial priority assignments
2 4 5BR M-BR 1 2 3
3 4 5BR M 1 2 3
4 5BR M 1 2 3 4BR
5 1BR 2 3 4 5 M Final priority assignments

1-5 = assigned priority
M = bus mastership (in that cycle)
BR = requesting bus mastership with BRx

Table 7.3  Rotating Priority Arbitration Example
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7.3.3 Bus Mastership Timeout
In either bus arbitration priority scheme, it may be desirable to limit
how long a bus master can own the bus. This is accomplished by
forcing the bus master to deassert its BRx line after a specified number
of cycles, giving the other processors a chance to acquire bus
mastership.

To setup a bus master timeout, your program must load the BMAX
register with the maximum number of cycles (minus 2) for which the
ADSP-2106x can retain bus mastership:

BMAX = (maximum # of bus mastership cycles) – 2

The minumum value that BMAX can be set to is 2, which lets the
processor retain bus mastership for 4 cycles. Setting BMAX=1 is not
allowed. To disable the bus master timeout function, set BMAX=0.

Each time an ADSP-2106x acquires bus mastership, its BCNT register
is loaded with the value in BMAX. BCNT is then decremented in every
cycle that the master performs a read or write over the bus and any
other (slave) ADSP-2106xs are requesting the bus. Any time the bus
master deasserts its BRx line, BCNT is reloaded from BMAX.

When BCNT decrements to zero, the bus master first completes its
off-chip read/write and then deasserts its own BRx (any new off-chip
accesses are delayed)—this allows transfer of bus mastership. If none
of the slave processors has its BRx request asserted when the master’s
BCNT reaches zero, the master’s BRx is not deasserted and BCNT is
reloaded from BMAX. If the ACK signal is holding off an access when
BCNT reaches zero, bus mastership will not be relinquished until the
access can complete.

If BCNT reaches zero while bus lock is active, the bus master will not
deasserts its BRx line until bus lock is removed. (Bus lock is enabled by
the BUSLK bit in the MODE2 register; see “Bus Lock & Semaphores”
later in this chapter.)

If HBR is being serviced, BCNT stops decrementing and continues
only after HBR is deasserted.
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7.3.4 Core Priority Access
The Core Priority Access signal, CPA, allows external bus accesses by
the core processor of a slave ADSP-2106x to take priority over ongoing
DMA transfers. Normally when external port DMA transfers are in
progress, the core processors of the slave ADSP-2106xs cannot use the
external bus until the DMA transfer is finished. By asserting its CPA
pin, the core processor of a slave ADSP-2106x can acquire the bus
without waiting for the DMA operation to complete.

If the CPA signal is not used in a multiprocessor system, the
ADSP-2106x bus master will not give up the bus to another
ADSP-2106x until either: 1) a cycle in which it does not perform an
external bus access, or 2) a bus timeout. If a slave ADSP-2106x needs to
send a high priority message or perform an important data transfer, it
normally must wait until any DMA operation completes. Using the
CPA signal allows the slave to perform its higher priority bus access
with less delay.

A slave ADSP-2106x core with a pending access to the bus will assert
the CPA pin at the same time as its bus request pin (BRx). CPA is an
open-drain output which is connected to all ADSP-2106xs in the
system. Each ADSP-2106x has a 5 Kohm pull-up resistor on this pin,
allowing it to be shared among all ADSP-2106xs in the system. Any
ADSP-2106x may assert CPA low, and the internal resistors (or an
additional external resistor for faster pull-up) will pull it high when it
is released. Multiple ADSP-2106xs can be asserting this line at the same
time.

When CPA is asserted, the current ADSP-2106x bus master will
deassert its BRx and give up the bus, provided its core does not have
an external access pending. In addition, any ADSP-2106x cores that do
not have an external access pending will remove their BRx pins in the
next cycle. Note that the current bus master never asserts CPA because
it already has control of the bus.
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In the cycle after CPA has been asserted, only the ADSP-2106x cores
with a pending external access have their bus requests asserted. Bus
arbitration now proceeds as usual, with the highest priority device
becoming the master (when the previous bus master releases its BRx
line). The ADSP-2106x that becomes bus master releases CPA
immediately on becoming master. If there are no other ADSP-2106x
cores that need to perform an external access, the CPA signal will be
pulled high by the pull-up resistors and arbitration will proceed
normally. ADSP-2106xs that have deasserted their BRx in response to
CPA will reassert it in the cycle after CPA is sampled as high.

If there are lower priority ADSP-2106xs that still require access to the
bus, they will continue to assert their CPA. In this case, when the bus
master core has completed its bus access (or accesses), it will release its
BRx even if it has DMA accesses pending. When this happens, the bus
is acquired by the ADSP-2106x with the highest priority BRx.

The overall sequence of events that takes place when an ADSP-2106x
uses its CPA signal is as follows (Figure 7.7 shows timing for this
sequence):

1. The core processor of an ADSP-2106x bus slave asserts its CPA pin
(with the same timing as BRx) when it has a pending external bus
access.

2. When the common CPA line is asserted, the ADSP-2106x cores with
no pending external accesses will deassert their BRx in the next
cycle. If the current ADSP-2106x bus master core does not have a
pending access, it will proceed to give up the bus (i.e. deassert its
BRx) after completing its current access.

3. In the cycle after CPA is asserted, arbitration occurs normally among
the ADSP-2106xs that have their BRx asserted. The highest priority
device becomes bus master when the previous bus master releases
its BRx.

4. The new bus master releases CPA after acquiring the bus.

All ADSP-2106xs arbitrate as usual while CPA is asserted, but only
assert their BRx if their core processor needs to make an access over
the external bus.
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When CPA is released, all ADSP-2106xs resume normal BRx assertion
one cycle after CPA is sampled as high.

After releasing its CPA, the bus master will ignore the CPA pin for two
cycles. This reduces the possibility of the bus master unnecessarily
losing bus mastership while the CPA signal is pulled high by the
common pullup resistors.

Because CPA is pulled up by a resistor and may have a time constant
greater than one cycle, it may not be recognized as high by all
ADSP-2106xs in the same cycle. In some very rare cases this may result
in a lower priority ADSP-2106x temporarily gaining control of the bus,
but the correct prioritization will be implemented eventually.

If core access priority is not required in a system, the CPA pin should
be left unconnected and the ADSP-2106xs will arbitrate normally.

Figure 7.7  Core Priority Access Timing
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7.3.5 Bus Synchronization After Reset
When a multiprocessing system is reset by the RESET pin, the bus
arbitration logic on each processor must synchronize to insure that only
one ADSP-2106x will drive the external bus. One ADSP-2106x must
become the bus master, and all other processors must recognize which one
it is before actively arbitrating for the bus. The bus synchronization
scheme also allows the system to safely bring individual ADSP-2106xs
into and out of reset.

A soft reset (SRST) does not resynchronize ADSP-21062 silicon revision 1.x
parts or ADSP-21060/62 silicon revision 2.x (or later) parts.

Note that a soft reset (SRST) does resynchronize ADSP-21062 silicon
revision 0.x parts and ADSP-21060 silicon revision 1.x parts.

One of the ADSP-2106xs in the system must be assigned ID=001 in order
for the bus synchronization scheme to function properly. This processor
also holds the external bus control lines stable during reset. Bus arbitration
synchronization is disabled if the ADSP-2106x is in a single-processor
system (ID=000).

To synchronize their bus arbitration logic and define the bus master after a
system reset, the multiple ADSP-2106xs obey the following rules:

• All ADSP-2106xs except the one with ID=001 will deassert their BRx line
during reset. They will keep their BRx deasserted for at least two cycles
after reset and until their bus arbitration logic is synchronized.

• After reset, an ADSP-2106x will consider itself synchronized when it sees a
cycle in which only one BRx line is asserted. The ADSP-2106x will identify
the bus master by recognizing which BRx is asserted, and will update its
internal record of who the current master is (in the current bus master field,
CRBM, of the SYSTAT register).

• The ADSP-2106x with ID=001 will assert its BRx (BR1) during reset and for
at least two cycles after reset. If no other BRx lines are asserted during these
cycles, the ADSP-2106x with ID=001 will drive the memory control signals
to prevent them from glitching. (Although it is asserting its BRx and
driving the memory control signals during these cycles, this processor does
not perform reads or writes over the bus.)

If the ADSP-2106x with ID=001 is synchronized by the end of the two
cycles following reset, it becomes the bus master. If it is not synchronized at
this time, it will deassert its BRx (BR1) and wait until it is.
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When an ADSP-2106x has synchronized itself, it sets the BSYN bit in
the SYSTAT register.

If one ADSP-2106x comes out of reset after the others have
synchronized and started program execution, that processor may not
be able to synchronize immediately (e.g. if it sees more than one BRx
line asserted). If the unsynchronized processor tries to execute an
instruction with an off-chip read or write, it cannot assert its BRx line
to request the bus and execution is delayed until it can synchronize
and correctly arbitrate for the bus.

Synchronization cannot occur while HBG is asserted, because bus
arbitration is suspended while the bus is controlled by a host. If HBR is
asserted immediately after reset and no bus arbitration has taken place,
the ADSP-2106x with ID=001 is considered to be the last bus master.

As mentioned above, the ADSP-2106x with ID=001 maintains correct
logic levels on the RD, WR, MS3-0, PAGE, and HBG signals during
reset.

Because the “001” processor can be accidently reset by an erroneous
write to the soft reset bit (SRST) of the SYSCON register, it behaves in
the following manner during reset:

• While it is in reset, the ADSP-2106x with ID=001 attempts to gain
control of the bus by asserting BR1.

• While it is in reset, the ADSP-2106x with ID=001 will drive the RD,
WR, MS3-0, DMAG1, DMAG2, PAGE, and HBG signals only if it
determines that it has control of the bus. For the processor to decide
it has control of the bus, two conditions must be true: 1) BR1 was
asserted and no other BRx lines were asserted in the previous cycle,
and 2) HBG was deasserted in the previous cycle.

The ADSP-2106x with ID=001 will continue to drive the RD, WR,
MS3-0, DMAG1, DMAG2, PAGE, and HBG signals for two cycles after
reset, as long as neither HBG nor any other BRx lines are asserted. At
the end of the second cycle it assumes bus mastership (if it is
synchronized), and normal bus arbitration begins in the following
cycle. If it is not synchronized, it deasserts BR1, stops driving the
memory control signals, and does not arbitrate for the bus until it
becomes synchronized.
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Although the bus synchronization scheme allows individual
processors to be reset, the ADSP-2106x with ID=001 may fail to drive
the memory control signals if it is in reset while any other processors
are asserting their BRx line.

If the ADSP-2106x with ID=001 has asserted HBG while it is in reset, it
will be synchronized when RESET is deasserted. This allows the host
to start using the bus while the ADSP-2106xs are still in reset.

If a host processor attempts to reset the ADSP-2106x bus master (which
is driving the HBG output), the host will immediately lose control of
the bus.

During reset, the ACK line is pulled high internally by the ADSP-2106x
bus master (with a 2 kΩ equivalent resistor).

7.4 SLAVE DIRECT READS & WRITES
The ADSP-2106x bus master can directly access the internal memory
and IOP registers of a slave ADSP-2106x by simply reading or writing
to the appropriate address in multiprocessor memory space—this is
called a direct read or direct write. Each ADSP-2106x bus slave monitors
addresses driven on the external bus and responds to any that fall
within its region of multiprocessor memory space.

These accesses are invisible to the slave ADSP-2106x’s core processor
because they are performed through the external port and via the
on-chip I/O bus—not the DM bus or PM bus.  (See Figure 8.1 in the
Host Interface chapter.)

This is an important distinction, because it allows the slave’s core
processor to continue program execution uninterrupted.

The ADSP-2106x bus master can directly read and write the slave’s
IOP registers to send a vector interrupt, for example, or to set up a
DMA transfer.

To read or write 48-bit instruction words, the IWT (Instruction Word
Transfer) bit of the SYSCON register must be set to 1. To read or write
32-bit data words, the IWT bit must be cleared to 0. When this bit is set,
it overrides the IMDWx (Internal Memory Data Width) bit of each
memory block.
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For heavily loaded buses, or when external data buffers are used, a
single wait state can be added to all multiprocessor memory accesses.
This option is selected by the MMSWS bit of the WAIT register.

7.4.1 Direct Writes
When a direct write to a slave ADSP-2106x occurs, the address and
data are latched on-chip by the I/O processor. The I/O processor
buffers the address and data in a special set of FIFO buffers. If
additional direct writes are attempted when the FIFO buffer is full, the
slave ADSP-2106x deasserts its ACK line until the buffer is no longer
full. Up to six direct writes can be performed before another is delayed.
(The direct write buffer itself may be held off for up to four cycles if all
of the serial port DMA channels are active or for up to nine cycles per
chain if DMA chaining is occurring.)

7.4.1.1 Direct Write Latency
When data is written to an ADSP-2106x bus slave, the data and
address are latched at the I/O pins in a four-level FIFO buffer; this
buffer is called the slave write FIFO (see again Figure 8.1 in the
Host Interface chapter). In the following cycle, the slave write FIFO
attempts to complete the write internally. This allows the master
ADSP-2106x to perform writes at the full clock rate. The slave write
FIFO cannot be explicitly read by the slave ADSP-2106x’s core
processor, nor can its status be determined.

Writes to the IOP registers will usually occur in the following one or
two cycles, or when any current DMA transfer is completed. The write
will take more than two cycles only if a direct write in the previous
cycle was held off by a full buffer.

If the buffer is full when a write is attempted, the slave ADSP-2106x
will deassert its ACK line until the buffer is not full. The buffer will
usually flush out within one cycle, thus creating a write latency, unless
higher priority on-chip DMA transfers are occurring.

Slave reads will be held off when there is data in the write FIFO—this
prevents false data reads and out-of-sequence operations.
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The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending in the I/O
processor’s direct write FIFO or data is pending in the slave write FIFO
(at the external port I/O pins). Direct writes and IOP register accesses
may be completed in different sequences. If, for example, the
ADSP-2106x master performs a direct memory write and then writes to
an IOP register on a slave, the IOP register write may complete before
the direct write.

7.4.2 Direct Reads
When a direct read of a slave ADSP-2106x occurs, the address is
latched on-chip by the I/O processor and ACK is deasserted. When the
corresponding location in memory is read internally, the ADSP-2106x
drives the data off-chip and asserts its ACK line. Direct reads cannot be
pipelined like direct writes—they only occur one at a time.

Note that while direct writes have a maximum pipelined throughput
of one per cycle, direct reads have a maximum throughput of one per
every two cycles (for synchronous IOP register reads) or one per every
four cycles (for synchronous internal memory reads). See Table 11.5,
“Data Delays & Throughputs”, in Chapter 11. Because of this low
bandwidth, direct reads are not the most efficient method of
transferring data out of a slave ADSP-2106x—setting up a master
mode DMA channel on the slave to perform writes is more efficient,
although it requires additional programming. The advantage of direct
reads is that no programming of the DMA controller is required.

7.4.3 Broadcast Writes
Broadcast writes allow simultaneous transmission of data to all of the
ADSP-2106xs in a multiprocessing system. The master ADSP-2106x
can perform broadcast writes to the same memory location or IOP
register on all of the slaves. During broadcast writes, the master also
writes to itself unless the broadcast is a DMA write. Broadcast writes
can be used to implement reflective semaphores in a multiprocessing
system (see “Bus Lock & Semaphores” later in this chapter). Broadcast
writes can also be used to simultaneously download code or data to
multiple processors.

The highest region of multiprocessor memory space, addresses
0x0038 0000 to 0x003F FFFF, is used for broadcast writes. When a write
address falls within this region, each ADSP-2106x slave responds by
accepting the access; the master ADSP-2106x also accepts its own
broadcast write. A read cycle generated in the broadcast write region
reads the corresponding location in that processor’s internal memory
and does not assert the processor’s BRx.
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Figure 7.8 shows the timing for a typical broadcast write for
MMSWS=0. In this example, the first broadcast write completes
without a wait state. In the second broadcast write, one or more of the
slaves have 3 wait states and are deasserting ACK for 3 cycles. Note
that ACK is sampled by the master on odd cycles (wrt WR asserted). If
the  multiprocessor memory space wait state is enabled, the master
does not sample or pre-charge ACK for the first two cycles.
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Figure 7.8  Broadcast Write Timing Example

Because the master ADSP-2106x must wait for a broadcast write to
complete on all of the slaves, the acknowledge signal is handled
differently to prevent drive conflicts on the ACK line. A wired-OR
acknowledge signal is implemented to respond to broadcast writes.
This signal operates as follows:

1. In the first cycle of the broadcast write (and in all succeeding odd
cycles), a slave ADSP-2106x will pull ACK low if it is not ready to
accept the data. If it is ready, it will not drive the ACK line.

If the master ADSP-2106x sees that ACK is high, indicating that all
slaves are accepting the broadcast write, it completes the write.
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2. During all succeeding even cycles in which the broadcast write is not
finished, the slave ADSP-2106xs will not drive ACK. Instead, the
master ADSP-2106x drives (i.e. pre-charges) ACK high and must
continue the write. (Go to Step 1.)

In most cases the ACK signal will be high and the ADSP-2106x slaves
will be ready to accept data at the start of the broadcast write—the
write completes in one cycle. If the ACK signal is low, however, or one
of the slaves is not ready to accept the data, the broadcast write will
take a minimum of three cycles.

When the wait state for multiprocessor memory space is enabled (with
the MMSWS bit of the WAIT register), none of the ADSP-2106xs will
drive ACK in the first cycle, the master pre-charges ACK in the second
cycle, and the slaves may drive ACK in the third cycle. In this case the
broadcast write will again take a minimum of three cycles to complete.

(Note: The ADSP-2106x bus master enables a keeper latch on the ACK
line to prevent the signal from drifting. This eliminates any power
consumption caused by the signal drifting to the switching point and
improves the robustness of broadcast writes. Multiprocessor systems
that use broadcast writes should keep the ACK signal line as free of
noise as possible.)

7.4.4 Shadow Write FIFO
Because the ADSP-2106x’s internal memory must operate at high
speeds, writes to the memory do not go directly into the memory
array, but rather to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, data in the FIFO from
the previous write is loaded into memory and the new data goes into
the FIFO. This operation is normally transparent, since any reads of the
last two locations written are intercepted and routed to the FIFO.
There is only one case in which you need to be aware of the shadow
write FIFO: mixing 48-bit and 32-bit word accesses to the same
locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and mapping of 32-bit words. (See Figures 5.8 and 5.9 in the
Memory chapter.) Thus if you write a 48-bit word to memory and then
try to read the data with a 32-bit word access, the shadow FIFO will
not intercept the read and incorrect data will be returned.
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If 48-bit accesses and 32-bit accesses to the same locations absolutely
must be mixed in this way, you must flush out the shadow FIFO with
two dummy writes before attempting to read the data.

7.5 DATA TRANSFERS THROUGH THE EPBx BUFFERS
In addition to direct reads and writes, the ADSP-2106x bus master can
transfer data to and from the slave ADSP-2106xs through the external
port FIFO buffers, EPB0, EPB1, EPB2, and EPB3. Each of these buffers,
which are part of the IOP register set, is a six-location FIFO. Both
single-word transfers and DMA transfers can be performed through
the EPBx buffers. DMA transfers are handled internally by the
ADSP-2106x’s DMA controller, but single-word transfers must be
handled by the ADSP-2106x core.

Each EPBx buffer has a read port and a write port, both of which can
connect internally to either the EPD (External Port Data) bus or to a
local bus which in turn can connect to the IOD (I/O Data) bus, PM
Data bus, or DM Data bus. This is shown in Figure 8.1 in the
Host Interface chapter. Note that direct reads and writes bypass the
EPBx buffers and go directly to internal memory.

7.5.1 Single-Word Transfers
When the ADSP-2106x master writes a single data word to a slave’s
EPBx buffers, the slave core’s program must read the data. Conversely,
when the slave’s core writes a single piece of data to one of its EPBx
buffers, the master must perform an external bus read cycle to obtain
it. Because the EPBx buffers are six-deep FIFOs (in both directions), the
master and the slave’s core are allowed extra time to read the data—
efficient, continuous, single-word transfers can thus be performed in
real-time, with low latency and without using DMA.

If the ADSP-2106x master attempts a read from an empty EPBx buffer
on a slave, the access will be held off with the ACK signal until the
buffer receives data from the slave’s core. If the slave’s core attempts to
write to a full EPBx buffer, the access is also delayed and the core will
hang until the buffer is externally read by the master. To prevent this
from happening, the BHD (Buffer Hang Disable) bit should be set to 1
in the SYSCON register. The full or empty status of a particular EPBx
buffer can be determined by reading the appropriate DMACx control/
status register.
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Similarly, if the ADSP-2106x master attempts a write to a full EPBx
buffer on a slave, the access will be held off with ACK until the buffer
is read by the slave’s core. If the slave’s core attempts to read from an
empty buffer, the access is also held off and the core will hang until the
buffer is externally written from the bus master. The BHD bit can also
be used to prevent a hang condition in this case.

Each EPBx buffer can be flushed (i.e. cleared) by writing a 1 to the
FLSH bit in the corresponding DMACx control register. This bit is not
latched internally and will always be read as a 0. Status can change in
the following cycle. An EPBx buffer should not be enabled and flushed
in the same cycle.

Note: To perform single-word, non-DMA transfers through the EPBx
buffers, the DMA enable bit (DEN) must be cleared in the appropriate
DMACx control register.

7.5.1.1 Interrupts For Single-Word Transfers
The interrupts for the four external port DMA channels can be used to
control single-word data transfers between the ADSP-2106x bus master
and a slave. To do this, the DMACx control register must have the
following bit settings: DEN=0 and INTIO=1. This disables DMA
(DEN=0) and enables interrupt-driven I/O (INTIO=1). See the DMA
chapter or Control/Status Registers appendix of this manual for a
complete description of the DMACx control registers.

In this case the interrupt is generated whenever data becomes available
in the read port of the EPBx buffer, or whenever the write port does
not have new data to transmit. The EPBx buffer can then be read or
written, either internally by the ADSP-2106x slave’s core or externally
by the master. Generating interrupts in this fashion is useful for
implementing interrupt-driven I/O controlled by the ADSP-2106x core
processor.

This interrupt may be masked out (i.e. disabled) in the IMASK register.
If the interrupt is later enabled in IMASK, the corresponding IRPTL
latch bit must be cleared to clear any interrupt request that may have
occurred.
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7.5.2 DMA Transfers
The ADSP-2106x bus master can also set up DMA transfers to and
from a slave ADSP-2106x. The master can write to the slave’s DMA
control and parameter registers to set up an external port DMA
operation. This is the most efficient way to transfer blocks of data
between two ADSP-2106xs.

• DMA Transfers to Internal Memory. The ADSP-2106x master can set
up external port DMA channels to transfer data to and from a slave’s
internal memory.

• DMA Transfers to External Memory. The ADSP-2106x master can set
up an external port DMA channel to transfer data directly to external
memory using the DMA request and grant lines (DMARx, DMAGx).

Refer to the DMA chapter of this manual for details on setting up DMA
operations. Figure 6.9 in the “System Configurations For ADSP-2106x
Interprocessor DMA” section of the DMA chapter shows the different
ways you can set up external port DMA transfers between two
ADSP-2106xs, as well as the advantages and disadvantages of each.

7.5.2.1 DMA Transfers To Internal Memory
The ADSP-2106x master can set up external port DMA channels to
transfer blocks of data to and from a slave’s internal memory. To set
up the DMA transfer, the master must initialize the slave’s control and
parameter registers for that channel. Once the DMA channel is set up,
the master may simply read from (or write to) the corresponding EPBx
buffer on the slave, or it may set up its own DMA controller to perform
the transfers. If the slave’s buffer is empty (or full), the access is
extended until data is available (or stored). This method allows fast
and efficient data transfers.

Packing and unpacking of DMA data words is selected by the PMODE
bits in the external port DMA control registers (DMAC6, DMAC7,
DMAC8, and DMAC9). Either 16-to-32, 16-to-48, or 32-to-48 bit
packing/unpacking can be selected.

The ADSP-2106x master may also use the DMARx/DMAGx
handshake signals to control a DMA transfer, but not when a host
processor has gained control of the bus.
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7.5.2.2 DMA Transfers To External Memory
The ADSP-2106x’s DMA controller can also be used to transfer data
directly to external memory. The external handshake mode for external
port DMA channel 7 or 8 will provide the DMARx/DMAGx
handshaking for this type of transfer. Again, this is not possible when
a host processor has gained control of the bus.

7.6 BUS LOCK & SEMAPHORES
Semaphores can be used in multiprocessor systems to allow the
processors to share resources such as memory or I/O. A semaphore is
a flag that can be read and written by any of the processors sharing the
resource. The value of the semaphore tells the processor when it can
access the resource. Semaphores are also useful for synchronizing the
tasks being performed by different processors in a multiprocessing
system.

With the use of its bus lock feature, the ADSP-2106x has the ability to
read and modify a semaphore in a single indivisible operation—a key
requirement of multiprocessing systems.

Because both external memory and each ADSP-2106x’s internal
memory (and IOP registers) are accessible by every other ADSP-2106x,
semaphores can be located almost anywhere. Read-modify-write
operations on semaphores can be performed if all of the ADSP-2106xs
obey two simple rules:

1. An ADSP-2106x must not write to a semaphore unless it is the bus
master. This is especially important if the semaphore is located in
the ADSP-2106x’s own internal memory or IOP registers.

2. When attempting a read-modify-write operation on a semaphore,
the ADSP-2106x must have bus mastership for the duration of the
operation.

Both of these rules are adhered to when an ADSP-2106x uses its bus
lock feature, which “locks in” its mastership of the bus and prevents
the other processors from simultaneously accessing the semaphore.
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Bus lock is requested by setting the BUSLK bit in the MODE2 register.
When this happens, the ADSP-2106x initiates the bus arbitration
process in the usual fashion, by asserting its BRx line. When it becomes
bus master, it locks the bus (i.e. retains bus mastership) by keeping its
BRx line asserted even when it is not performing an external read or
write. Host bus request (HBR) is also ignored during a bus lock. When
the BUSLK bit is cleared, the ADSP-2106x gives up the bus by
deasserting its BRx line.

While the BUSLK bit is set, the ADSP-2106x can determine if it has
acquired bus mastership by executing a conditional instruction with
the BM or NOT BM condition codes, for example:

IF NOT BM JUMP(PC,0);     /* wait for bus mastership */

If it has become the bus master, the ADSP-2106x can proceed with the
external read or write. If not, it can clear its BUSLK bit and try again
later.

A read-modify-write operation is accomplished with the following steps:

1. Request bus lock by setting the BUSLK bit in MODE2.
2. Wait for bus mastership to be acquired.
3. Wait until Direct Write Pending (DWPD) is zero.
4. Read the semaphore, test it, and then write to it.

Locking the bus prevents other processors from writing to the
semaphore while the read-modify-write is occurring. (Note: If the
semaphore is reflective, located in the ADSP-2106x’s internal memory
or an IOP register, the processor must write to it only when it has bus
lock.) After bus mastership is aquired, the Direct Write Pending status
in SYSTAT must be checked to ensure that a semaphore write by
another processor is not pending.

Bus lock can be used in combination with broadcast writes to
implement reflective semaphores in a multiprocessing system. The
reflective semaphore should be located at the same address in internal
memory (or IOP register) of each ADSP-2106x. To check the
semaphore, each ADSP-2106x simply reads from its own internal
memory. To modify the semaphore, an ADSP-2106x requests bus lock
and then performs a broadcast write to the semaphore address on
every ADSP-2106x, including itself. Before modifying the semaphore,
though, the ADSP-2106x must re-check it to verify that another
processor has not changed it. With reflective semaphores, the external
bus is used only for updating the semaphore, not for reading it. This
greatly reduces bus traffic.
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7.6.1 Example: Sharing A DMA Channel With Reflective Semaphores
A single DMA channel can be shared by more than one ADSP-2106x
by using the channel’s control register as a reflective semaphore. The
DMA channel control register is a memory-mapped IOP register on
each ADSP-2106x. If the control register is equal to zero, the channel is
disabled and is not being used by any processor. If the control register
is non-zero, the DMA channel is in use.

Before an ADSP-2106x can use the DMA channel, it must read the
semaphore to determine if the channel is in use. If not, the ADSP-2106x
can request bus lock and then execute a read-modify-write operation
to set the semaphore on each of the processors sharing the DMA
channel. Before performing the read-modify-write, though, the
ADSP-2106x should recheck the semaphore to assure that the DMA
channel is still free. Once this is done, the ADSP-2106x should clear the
BUSLK bit to unlock the bus and can proceed with the DMA
transfer(s). When the transfer(s) are completed, this ADSP-2106x must
clear the semaphore to tell the other processors that the channel is
available for use.

The following code performs the read-modify-write operation
described above:

#define semaphore 0x0038001C /* Broadcast write to     */
/* DMAC6 control register */
/* on all ADSP-2106xs.    */

  ...

BIT SET MODE2 BUSLK; /* Request bus lock           */
IF NOT BM JUMP(PC,0); /* Wait for bus mastership    */
USTAT1=DM(SYSTAT); /* Check Direct Write Pending */
BIT TST USTAT1 0X1000; /* Status to ensure no

   writes happen              */
IF NE JUMP (PC,-2); /* After bus lock             */
R0=DM(semaphore); /* Read semaphore             */
R0=PASS RO /* Set condition codes        */

IF NE JUMP(PC,3); /* Test semaphore - don’t write
   if resource is unavailable.*/

R0=R0+1; /* Modify semaphore           */
DM(semaphore)=R0; /* Write semaphore            */
BIT CLR MODE2 BUSLK; /* Release bus lock           */

Notes:
1.) The IF NOT BM JUMP(PC,0) instruction  through the IF NE JUMP (PC, -2)

instruction is only necessary for internal semaphores.
2.) The R0=DM(semaphore) instruction will not be executed until bus mastership is

acquired and locked.
3.) The DM(semaphore)=R0 instruction is a broadcast write.
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7.7 INTERPROCESSOR MESSAGES & VECTOR INTERRUPTS
The ADSP-2106x bus master can communicate with slave
ADSP-2106xs by writing messages to their IOP registers. The
MSGR0-MSGR7 registers are general-purpose registers which can be
used for convenient message passing between ADSP-2106xs. They are
also useful for semaphores and resource sharing between multiple
ADSP-2106xs. The MSGRx and VIRPT registers can be used for
message passing in the following ways:

• Message Passing. The master ADSP-2106x can communicate with a
slave ADSP-2106x by writing and/or reading any of the 8 message
registers, MSGR0–MSGR7, on the slave.

• Vector Interrupts. The master ADSP-2106x can issue a vector interrupt
to a slave by writing the address of an interrupt service routine to the
slave’s VIRPT register. This causes an immediate high-priority interrupt
on the slave which, when serviced, will cause it to branch to the
specified service routine.

The MSGRx and VIRPT registers also support the host processor
interface. Since these registers may be shared resources within a single
ADSP-2106x, conflicts may occur—your system software must prevent
this. For further discussion of IOP register access conflicts, refer to the
Control/Status Registers appendix of this manual.

7.7.1 Message Passing  (MSGRx)
There are three methods by which the ADSP-2106x bus master can
communicate with a slave through the MSGRx message registers:
1) vector-interrupt-driven, 2) register handshake, and 3) register write-back.

For the vector-interrupt-driven method, the master fills predetermined
MSGRx registers on the slave with data and triggers a vector interrupt
by writing the address of the service routine to the slave’s VIRPT
register. The slave’s service routine should read the data from the
MSGRx registers and then write “0” into VIRPT to tell the master it is
done. The service routine could also use one of the slave’s FLAG3-0
pins to tell the master it has finished.

For the register handshake method, four of the MSGRx registers should
be designated as follows: a receive register (R), a receive handshake
register (RH), a transmit register (T), and a transmit handshake register
(TH). To pass data to the slave ADSP-2106x, the master would write
data into T and then write a “1” into TH. When the slave sees a “1” in
TH, it reads the data from T and then writes back a “0” into TH. When
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the master sees a “0” in TH, it knows that the transfer is complete. A
similar sequence of events occurs when the slave passes data to the
master through R and RH.

The register write-back method is similar to register handshaking, but
uses only the T and R data registers. The master writes data to T. When
the slave sees a non-zero value in T, it retrieves it and writes back a “0”
to T. A similar sequence occurs when the master is receiving data. This
simpler method works well as long as the data to be passed does not
include “0.”

7.7.2 Vector Interrupts  (VIRPT)
Vector interrupts are used for interprocessor commands between two
ADSP-2106xs or between a host and the ADSP-2106x. When the
external processor writes an address to the ADSP-2106x’s VIRPT
register, a vector interrupt is caused.

When the vector interrupt is serviced, the ADSP-2106x automatically
pushes the status stack and begins executing the service routine
located at the address specified in VIRPT. The lower 24 bits of VIRPT
contain the address; the upper 8 bits may be optionally used as data to
be read by the interrupt service routine. At reset, VIRPT is initialized to
its standard address in the ADSP-2106x’s interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which
are NOPs. When the RTI (return from interrupt) instruction is reached
in the service routine, the ADSP-2106x automatically pops the status
stack.

The VIPD bit in the SYSTAT register reflects the status of the VIRPT
register. If VIRPT is written while a previous vector interrupt is
pending, the new vector address replaces the pending one. If VIRPT is
written while a previous vector interrupt is being serviced, the new
vector address is ignored and no new interrupt is triggered. If the
ADSP-2106x writes to its own VIRPT register it is ignored.

To use the slave ADSP-2106x’s vector interrupt feature, the master
ADSP-2106x should perform the following sequence of actions:

1. Poll the slave’s VIRPT register until it reads a certain token value
(i.e. zero).

2. Write the vector interrupt service routine address to VIRPT.
3. When the service routine is finished, the slave ADSP-2106x should

write the token back into VIRPT to indicate that it is finished and
that another vector interrupt can be initiated.
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The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending. Pending direct
writes may occur in different sequences. If, for example, the master
ADSP-2106x performs a direct write to a slave and then writes to an
IOP register on the slave, the IOP register write may complete before
the direct write. Because of this, direct writes performed just before
vector interrupt writes (to VIRPT) may be delayed until after the
branch to the interrupt vector:

1. The master ADSP-2106x performs a direct write to the internal
memory of a slave.

2. The master ADSP-2106x writes to the VIRPT register of the slave to
initiate a vector interrupt. This causes the direct write to be delayed.

3. The slave ADSP-2106x jumps to the vector interrupt service routine.
4. The direct write is completed after the interrupt service routine is

underway.

To prevent this from happening, the master ADSP-2106x should check
that all direct writes have completed before writing to the slave’s
VIRPT register. This can be done by polling the slave’s DWPD bit (in
SYSTAT) after performing a direct write, waiting for it to become
cleared, and then proceeding with the write to VIRPT.

7.8 SYSTAT REGISTER STATUS BITS
The SYSTAT register provides status information, primarily for
multiprocessor systems. Table 7.4 shows the status bits in this register.

Bit(s)
Name Definition
HSTM Host Mastership
BSYN Bus Synchronization
CRBM Current Bus Master (ID2-0 of ADSP-2106x bus master)
IDC ID Code (ID2-0 of this ADSP-2106x)
DWPD Direct Write Pending
VIPD Vector Interrupt Pending
HPS Host Packing Status

Table 7.4  SYSTAT Status Bits
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BSYN
Bus Synchronization

IDC
ID Code

VIPD
Vector Interrupt Pending

Figure 7.9  SYSTAT Register
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HSTM Host Mastership. Indicates whether the host processor is has been granted
control of the bus.

1=Host is bus master
0=Host is not bus master

BSYN Bus Synchronization. Indicates when the ADSP-2106x’s bus arbitration
logic is synchronized after reset. (See “Bus Synchronization After Reset.”)

1=Bus arbitration logic is synchronized
0=Bus arbitration logic is not synchronized

CRBM Current Bus Master. Indicates the ID code of the ADSP-2106x that is the
current bus master. If CRBM is equal to the ID of this  ADSP-2106x then it is
the current bus master. CRBM is only valid for ID2-0 > 0 (greater than zero).
When ID2-0=000, CRBM is always 1.

IDC ID Code. Indicates the ID2-0 inputs of this ADSP-2106x.

DWPD Direct Write Pending. Indicates when a direct write to the ADSP-2106x’s
internal memory is pending. The DWPD bit is cleared when the direct write
has been completed. (Direct writes may be delayed for several cycles is
DMA chaining is underway or if higher priority DMA requests occur.
Maximum delay is 12 cycles.)

1=Direct write pending
0=No direct write pending

VIPD Vector Interrupt Pending. Indicates that a pending vector interrupt has not
yet been serviced. The VIPD bit is set when the VIRPT register is written to
and is cleared upon return from the interrupt service routine. The master
ADSP-2106x (or host processor) that issued the vector interrupt should
monitor this bit to determine when the service routine has been completed,
and when a new vector interrupt may be issued.

1=Vector interrupt pending
0=No vector interrupt pending

HPS Host Packing Status. Indicates when host word packing is completed or,
if not, what stage of the process is taking place.

00=Packing complete
01=1st stage of all packing and unpacking modes.
10=2nd stage of 16-to-48 bit packing/unpacking or 32-to-48 bit packing/
unpacking



8

8 – 1

Host Interface

8.1 OVERVIEW
The ADSP-2106x’s host interface allows easy connection to standard
microprocessor buses, both 16-bit and 32-bit, with little additional
hardware required. The ADSP-2106x accommodates either
synchronous or asynchronous data transfers, allowing the host to use a
different clock frequency. Asynchronous transfers at speeds up to the
full clock rate of the processor are supported. The host accesses the
ADSP-2106x through its external port, via the external bus (DATA47-0
and ADDR31-0). The host interface is memory-mapped into the unified
address space of the ADSP-2106x. Figure 8.1 shows a block diagram of
the external port, I/O processor, and FIFO data buffers, illustrating the
on-chip data paths for host-driven transfers. The four external port
DMA channels are available for use by the host—DMA transfers of
code and data can be performed with low software overhead.

The host processor requests and controls the ADSP-2106x’s external
bus with the host bus request (HBR), host bus grant (HBG), and ready
(REDY) signals. Once it has gained control of the bus, the host can can
directly read and write the internal memory of the ADSP-2106x. It can
also read and write to any of the ADSP-2106x’s IOP registers,
including the EPBx FIFO buffers. The host uses certain IOP registers to
control and configure the ADSP-2106x, SYSCON and SYSTAT for
example, and to set up DMA transfers. DMA transfers are controlled
by the ADSP-2106x’s on-chip DMA controller once they have been set
up by the host (or by the ADSP-2106x core). In a multiprocessor
system, the host can access the internal memory and IOP registers of
every ADSP-2106x. Vector interrupts provide efficient execution of
host commands.



8 Host Interface

8 – 2

Any host microprocessor with a standard memory interface can easily
connect to the ADSP-2106x bus through buffers. By providing an
address, a data bus, and memory control signals—i.e. read, write and
chip select—a host may access any device on the ADSP-2106x bus as if
it were a memory. The host data bus width may be either 16 or 32 bits,
and the host-driven address may be either 8 or 32 bits. Any one of
ADSP-2106xs on the bus can be addressed, either with their chip select
(CS) signal or with a memory-mapped address. All of the internal
registers and resources of the ADSP-2106x’s I/O processor, such as the
DMA control registers, are available to the host. A host bus
acknowledge signal, REDY, is provided to indicate the completion of
each transfer.

External Port
 FIFO  Buffers

Other IOP Registers

Direct Write FIFO

Ext. Port 
Data Bus 

(EPD)

Slave Write FIFO
(Async writes - 4 deep)
(Sync writes - 2 deep)

Buffer

32

48

 ADDR31-0

 DATA47-0

External Port

Ext. Port 
Address 

Bus (EPA)
48 32

I/O Processor

Data Data Data

PM Data

DM Data

48

PM Address

DM Address

Addr

Addr

I/O Data 
Bus (IOD)

Addr

17I/O Address 
Bus (IOA)

PMD

Core 
Processor

Internal Memory

IODIOA DMD

PMA

DMA

PMD

DMD

EPD

EPA

Host-driven accesses go 
to the I/O Processor

(6-deep)

EPB0    EPB2
EPB1    EPB3

(6-deep)

Figure 8.1  External Port & Host Interface
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Table 8.1 defines the ADSP-2106x pins used in host processor
interfacing.

Signal Type Definition
HBR I/A Host Bus Request. Must be asserted by a host

processor to request control of the ADSP-2106x’s
external bus. When HBR is asserted in a
multiprocessing system, the ADSP-2106x that is bus
master will relinquish the bus and assert HBG. To
relinquish the bus, the ADSP-2106x places the address,
data, select, and strobe lines in a high-impedance state.
HBR has priority over all ADSP-2106x bus requests
(BR1-6) in a multiprocessing system.

HBG I/O Host Bus Grant. Acknowledges an HBR bus request,
indicating that the host processor may take control of
the external bus. HBG is asserted (held low) by the
ADSP-2106x until HBR is released. In a
multiprocessing system, HBG is output by the
ADSP-2106x bus master and is monitored by all others.

CS I/A Chip Select. Asserted by host processor to select the
ADSP 2106x.

REDY (o/d)  O Host Bus Acknowledge. The ADSP-2106x deasserts REDY
(low) to add wait states to an asynchronous access of its
internal memory or IOP registers by a host. Open-drain
output (o/d) by default; can be programmed in ADREDY
bit of SYSCON register to be active drive (a/d). REDY will
only be output if the CS and HBR inputs are asserted.

SBTS I/S Suspend Bus Tristate. External devices can assert
SBTS (low) to place the external bus address, data,
selects, and strobes in a high-impedance state for the
following cycle. If the ADSP-2106x attempts to access
external memory while SBTS is asserted, the processor
will halt and the memory access will not be completed
until SBTS is deasserted. SBTS should only be used to
recover from PAGE faults or host processor/
ADSP-2106x deadlock.

I=Input S=Synchronous (o/d)=Open Drain
O=Output A=Asynchronous (a/d)=Active Drive

Table 8.1  Host Interface Signals
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The following terms are used throughout this chapter, and are defined
below for reference:

external bus DATA47-0, ADDR31-0, RD, WR, MS3-0, BMS,
ADRCLK, PAGE, SW, ACK, and SBTS signals

multiprocessor system a system with multiple ADSP-2106xs, with or
without a host processor; the ADSP-2106xs are
connected by the external bus and/or link ports

multiprocessor memory space portion of the ADSP-2106x’s memory map that
includes the internal memory and IOP registers
of each ADSP-2106x in a multiprocessing
system; this address space is mapped into the
unified address space of the ADSP-2106x

IOP register one of the control, status, or data buffer registers
of the ADSP-2106x’s on-chip I/O processor

bus slave or slave mode an ADSP-2106x can be a bus slave to another
ADSP-2106x or to a host processor; the
ADSP-2106x becomes a “host bus slave” when
the HBG signal is returned

bus transition cycle (BTC) a cycle in which control of the external bus is
passed from one ADSP-2106x to another (in a
multiprocessor system)

host transition cycle (HTC) a cycle in which control of the external bus is
passed from the ADSP-2106x to the host
processor—during this cycle the ADSP-2106x
stops driving the RD, WR, ADDR31-0, MS3-0,
ADRCLK, PAGE, SW, and DMAGx signals,
which must then be driven by the host

asynchronous transfers asynchronous host accesses of the ADSP-2106x;
after acquiring control of the ADSP-2106x’s
external bus, the host must assert the CS pin of
the ADSP-2106x it wants to access

synchronous transfers synchronous host accesses of the ADSP-2106x;
CS is not asserted and the host must act like
another ADSP-2106x in a multiprocessor system,
by generating an address in multiprocessor
memory space, asserting SW and WR or RD,
and driving out or latching in the data
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direct reads & writes a direct access of the ADSP-2106x’s internal
memory or IOP registers by another
ADSP-2106x or by a host processor

external port FIFO buffers EPB0, EPB1, EPB2, and EPB3—the IOP registers
used for external port DMA transfers and
single-word data transfers (from other
ADSP-2106xs or from a host processor); these
buffers are 6-deep FIFOs

single-word data transfers reads and writes to the EPBx external port
buffers, performed externally by the host or
internally by the ADSP-2106x core; these occur
when DMA is disabled in the DMACx control
register

DMACx control registers the DMA control registers for the EPBx external
port buffers: DMAC6, DMAC7, DMAC8, and
DMAC9, corresponding respectively to EPB0,
EPB1, EPB2, and EPB3 (see the DMA chapter or
Control/Status Registers appendix of this manual
for a complete description of the DMACx
control registers)

8.2 HOST PROCESSOR CONTROL OF THE ADSP-2106X
The HBR and HBG signals allow a host processor to gain control of the
ADSP-2106x and its external bus. Once the host is granted control of
the ADSP-2106x bus, it may transfer data either synchronously or
asynchronously. Asynchronous transfers are most commonly used.
The host bus may be 16, 32, or 48 bits wide for synchronous transfers,
but only 16 or 32 bits wide for asynchronous transfers.

Data written to and read from the ADSP-2106x can be packed or
unpacked into different word widths. When the width of the host bus
is 16 bits, data can be packed into 32-bit words or 48-bit words. When
the host bus is 32 bits wide, data can be packed into 48-bit words. The
host packing mode control bits (HPM) in the SYSCON register are
used to configure data packing and unpacking.
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8.2.1 Acquiring The Bus
For a host processor to gain access to the ADSP-2106x, it must first
assert HBR, the host bus request signal. HBR has priority over all BRx
multiprocessor bus requests, and when asserted will cause the current
ADSP-2106x master to give up the bus to the host as soon as it has
finished the current bus cycle.

The current ADSP-2106x bus master signals that it is transferring
ownership of the bus by asserting HBG (low) as soon as the current
bus operation has completed. The cycle in which control of the bus is
transferred is called a host transition cycle (HTC).

Figure 8.2 shows the timing for bus acquisition by the host. HBG is
asserted during the ADSP-2106x’s bus transition cycle (BTC) and
remains asserted until HBR is deasserted by the host. (The bus
transition cycle (BTC) shown in Figure 8.2 is the same as that of a
SHARC-to-SHARC multiprocessor BTC, as described in Chapter 7,
Multiprocessing. HBG freezes ADSP-2106x multiprocessor bus
arbitration during the time that the host owns the bus. (HBG should
also be used to enable the host’s signal buffers, as shown in Figure 8.8
at the end of this chapter.) While HBG is asserted, the ADSP-2106xs
will continue to assert and deassert their BRx lines as in normal
operation, but no BTCs will occur. The current ADSP-2106x bus master
will keep its BRx asserted throughout the entire time the host controls
the bus.

Once the host has gained control of the bus, it can choose to perform
either synchronous or asynchronous transfers with the ADSP-2106x(s).
To initiate asynchronous transfers, the host asserts (low) the CS pin of
the ADSP-2106x that it intends to access and performs the read or
write. (CS is ignored when HBG is not asserted.) To initiate
synchronous transfers, the host keeps all ADSP-2106x CS pins
deasserted (high) and reads or writes to the ADSP-2106xs’
multiprocessor memory space (just as one ADSP-2106x reads or writes to
another ADSP-2106x).

The host is responsible for driving the following signals during the
HTC in which it gains control of the bus: ADDR31-0, RD, WR, SW, and
PAGE. See Figure 8.3. These signals must also continue to be driven for
the entire time the host has the bus. In addition, the MS3-0, ADRCLK,
DMAG1, and DMAG2 lines must be driven or weakly pulled up or
down—the ADSP-2106x bus master tristates these lines to allow the
host the possibility of using them.



8Host Interface

8 – 7

current bus master

(ADSP-2106x
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HBR
(Asynchronous)

HBR should not be removed
before the access is complete
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Figure 8.2  Example Timing For Bus Acquisition

During read-modify-write operations, the host should ensure that HBR
is not deasserted to avoid temporary loss of bus mastership. HBR must
remain asserted until after the host completes the last data transfer.

The following restrictions apply to bus acquisition by the host:

• If HBR is asserted while the ADSP-2106x is in reset, the ADSP-2106x will
not respond with HBG until after reset and multiprocessor
synchronization is completed.

• HBR should not be deasserted during a host access.

• If SBTS is asserted after HBR, the ADSP-2106x may enter slave mode
and suspend any unfinished access to the external bus. (See the
discussion of “Deadlock Resolution” in the “System Bus Interface”
section of this chapter for further details.)

• If the host is to execute both synchronous and asynchronous accesses
during a single bus grant, it must allow at least one cycle to pass after
the last access before switching CS.
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• Synchronous accesses may not be used in systems with only one
ADSP-2106x (with ID2-0=000).

Once the host has finished its task, it can relinquish control of the bus
by deasserting HBR. The ADSP-2106x bus master responds by
deasserting HBG. In the next cycle, the ADSP-2106x bus master again
assumes control of the bus and normal multiprocessor arbitration
resumes. The host should not deassert HBR until after it has completed
its last data transfer with the ADSP-2106x.

8.2.2 Asynchronous Transfers
To initiate asynchronous transfers after acquiring control of the
ADSP-2106x’s external bus, the host must assert the CS pin of the
ADSP-2106x it wants to access. This informs the ADSP-2106x that it
will be transferring data asynchronously with the host. The host must
then drive the address of the memory location or IOP register that it
wants to access. To simplify the hardware requirements for external
interface logic, only the address bits shown in Table 8.2 need to be
driven.

Address
Bits * Comments
ADDR7-0 Must be driven in all cases.
ADDR16-8 Must be driven only if the S field indicates an internal memory access.
ADDR18-17 S field**—Must be driven “00” for IOP register accesses, “01” for

internal memory accesses, or “1m” for short word accesses.
 and either
ADDR21-19 M field**—Must be driven “000” to prevent other non-selected

ADSP-2106xs on the bus from thinking that a synchronous
multiprocessor memory space access is occurring.

 or
ADDR31-22 E field**—one of the lines 31-22 driven as “1”.

Table 8.2   Address Bits To Be Driven During Asynchronous Host Accesses

* Setup and hold times for these address lines are specified in the ADSP-2106x Data Sheet.
** For a complete description of these address fields, see “ADSP-2106x Memory Map”
    in the Memory chapter of this manual.

Table 8.2 covers all cases, including multiprocessor systems, but fewer
address bits may need to be driven depending on the system. In a
single-ADSP-2106x system, the host need not drive the M address
field.
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Host direct reads and writes can be performed with normal words
(32-bit or 48-bit) or short words (16-bit). Short words are accessed if the
S field of the address is “1m”, where “m” is the most significant bit of
the short word address. Normal words are accessed if the S field is
“01”. 48-bit words are accessed if the IWT bit in the SYSCON register is
set to 1, selecting instruction word transfers.

When using asynchronous transfers and direct access to internal
memory is not required, the address supplied to the ADSP-2106x need
not be the full 32 bits. Only the lower 8 bits, ADDR7-0, need be
supplied. The ADDR21-17 bits must be zeros and the ADDR31-22 bits
are ignored, or ADDR21-19 need not be driven if one of the ADDR31-22
bits is a 1. See Table 8.2.

Asynchronous Write Clock Rates
To allow full speed asynchronous writes, data is latched at the I/O
pins in a four-level FIFO buffer; this buffer is called the slave write FIFO
(see Figure 8.1). This buffering allows previously written words to be
resynchronized while a new word is being written, and allows
asynchronous writes to occur at up to the full clock rate of the
ADSP-2106x.

Broadcast Writes
A host may broadcast write to several ADSP-2106xs by asserting each
of their CS pins. Each ADSP-2106x will accept the write as if it were the
only device being addressed. Because the REDY line is wire-ORed (if
configured as an open-drain output), it will only appear asserted when
all selected ADSP-2106xs are ready. (This is true only if REDY is not
actively pulled up.) ACK is not active when CS is asserted.

Uniprocessor Host Interface
To eliminate the need for a host to drive the M field address lines
(ADDR21-19) in systems with only one ADSP-2106x (ID2-0=000), this
ADSP-2106x will not recognize synchronous accesses. The host must
drive these address lines however, if the ADSP-2106x’s ID2-0 is
anything other than 000. (Note that this removes the requirement that
CS be asserted before RD.) To account for buffer delays when sampling
the REDY signal, be careful to ensure that it is properly resynchronized
by the host.
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8.2.2.1 Asynchronous Transfer Timing
When a ADSP-2106x’s CS chip select is asserted (low), the selected
ADSP-2106x immediately deasserts the REDY signal, with a delay of
approximately 10 ns. Refer to the ADSP-2106x Data Sheet for timing
exact specifications. (The REDY deassertion is activated from CS and
not from RD or WR because the host interface buffers for RD and WR
may not yet be enabled if HBG has not been asserted. CS can be
asserted before or after HBR is asserted, but REDY will not be
reasserted until after HBG has been asserted and a RD or WR strobe
has been applied. This is true only if a RD or WR strobe is active when
HBG is asserted, otherwise it is determined by the tTRDYHG switching
characteristic specified in the “Multiprocessor Bus Request & Host Bus
Request” timing section of the ADSP-2106x Data Sheet.)

REDY is asserted prior to the RD or WR being asserted and becomes
deasserted only if the ADSP-2106x is not ready for the read or write to
complete—the only exception is when CS is first asserted. The REDY
pin is an open-drain output to facilitate interfacing to common buses.
It can be changed to an active-drive output by setting the ADREDY bit
in the SYSCON register.

Figure 8.3 shows the timing of a host write cycle, discussed below,
including details of data packing and unpacking. This timing assumes
the use of the example host interface hardware shown in Figure 8.8 at
the end of this chapter.

1. The host asserts the address. HBR and CS are decoded from the host
bus interface address comparator and need not be supplied directly
by the host. The selected ADSP-2106x deasserts REDY immediately.

2. The host asserts WR and drives data (according to the timing
requirements specified in the data sheet).

3. The selected ADSP-2106x asserts REDY when it is ready to accept
the data. This occurs after the current bus master has completed its
current transfer and has asserted HBG. HBG enables the host
interface buffers to drive onto the ADSP-2106x bus.

4. The host deasserts WR when REDY is high and stops driving data.
5. The selected ADSP-2106x latches data on the rising edge of WR.



8Host Interface

8 – 11

HBR

Host
Address

CS

Host 
buffers
turn on

valid address valid

HBG

Driven 
by Host

Driven by
 ADSP-2106x
 Bus Master

DATA

BRx

ACK

REDY
data setup

valid

Bus
Transition

Cycle
(BTC)

Host
Transition

Cycle
(HTC)

REDY deasserted for a min of 1 cycle

valid data from
ADSP-2106x

Data from host
is latched into
 ADSP-2106x

on WR rising edge

Host tristates before
asserting RD

Driven by each 
ADSP-2106x

Data is latched in host
on RD rising edge

Host
Write

Host
Read

RD
WR
MSx

Driven inactive
before trisate

Figure 8.3  Example Timing For Host Read & Write Cycles

Note: In this example host interface, HBR and CS are derived from an
address comparator circuit (see Figure 8.8).

After the first word, the write sequence is:

6. The host asserts WR and drives data (according to the timing
requirements specified in the data sheet).

7. The ADSP-2106x deasserts REDY if it is not ready to accept data.
8. The host deasserts WR when REDY is high and stops driving data.
9. The selected ADSP-2106x latches data on the rising edge of WR.

More than one ADSP-2106x may have its CS pin asserted at any one
time during a write, but not during a read because of bus conflicts.
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Figure 8.3 also shows the timing of a host read cycle, again assuming the
use of the bus interface hardware of Figure 8.8, with the following
sequence:

1. The host asserts the address. HBR and the appropriate CS line are
again decoded by the host bus interface address comparator. The
selected ADSP-2106x deasserts REDY immediately and asserts HBG.

2. The host asserts RD.
3. The selected ADSP-2106x drives data onto the bus and asserts REDY

when the data is available.
4. The host latches the data and deasserts RD.

After the first word, the read sequence is:

5. The host asserts RD.
6. The selected ADSP-2106x deasserts REDY then asserts REDY,

driving data when it becomes available.
7. The host deasserts RD when REDY is high and latches the data.

8.2.3 Synchronous Transfers
To perform synchronous data transfers, the CS input is not asserted
and the host must act like another ADSP-2106x in a multiprocessor
system. To do this, it must generate an address in the multiprocessor
memory space of an ADSP-2106x, assert SW and WR or RD, and drive
out or latch in the data.

Synchronous accesses may not be used in uniprocessor systems
(ID2-0=000). To perform synchronous accesses in a multiprocessor
system, the host must drive the M address field (ADDR21-19) with a
value of 0-7 to select one of the ADSP-2106xs (by its ID2-0) or one of the
E field address lines must be driven high to select an address in
external memory. (Address fields are described in the “ADSP-2106x
Memory Map” section of the Memory chapter.)

For synchronous host transfers, the ADSP-2106x uses its ACK signal
instead of REDY to add waitstates to an access—the host must wait for
the ADSP-2106x to assert ACK. Synchronous accesses will not be
recognized during the Host Transition Cycle (see Figure 8.3). This
prevents any spurious access from occurring while the external host
buffers are starting to drive the address, data, and strobes. Note that
ACK may glitch during the HTC and should not be relied on until the
following cycle.
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When performing synchronous transfers, the host should use the same
number of wait states as are configured for multiprocessor memory space
wait states; otherwise the system may hang. This is configured by the
MMSWS bit of the WAIT register.

When an ADSP-2106x is responding to a synchronous read access, it
will only drive valid data for one cycle, even if the access is prolonged
by the host. Specifically, after the host synchronously asserts RD, the
ADSP-2106x will drive valid data only in the first cycle it asserts ACK
and will tristate the data bus during the following cycles, even if the
host continues to assert RD.

8.2.4 Host Interface Deadlock Resolution With SBTSSBTS
If SBTS and HBR are both asserted, the ADSP-2106x will enter slave
mode. ACK, HBG, REDY, and the data bus may all be active in slave
mode. If the ADSP-2106x was performing an external access (which
did not complete) in the same cycle that SBTS and HBR were asserted,
the access will be suspended until SBTS and HBR are both deasserted
again.

This functionality, i.e. using SBTS and HBR together, can be used for
host /ADSP-2106x deadlock resolution. If SBTS and HBR are asserted
while an external DMA access is occurring, HBG will not be asserted
until the access is completed. If SBTS and HBR are asserted while bus
lock is set, the ADSP-2106x will tristate its bus signals but will not go
into slave mode.

See “Deadlock Resolution” in the “System Bus Interfacing” section of
this chapter for further details.

8.3 SLAVE DIRECT READS & WRITES
The host can directly access the internal memory and IOP registers of
an ADSP-2106x by simply reading or writing to the appropriate
address in multiprocessor memory space—this is called a direct read or
direct write. Each ADSP-2106x bus slave monitors addresses driven on
the external bus and responds to any that fall within its region of
multiprocessor memory space.

These accesses are invisible to the slave ADSP-2106x’s core processor
because they are performed through the external port and via the
on-chip I/O bus—not the DM bus or PM bus.  (See Figure 8.1.)

This is an important distinction, because it allows the core processor to
continue program execution uninterrupted.
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The host can directly read and write the IOP registers to control and
configure the ADSP-2106x, for example in SYSCON and SYSTAT, and
to set up DMA transfers.

The IWT (Instruction Word Transfer) bit controls internal memory
width for instruction transfers. IWT=1 overrides the IMDW bits and
forces a 48-bit (3-column) memory transfer. IWT=0 defers to the data
word setting of the IMDW bits in the SYSCON register.

Synchronous and asynchronous direct read/writes are performed in
the same way by the host, and the following sections apply to both
synchronous and asynchronous direct accesses. The only difference is
which signal, REDY or ACK, the ADSP-2106x uses to add wait states to
these accesses. For asynchronous direct reads and writes, the REDY
signal is used. For synchronous direct reads and writes, ACK is used.

Synchronous and asynchronous  broadcast writes, however, are
slightly different, as described below.

8.3.1 Direct Writes
When a direct write to a slave ADSP-2106x occurs, the address and
data are latched on-chip by the I/O processor. The I/O processor
buffers the address and data in a special set of FIFO buffers. If
additional direct writes are attempted when the FIFO buffer is full, the
ADSP-2106x deasserts ACK (or REDY) until the buffer is no longer
full. Up to six direct writes can be performed before another is delayed.
(The direct write buffer itself may be held off for up to four cycles if all
of the serial port DMA channels are active or for up to nine cycles per
chain if DMA chaining is occurring.)

8.3.1.1 Direct Write Latency
When data is written to an ADSP-2106x bus slave, the data and
address are latched at the I/O pins in a four-level FIFO buffer; this
buffer is called the slave write FIFO (see Figure 8.1). In the following
cycle, the slave write FIFO attempts to complete the write internally.
This allows the host (or ADSP-2106x bus master) to perform writes at
the full clock rate. The slave write FIFO cannot be explicitly read by the
slave ADSP-2106x’s core processor, nor can its status be determined.

Writes to the IOP registers will usually occur in the following one or
two cycles, or when any current DMA transfer is completed. The write
will take more than two cycles only if a direct write in the previous
cycle was held off by a full buffer.
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If the buffer is full when a write is attempted, the ADSP-2106x will
deassert ACK (or REDY) until the buffer is not full. The buffer will
usually empty out within one cycle, thus creating a write latency,
unless higher priority on-chip DMA transfers are occurring.

Slave reads will be held off when there is data in the write FIFO—this
prevents false data reads and out-of-sequence operations.

The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending in the I/O
processor’s direct write FIFO or data is pending in the slave write FIFO
(at the external port I/O pins). Direct writes and IOP register accesses
may be completed in different sequences. If, for example, the host
performs a direct memory write and then writes to an IOP register on
the ADSP-2106x, the IOP register write may complete before the direct
write.

8.3.2 Direct Reads
When a direct read of an ADSP-2106x occurs, the address is latched
on-chip by the I/O processor and ACK (or REDY) is deasserted. When
the corresponding location in memory is read internally, the
ADSP-2106x drives the data off-chip and asserts ACK (or REDY).
Direct reads cannot be pipelined like direct writes—they only occur
one at a time.

Note that while direct writes have a maximum pipelined throughput
of one per cycle, direct reads have a maximum throughput of one per
every two cycles (for synchronous IOP register reads) or one per every
four cycles (for synchronous internal memory reads). See Table 11.5,
“Data Delays & Throughputs”, in Chapter 11. Because of this low
bandwidth, direct reads are not the most efficient method of
transferring data out of a slave ADSP-2106x—setting up a master
mode DMA channel on the slave to perform writes is more efficient,
although it requires additional programming. The advantage of direct
reads is that no programming of the DMA controller is required.

8.3.3 Broadcast Writes
Broadcast writes allow simultaneous transmission of data to all of the
ADSP-2106xs in a multiprocessing system. The host processor (or
master ADSP-2106x) can perform broadcast writes to the same
memory location or IOP register on all of the slaves. Broadcast writes
can be used to implement reflective semaphores in a multiprocessing
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system; see “Bus Lock & Semaphores” in the Multiprocessing chapter of
this manual. Broadcast writes can also be used to simultaneously
download code or data to multiple processors.

Asynchronous broadcast writes and synchronous broadcast writes are
performed differently by the host. For asynchronous broadcast writes,
the host must assert CS on each ADSP-2106x that it wants to write to.
The host must also drive the M address field as zero: ADDR21-19=000.
The ADSP-2106xs use REDY to add wait states to the asynchronous
broadcast write, if necessary, and the host should wire-OR the REDY
lines together. REDY must be configured in SYSCON as an open-drain
output, not active drive.

To perform synchronous broadcast writes, the host must generate an
address in the highest region of multiprocessor memory space,
addresses 0x0038 0000 to 0x003F FFFF. When a write address falls
within this region, each ADSP-2106x responds by accepting the access.
The ADSP-2106xs use ACK to add wait states to the synchronous
broadcast write, if necessary, and the host should wire-OR the ACK
lines together. Timing for synchronous broadcast writes is shown in
the Multiprocessing chapter.

Because the host must wait for a synchronous broadcast write to
complete on all of the ADSP-2106xs, the acknowledge signal is handled
differently to prevent drive conflicts on the ACK line. A wired-OR
acknowledge signal is used to respond to these accesses. This signal
operates as follows:

1. In the first cycle of the synchronous broadcast write (and in all
succeeding odd cycles), a slave ADSP-2106x will pull ACK low if it
is not ready to accept the data. If it is ready, it will not drive the
ACK line.

If the host sees that ACK is high, indicating that all ADSP-2106xs are
accepting the broadcast write, it completes the write.

2. During all succeeding even cycles in which the broadcast write is not
finished, the slave ADSP-2106xs will not drive ACK. Instead, the
master ADSP-2106x drives (i.e. pre-charges) ACK high and the host
must continue the write. (Go to Step 1.)
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In most cases the ACK signal will be high and the ADSP-2106x slaves
will be ready to accept data at the start of the synchronous broadcast
write—the write completes in one cycle. If the ACK signal is low,
however, or one of the slaves is not ready to accept the data, the write
will take a minimum of three cycles.

When the wait state for multiprocessor memory space is enabled (with
the MMSWS bit of the WAIT register), the master ADSP-2106x will not
sample or drive ACK during the first two cycles of a synchronous
broadcast write. In this case the write will again take a minimum of
three cycles to complete.

(Note: The ADSP-2106x bus master enables a keeper latch on the ACK
line to prevent the signal from drifting. This eliminates any power
consumption caused by the signal drifting to the switching point and
improves the robustness of synchronous broadcast writes.
Multiprocessor systems that use synchronous broadcast writes should
keep the ACK line as free of noise as possible.)

8.3.4 Shadow Write FIFO
Because the ADSP-2106x’s internal memory must operate at high
speeds, writes to the memory do not go directly into the memory
array, but rather to a two-deep FIFO called the shadow write FIFO.

When an internal memory write cycle occurs, data in the FIFO from
the previous write is loaded into memory and the new data goes into
the FIFO. This operation is normally transparent, since any reads of the
last two locations written are intercepted and routed to the FIFO.
There is only one case in which you need to be aware of the shadow
write FIFO: mixing 48-bit and 32-bit word accesses to the same
locations in memory.

The shadow FIFO cannot differentiate between the mapping of 48-bit
words and mapping of 32-bit words. (See Figures 5.8 and 5.9 in the
Memory chapter.) Thus if you write a 48-bit word to memory and then
try to read the data with a 32-bit word access, the shadow FIFO will
not intercept the read and incorrect data will be returned.

If 48-bit accesses and 32-bit accesses to the same locations absolutely
must be mixed in this way, you must flush out the shadow FIFO with
two dummy writes before attempting to read the data.
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8.4 DATA TRANSFERS THROUGH THE EPBx BUFFERS
In addition to direct reads and writes, the host processor can transfer
data to and from the ADSP-2106x through the external port FIFO
buffers, EPB0, EPB1, EPB2, and EPB3. Each of these buffers, which are
part of the IOP register set, is a six-location FIFO. Both single-word
transfers and DMA transfers can be performed through the EPBx
buffers. DMA transfers are handled internally by the ADSP-2106x’s
DMA controller, but single-word transfers must be handled by the
ADSP-2106x core.

Each EPBx buffer has a read port and a write port, both of which can
connect internally to either the EPD (External Port Data) bus or to a
local bus which in turn can connect to the IOD (I/O Data) bus,
PM Data bus, or DM Data bus. This is shown in Figure 8.1. Note that
direct reads and writes bypass the EPBx buffers and go directly to
internal memory.

8.4.1 Single-Word Transfers
When the host writes a single data word to the EPBx buffers, the
ADSP-2106x core’s program must read the data. Conversely, when the
ADSP-2106x core writes a single piece of data to one of the EPBx
buffers, the host must perform an external read cycle to obtain it.
Because the EPBx buffers are six-deep FIFOs (in both directions), the
host and ADSP-2106x core are allowed extra time to read the data—
efficient, continuous, single-word transfers can thus be performed in
real-time, with low latency and without using DMA.

If the host attempts a read from an empty EPBx buffer, the access will
be held off with the ACK signal (for synchronous accesses) or with the
REDY signal (for asynchronous accesses) until the buffer receives data
from the ADSP-2106x core. If the ADSP-2106x core attempts to write to
a full EPBx buffer, the access is also delayed and the core will hang
until the buffer is read by the host. To prevent this from happening,
the BHD (Buffer Hang Disable) bit should be set to 1 in the SYSCON
register. The full or empty status of a particular EPBx buffer can be
determined by reading the appropriate DMACx control/status
register.

Similarly, if the host attempts a write to a full EPBx buffer, the access
will be held off with ACK (or REDY) until the buffer is read by the
ADSP-2106x core. If the core attempts to read from an empty buffer,
the access is also held off and the core will hang until the buffer is
written from the external host. The BHD bit can also be used to
prevent a hang condition in this case.
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Each EPBx buffer can be flushed (i.e. cleared) by writing a 1 to the
FLSH bit in the corresponding DMACx control register. This bit is not
latched internally and will always be read as a 0. Status can change in
the following cycle. An EPBx buffer should not be enabled and flushed
in the same cycle.

If packing and unpacking of individual data words is desired, the
packing mode must be selected in the PMODE bits of the EPBx buffer
control registers (DMAC6, DMAC7, DMAC8, and DMAC9). Either
16-to-32, 16-to-48, or 32-to-48 bit packing/unpacking can be selected.
The external host bus width indicated by the host packing mode bits
(HPM) in SYSCON must correspond to the external word width
selected by the PMODE bits.

If any of the three packing modes are used for single-word transfers,
the TRAN bit must also be appropriately set in the DMACx control
register. Set TRAN=1 for host reads from the EPBx buffer, or set
TRAN=0 for host writes to the EPBx buffer.

Note: To perform single-word, non-DMA transfers through the EPBx
buffers, the DMA enable bit (DEN) must be cleared in the appropriate
DMACx control register.

8.4.1.1 Interrupts For Single-Word Transfers
The interrupts for the four external port DMA channels can be used to
control single-word data transfers between the host and the
ADSP-2106x core. To do this, the DMACx control register must have
the following bit settings: DEN=0 and INTIO=1. This disables DMA
(DEN=0) and enables interrupt-driven I/O (INTIO=1). See the
DMA chapter or Control/Status Registers appendix of this manual for a
complete description of the DMACx control registers.

In this case the interrupt is generated whenever data becomes available
in the read port of the EPBx buffer, or whenever the write port does
not have new data to transmit. The EPBx buffer can then be read or
written by either the ADSP-2106x core or by an external device such as
the host. Generating interrupts in this fashion is useful for
implementing interrupt-driven I/O controlled by the ADSP-2106x core
processor.

This interrupt may be masked out (i.e. disabled) in the IMASK register.
If the interrupt is later enabled in IMASK, the corresponding IRPTL
latch bit must be cleared to clear any interrupt request that may have
occurred.
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8.4.2 DMA Transfers
The host processor can also set up DMA transfers to and from the
ADSP-2106x. Once the host has gained control of the ADSP-2106x, it
can access the on-chip DMA control and parameter registers to set up
an external port DMA operation. This is the most efficient way to
transfer blocks of data.

• DMA Transfers to Internal Memory. The host can set up external port
DMA channels to transfer data to and from ADSP-2106x internal
memory.

• DMA Transfers to External Memory. The host can set up an external
port DMA channel to transfer data directly to external memory using
the DMA request and grant lines (DMARx, DMAGx).

Refer to the DMA chapter of this manual for details on setting up DMA
operations.

8.4.2.1 DMA Transfers To Internal Memory
The host can set up external port DMA channels to transfer blocks of
data to and from ADSP-2106x internal memory. To set up the DMA
transfer, the host must initialize the ADSP-2106x’s control and
parameter registers for that channel. Once the DMA channel is set up,
the host may simply read from (or write to) the corresponding EPBx
buffer. If the buffer is empty (or full), the access is extended until data
is available (or stored). This method allows fast and efficient data
transfers.

If packing and unpacking of DMA data is desired, the packing mode
must be selected in the PMODE bits of the external port DMA control
registers (DMAC6, DMAC7, DMAC8, and DMAC9). Either 16-to-32,
16-to-48, or 32-to-48 bit packing/unpacking can be selected. The
external host bus width indicated by the host packing mode bits
(HPM) in SYSCON must correspond to the external word width
selected by the PMODE bits.

The host may also use the DMARx/DMAGx handshake signals for a
DMA transfer, but not when HBR has been used to gain control of the
bus.
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8.4.2.2 DMA Transfers To External Memory
The ADSP-2106x’s DMA controller can also be used to transfer data
directly from the host to external memory. The external handshake mode
for external port DMA channel 7 or 8 will provide the DMARx/
DMAGx handshaking for this type of transfer. Again, HBR should not
be used to gain control of the bus. This type of transfer cannot be used
if data packing is required, since the data does not pass through the
ADSP-2106x.

8.5 DATA PACKING
The host interface has data packing logic to allow 16-bit or 32-bit
external host bus words to be packed into 32-bit or 48-bit internal
words. The packing logic is also fully reversible, so that 32-bit and
48-bit internal data can be unpacked into 16-bit and 32-bit external
word widths. The SYSCON register is used to select the packing mode
for synchronous and asynchronous transfers performed by the host.

8.5.1 Packing Control Bits In SYSCON
The SYSCON register bits for host packing control and memory width
are shown in Table 8.3. After reset the SYSCON register is initialized to
0x0000 0010, causing the ADSP-2106x to assume a 16-bit bus for the
host processor. Two 16-bit words must be written to SYSCON to
change this selection (in the HPM bits), even if the host bus is 32 bits
wide.

Bit(s)
Name Definition
IWT Instruction Word Transfer  (1=48-bit instruction, 0=32-bit data)
HPM* Host Packing Mode  (00=none, 01=16-to-32, 10=16-to-48, 11=32-to-48)
HMSWF Host Packing Order – MSW First  (1=MSW first, 0=LSW first)
HPFLSH Host Packing Status Flush
IMDW0 Internal Memory Block 0 Data Width  (0=32-bit data, 1=40-bit data)
IMDW1 Internal Memory Block 1 Data Width  (0=32-bit data, 1=40-bit data)

Table 8.3  SYSCON Control Bits For Host Interface Packing

* If the host access is a read or write of the external port data buffers
(EPB0, EPB1, EPB2, or EPB3), the external host bus width selected by
HPM must correspond to the external word width selected in the
PMODE bits of the DMACx control register (DMAC6, DMAC7,
DMAC8, and DMAC9).
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000000000000
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0000

16

SRST
Software Reset

BSO
Boot Select Override

IIVT
Internal Interrupt Vector Table
(“no boot” mode)

IWT
Instruction Word Transfer
1=48-bit instruction, 0=32-bit data

HPM
Host Packing Mode
00=no packing, 01=16-to-32,
10=16-to-48, 11=32-to-48

HMSWF
Host Packing Order – MSW First
1=MSW First, 0=LSW First

MSIZE
External Memory Bank Size

MSIZE = log2(bank size) – 13

HPFLSH
Host Packing Status Flush

IMDW1
Internal Memory Block 1 Data Width

0=32-bit data, 1=40-bit data

IMDW0
Internal Memory Block 0 Data Width

0=32-bit data, 1=40-bit data

EBPR
External Bus Priority
00=even, 01=core processor,
10=I/O processor

DCPR
DMA Channel 6-9 Priority
1 = rotating, 0 = sequential

IMGR
Internal Memory Grouping

(for mesh multiprocessing)

BHD
Buffer Hang Disable
0=enable, 1=disable

ADREDY
Active Drive REDY

0=open drain (o/d), 1=active drive (a/d)

Figure 8.4  SYSCON Register

IWT Instruction Word Transfer. Specifies the word width for direct
reads and direct writes of the ADSP-2106x’s internal memory (by
other ADSP-2106xs or by the host). IWT=1 overrides the IMDW
bits (see below) and forces a 48-bit (3-column) memory transfer.
IWT=0 defers to the data word setting of the IMDW bits in the
SYSCON register. IWT should be set whenever the ADSP-2106x
bus master or host processor is reading or writing instructions
from (this) ADSP-2106x.

1 = 48-bit words for direct read/writes
0 = 32-bit words for direct read/writes
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HPM Host Packing Mode. Specifies the internal word width and
external host bus width for host processor accesses of the
ADSP-2106x’s internal memory or IOP registers. If the host
access is a read or write of any IOP register other than the
external port FIFO buffers (EPB0-EPB3) or link port buffers
(LBUF0-LBUF5), the word width will always be 32 bits no matter
what the host bus width is. If the host access is a read or write of
the link port buffers, the word width is determined only by HPM,
and not by the LEXT bit in LCTL.

00 = No packing. Maximum bus width is 32 bits for
asynchronous transfers. The lower 16 bits of the 48-bit data bus
will be written and read as zeros, even when reading 48-bit
words. For synchronous transfers, the host bus should be 32 bits
wide for data transfers or 48 bits wide for instruction word
transfers. (Note: To read and write 48-bit words from internal
memory, the IWT bit must be set to 1 or the IMDW bit for the
block of memory being accessed must be set to 1.)

01 = 16-bit host bus, 32-bit words. The host bus will be 16 bits
wide; any memory access will be 32-bit words. (Note: If the
memory access is to a block of ADSP-2106x internal memory for
which the IMDW bit is set to 1, the access will read or write the
upper 32 bits of the 48-bit word.)

10 = 16-bit host bus, 48-bit words. The host bus will be 16 bits
wide; any memory access will be 48-bit words.

11 = 32-bit host bus, 48-bit words. The host bus will be 32 bits
wide; any memory access will be 48-bit words.

HMSWF Host Packing Order. Specifies the order in which host-accessed
words are packed, for 16-to-32 bit packing and 16-to-48 bit
packing. HMSWF is ignored for 32-to-48 bit packing. When
HMSWF=1, packing is done MSW first (most significant 16-bit
word first). When HMSWF=0, packing is is done LSW first.

1=MSW first
0=LSW first

HPFLSH Host Packing Status Flush. Resets the host packing status. Host
accesses must not occur while the HPFLSH bit is being written
by the ADSP-2106x processor core. There is a two cycle latency
before the reset takes effect, after which the host may resume
normal operations. (Note: HPFLSH is always read as a zero.)

1=Flush packing status

Default  →
at Reset



8 Host Interface

8 – 24

IMDWx Internal Memory Block Data Width. Selects the data word
width for each block of internal memory. For 32-bit data words,
set IMDWx to 0. For 40-bit data (transferred within 48-bit
words), set IMDWx to 1. IMDW0 (bit 8 of SYSCON) selects the
data word width for memory block 0 and IMDW1 (bit 9) selects
the data word width for memory block 1. (Note: 48-bit
instructions can be stored in a memory block regardless of the
setting of the IMDW bit. See “Configuring Memory For 32-Bit or
40-Bit Data” in the Memory chapter of this manual for more
information.)

0=32-bit data
1=40-bit data

In addition to the HPM bits, the packing mode is also affected by the
setting of the PMODE bits in the DMACx control register of each
external port buffer (DMAC6, DMAC7, DMAC8, and DMAC9, which
correspond to the EPB0, EPB1, EPB2, and EPB3 buffers):

PMODE Packing Mode
00 No packing/unpacking
01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

HPM and PMODE must select the same external bus width for host data
transfers to and from the ADSP-2106x!!

For example, if HPM=11 for a 32-bit host bus, then PMODE must also
be set to 11. If HPM equals 01 or 10 for a 16-bit bus, then PMODE can
be either 01 or 10.

If any of the three packing modes are used for non-DMA, single-word
transfers to or from an EPBx buffer, the TRAN bit must also be
appropriately set in the DMACx control register. Set TRAN=1 for host
reads from the EPBx buffer, or set TRAN=0 for host writes to the EPBx
buffer.

To change the host packing mode, the following sequence must occur:

1. Write to the SYSCON register, changing the value of HPM.
2. Read SYSCON to ensure that the write was completed.
3. Repeat the write to SYSCON (to flush the read, since it may have

occurred in the old packing mode).
4. Wait 4 cycles.
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During packed transfers with a slow host, the host may relinquish the
bus before the current word has been fully packed—the bus may be
released after the first part of the word is written and then, some time
later, HBR reasserted and the second part of the word written. This
could allow, for example, another ADSP-2106x to write to this one
without affecting the host packing operation.

8.5.2 Data Bus Lines Used For Different Packing Modes
Table 8.4 shows which data bus lines are used for different host bus
widths and packing modes. If the host bus width is 32 bits and no
packing is selected for an asynchronous access, the ADSP-2106x will
ignore the lower 16 bits of the 48-bit external data bus when inputting
data—note that this only true for asynchronous accesses, not for synchronous
accesses. When outputting data onto a 32-bit host bus with 48-to-32 bit
unpacking, the ADSP-2106x drives the lower 16 bits as zeroes; this is
true for both asynchronous and synchronous accesses. When
outputting data with no packing, the ADSP-2106x drives the lower
16 bits with whatever data is in the corresponding memory bits; this
applies for both asynchronous and synchronous accesses.

If the host bus width is 16 bits and 16-to-32 or 16-to-48 bit packing is
selected, the ADSP-2106x will ignore the upper and lower 16 bits of the
48-bit external data bus when inputting data (for both asynchronous
and synchronous accesses). When outputting data, these bits will be
driven as zeroes.

Host HPM
Packing Bits In
Mode* SYSCON Effect
No packing 00 Data In: ADSP-2106x ignores lower 16 bits of external bus (DATA15-0)

for a 32-bit host (asynchronous accesses only).
Data Out: ADSP-2106x outputs whatever is in memory onto the
external bus (DATA47-0).

16-to-32 01 Data In: ADSP-2106x ignores upper and lower 16 bits of external bus.
Data Out: ADSP-2106x outputs zeroes on upper and lower 16 bits of
external bus.

16-to-48 10 Same as 16-to-32 packing.

32-to-48 11 Data In: ADSP-2106x ignores lower 16 bits of external bus (DATA15-0).
Data Out: ADSP-2106x outputs zeroes on lower 16 bits of external bus.

Table 8.4  Data Bus Lines Used For Different Host Packing Modes

* 16-to-32 packing: 16-bit host bus, 32-bit memory words on ADSP-2106x.
16-to-48 packing: 16-bit host bus, 48-bit memory words on ADSP-2106x.
32-to-48 packing: 32-bit host bus, 48-bit memory words on ADSP-2106x.
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Figure 8.a shows how different data word sizes are transferred over
the external port.

081624324047

DATA47-0

EPROM
Boot

16-Bit Packed

32-Bit Float or Fixed,
D31 - D0,

32-Bit Packed

40-Bit Extended Float

Instruction Fetch

Figure 8.a  External Port Data Alignment

8.5.3 32-Bit Data Packing
For a 16-bit host bus, the incoming data is latched on DATA31-16.
Similarly, outgoing data is driven on DATA31-16 with the other lines
equal to zeroes. The sequence of events for 32-bit packing/unpacking
is different for writes and reads, as described below. For a 16-bit host
bus, the endian format of the transfers is controlled by the HMSWF bit
in the SYSCON register. If HMSWF=0, the least significant 16-bit word
will be packed first. If HMSWF=1, the most significant 16-bit word will
be packed first.

When a host reads a 32-bit word with 16-bit unpacking, using the
typical bus interface hardware shown in Figure 8.8 (at the end of this
chapter), the following sequence of events occurs (as illustrated in
Figure 8.5):

• The host initiates a read cycle by driving an address, asserting CS if
the access is asynchronous, and asserting RD (low).

• The selected ADSP-2106x deasserts REDY, latches the address, and
performs an internal direct read to get the data.

• When the ADSP-2106x has the data, it asserts REDY and drives the
1st 16-bit word.

• The host latches the data and deasserts RD (high).
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Figure 8.5  Example Timing For Host Interface Data Packing
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• The host initiates another read access, driving the address of the data
to be accessed and then asserting RD.

• The ADSP-2106x transmits the 2nd 16-bit word.

When a host writes a 32-bit word with 16-bit packing, again using the
typical bus interface hardware shown in Figure 8.8, the following
sequence of events occurs (also illustrated in Figure 8.5):

• The host initiates a write cycle by driving the write address, asserting
CS if the access is asynchronous, and asserting WR (low).

• The ADSP-2106x asserts REDY when it is ready to accept data.
• The host drives the address and the 1st 16-bit word, and deasserts
WR (high).

• The ADSP-2106x latches the 1st 16-bit word.
• The host again drives the address and initiates another write cycle

for the 2nd 16-bit word, by asserting WR.
• When the ADSP-2106x has accepted the 2nd word it performs an

internal direct write to its memory (or memory-mapped IOP
register). If the ADSP-2106x’s internal write has not completed by
the time another host access occurs, that access will be held off with
REDY.

If the ADSP-2106x is waiting for another 16-bit word from the host to
complete the packed word, the HPS bits in the SYSTAT register will be
non-zero. (See “SYSTAT Register Status Bits.”) Because there is only
one packing buffer for the host interface, the host must fully complete
each packed read or write before another is begun.

8.5.4 48-Bit Instruction Packing
The host can also download and upload 48-bit instructions over its
16- or 32-bit bus. The packing sequence for downloading ADSP-2106x
instructions from a 32-bit host bus (HPM=11) takes 3 cycles for every
2 words, as illustrated below. 32-bit data is transferred on data bus
lines 47-16 (DATA47-16). If an odd number of instruction words are
transferred, the packing buffer must be flushed by a dummy access to
remove the unused word.
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32-Bit to 48-Bit Word Packing (Host Bus ↔ ADSP-2106x):
Data Bus Lines 47-32  Data Bus Lines 31-16

1st transfer Word1, bits 47-32 Word1, bits 31-16
2nd transfer Word2, bits 15-0 Word1, bits 15-0
3rd transfer Word2, bits 47-32 Word2, bits 31-16

The HMSWF bit of SYSCON is ignored for 32-to-48-bit packing.

The packing sequence for downloading or uploading ADSP-2106x
instructions over a 16-bit host bus takes 3 cycles for every word, as
shown below. The HMSWF bit in SYSCON determines whether the most
significant 16-bit word or least significant 16-bit word is packed first.

16-Bit to 48-Bit Word Packing w/HMSWF=1 (Host Bus ↔ ADSP-2106x):
Data Bus Pins 31-16

1st transfer Word1  bits 47-32
2nd transfer Word1  bits 31-16
3rd transfer Word1  bits 15-0

40-bit extended precision data may be transferred using the 48-bit
packing mode. Refer to the Memory chapter of this manual for a
discussion of memory allocation for the different word widths.

8.6 SYSTAT REGISTER STATUS BITS
The SYSTAT register provides status information, primarily for
multiprocessor systems. Table 8.5 shows the status bits in this register.

Bit(s)
Name Definition
HSTM Host Mastership
BSYN Bus Synchronization
CRBM Current Bus Master  (ID2-0 of ADSP-2106x bus master)
IDC ID Code  (ID2-0 of this ADSP-2106x)
DWPD Direct Write Pending
VIPD Vector Interrupt Pending
HPS Host Packing Status

Table 8.5  SYSTAT Status Bits
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Current Bus Master
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Direct Write Pending

HPS
Host Packing Status
00 = packing complete
01 = first stage of all packing and unpacking modes
10 = second stage of 16-to-48 bit packing/unpacking or 32-to-48 bit packing/unpacking

BSYN
Bus Synchronization

IDC
ID Code

VIPD
Vector Interrupt Pending

Figure 8.6  SYSTAT Register

HSTM Host Mastership. Indicates whether the host processor has been
granted control of the bus.

1 = Host is bus master
0 = Host is not bus master

BSYN Bus Synchronization. Indicates when the ADSP-2106x’s bus
arbitration logic is synchronized after reset. (See “Bus
Synchronization After Reset” in the Multiprocessing chapter of this
manual for more information.)

1 = Bus arbitration logic is synchronized
0 = Bus arbitration logic is not synchronized

CRBM Current Bus Master. Indicates the ID code of the ADSP-2106x that
is the current bus master. If CRBM is equal to the ID of this ADSP-
2106x then it is the current bus master. CRBM is only valid for
ID2-0 > (greater than zero). When ID2-0=000, CRBM is always 1.
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IDC ID Code. Indicates the ID2-0 inputs of this ADSP-2106x.

DWPD Direct Write Pending. Indicates when a direct write to the
ADSP-2106x’s internal memory is pending. The DWPD bit is cleared
when the direct write has been completed. (Direct writes may be
delayed for several cycles if DMA chaining is underway or if higher
priority DMA requests occur. Maximum delay is 12 cycles.)

1 = Direct write pending
0 = No direct write pending

VIPD Vector Interrupt Pending. Indicates that a pending vector interrupt
has not yet been serviced. The VIPD bit is set when the VIRPT
register is written to and is cleared upon return from the interrupt
service routine. The host processor (or other ADSP-2106x) that issued
the vector interrupt should monitor this bit to determine when the
service routine has been completed (and when a new vector
interrupt may be issued).

1 = Vector interrupt pending
0 = No vector interrupt pending

HPS Host Packing Status. Indicates when host word packing is
completed or, if not, what stage of the process is taking place.
(See “Host Packing” for more information.)

00 = Packing complete
01 = 1st stage of all packing and unpacking modes.
10 = 2nd stage of 16-to-48 bit packing/unpacking or 32-to-48 bit

  packing/unpacking

8.7 INTERPROCESSOR MESSAGES & VECTOR INTERRUPTS
Once it has requested and been granted control of the ADSP-2106x, the
host processor communicates with the ADSP-2106x by writing messages
to the memory-mapped IOP registers. Asynchronous writes are the
easiest way for the host to do this. In a multiprocessor system, the host
can access the internal memory and IOP registers of every ADSP-2106x.

The MSGR0-MSGR7 registers are general-purpose registers that can be
used for convenient message passing between the host and ADSP-2106x.
They are also useful for semaphores and resource sharing between
multiple ADSP-2106xs. The MSGRx and VIRPT registers can be used for
message passing in the following ways:

• Message Passing. The host can use any of the 8 message registers,
MSGR0–MSGR7, to communicate with the ADSP-2106x.
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• Vector Interrupts. The host can issue a vector interrupt to the
ADSP-2106x by writing the address of an interrupt service routine to
the VIRPT register. This causes an immediate high-priority interrupt on
the ADSP-2106x which, when serviced, will cause the ADSP-2106x to
branch to the specified service routine.

The MSGRx and VIRPT registers also support shared-bus
multiprocessing via the external port. Since these registers may be
shared resources within a single ADSP-2106x, conflicts may occur—
your system software must prevent this. For further discussion of IOP
register access conflicts, refer to the Control/Status Registers appendix of
this manual.

8.7.1 Message Passing  (MSGRx)
Three possible software protocols by which a host can communicate
with the ADSP-2106x through the MSGRx message registers are:
1) vector-interrupt-driven, 2) register handshake, and 3) register write-back.

For the vector-interrupt-driven method, the host fills predetermined
MSGRx registers with data and triggers a vector interrupt by writing
the address of the service routine to VIRPT. The service routine should
read the data from the MSGRx registers and then write “0” into VIRPT
to tell the host it is done. The service routine could also use one of the
ADSP-2106x’s FLAG3-0 pins to tell the host it has finished.

For the register handshake method, four of the MSGRx registers should
be designated as follows: a receive register (R), a receive handshake
register (RH), a transmit register (T), and a transmit handshake register
(TH). To pass data to the ADSP-2106x, the host would write data into T
and then write a “1” into TH. When the ADSP-2106x sees a “1” in TH,
it reads the data from T and then writes back a “0” into TH. When the
host sees a “0” in TH, it knows that the transfer is complete. A similar
sequence of events occurs when the ADSP-2106x passes data to the
host through R and RH.

The register write-back method is similar to register handshaking, but
uses only the T and R data registers. The host writes data to T. When
the ADSP-2106x sees a non-zero value in T, it retrieves it and writes
back a “0” to T. A similar sequence occurs when the host is receiving
data. This simpler method works well as long as the data to be passed
does not include “0.”
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8.7.2 Host Vector Interrupts  (VIRPT)
Vector interrupts are used for interprocessor commands between the
host and an ADSP-2106x or between two ADSP-2106xs. When the
external processor writes an address to the ADSP-2106x’s VIRPT
register a vector interrupt is caused.

When the vector interrupt is serviced, the ADSP-2106x automatically
pushes the status stack and begins executing the service routine
located at the address specified in VIRPT. The lower 24 bits of VIRPT
contain the address; the upper 8 bits may be optionally used as data to
be read by the interrupt service routine. At reset, VIRPT is initialized to
its standard address in the ADSP-2106x’s interrupt vector table.

The minimum latency for vector interrupts is six cycles, five of which
are NOPs. When the RTI (return from interrupt) instruction is reached
in the service routine, the ADSP-2106x automatically pops the status
stack.

The VIPD bit in the SYSTAT register reflects the status of the VIRPT
register. If VIRPT is written while a previous vector interrupt is
pending, the new vector address replaces the pending one. If VIRPT is
written while a previous vector interrupt is being serviced, the new
vector address is ignored and no new interrupt is generated. If the
ADSP-2106x writes to its own VIRPT register, no interrupt is
generated.

To use the ADSP-2106x’s vector interrupt feature, the host could
perform the following sequence of actions:

1. Poll the VIRPT register until it reads a certain token value (i.e. zero).
2. Write the vector interrupt service routine address to VIRPT.
3. When the service routine is finished, the ADSP-2106x should write

the token back into VIRPT to indicate that it is finished and that
another vector interrupt can be initiated.

The DWPD (Direct Write Pending) bit of the SYSTAT register indicates
when a direct write to internal memory is pending. Direct writes and
IOP register accesses may be completed in different sequences. If, for
example, the host performs a direct memory write to an ADSP-2106x
and then writes to an IOP register on the ADSP-2106x, the IOP register
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write may complete before the direct write. Because of this, direct
writes performed just before vector interrupt writes (to VIRPT) may be
delayed until after the branch to the interrupt vector:

1. The host processor performs a direct write to the internal memory of
an ADSP-2106x.

2. The host processor writes to the VIRPT register of the ADSP-2106x
to initiate a vector interrupt. This causes the direct write to be
delayed.

4. The ADSP-2106x jumps to the vector interrupt service routine.
5. The direct write is completed after the interrupt service routine is

underway.

To prevent this from happening, the host should check that all direct
writes have completed before writing to the ADSP-2106x’s VIRPT
register. This can be done by polling the ADSP-2106x’s DWPD bit (in
SYSTAT) after performing a direct write, waiting for it to become
cleared, and then proceeding with the write to VIRPT.

8.8 SYSTEM BUS INTERFACING
An ADSP-2106x subsystem, consisting of several ADSP-2106xs with
local memory, may be viewed as one of several processing elements
connected together by a system bus. Examples of such systems are the
EISA bus, PCI bus, or even several ADSP-2106x subarrays. The
processing elements in such a system arbitrate for the system bus via
an arbitration unit. Each device on the bus that wishes to become a bus
master must be able to drive a bus request signal and respond to a bus
grant signal. The arbitration unit determines which request it will
grant in any given cycle.

8.8.1 Access To The ADSP-2106x Bus—Slave ADSP-2106x
Figure 8.7 shows an example of a basic interface to a system bus which
isolates the local ADSP-2106x bus from the system bus. When the
system is not accessing the ADSP-2106xs, the local bus supports
transfers between other local ADSP-2106xs and/or local external
memory or devices.

When the system wishes to access an ADSP-2106x, it executes a read or
write to the address range of the ADSP-2106x subsystem. The external
address comparator detects a local access and asserts HBR and one of
the appropriate CS lines. The system bus is held off by REDY until the
ADSP-2106x is ready to accept the data. The HBG signal enables the
system bus buffers. The buffers’ direction for data is controlled by the
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Figure 8.7  Basic System Bus Interface

read or write signals. To avoid glitching the HBR line when addresses
are changing, the address comparator may be qualified by an address
latch enable signal from the system or by the system read or write
signals. These methods cause HBR to be deasserted each time system
read or write is deasserted or the address is changed. Because these
techniques deassert HBR with each access, the overhead of an HTC
occurs as part of each access. One can avoid this type of overhead by
latching HBG during long sequences of bus accesses.



8 Host Interface

8 – 36

8.8.2 Access To The System Bus—Master ADSP-2106x
Figure 8.8 shows a more complex, bidirectional system interface in
which the ADSP-2106x subsystem can access the system bus by
becoming a bus master. Before it begins the access, the ADSP-2106x
must first request permission to become the bus master by generating
the System Bus Request signal (SBR). The system bus arbitration unit
determines when to respond with the System Bus Grant signal (SBG).
In this system, each system bus master generates and responds to its
own unique pair of signals.

The method an ADSP-2106x uses to arbitrate for the system bus
depends on whether the access is from the ADSP-2106x processor core
or from its DMA controller. These two methods, which are quite
different, are described below under “Core Processor Access To
System Bus” and “ADSP-2106x DMA Access To System Bus.”

8.8.2.1 Core Processor Access To System Bus
The ADSP-2106x core may arbitrate for the system bus by setting a flag
and waiting for SBG via another flag. This has the benefit of not tying
up the local bus while waiting. If SBG is tied to an interrupt pin, then
useful work can continue while waiting.

Another method is to attempt the access assuming that the system bus
is available, and then either wait or abort the access if it is not
available. The ADSP-2106x begins the access to the system bus by
asserting one of the memory select lines, MS3. This also asserts SBR. If
the system bus is not available, i.e. SBG is deasserted, the ADSP-2106x
should be held off with ACK. This approach is simple but ties up the
ADSP-2106x and the local bus whenever the system bus is accessed
while it is busy. To overcome this, the Type 10 instruction

IF condition  JUMP(addr), ELSE compute, DM(addr)=dreg;

can be used. This instruction aborts the bus access if the condition
(SBG) is not true, and causes a branch to a “try again later” routine.
This method works well if SBG is asserted most of the time. If the
Type 10 instruction is not used, a deadlock condition can result if an
access is attempted before the bus is granted, as described in the next
section.
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Figure 8.8  Bidirectional System Bus Interface

Note: The memory controller for shared external memory must generate wait states
and REDY for host accesses to the memory.
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8.8.2.2 Deadlock Resolution
In the rare case where both the ADSP-2106x subsystem and the system
are trying to access each other’s bus in the same cycle, a deadlock may
occur in which neither access can complete; ACK stays deasserted.

Normally the master ADSP-2106x will respond to an HBR request by
asserting HBG after the completion of the current access. If the
ADSP-2106x is accessing the system bus at the same time, however,
HBG will not be asserted because this current access cannot
complete—this results in a deadlock in which neither access can
complete. The deadlock may be broken by asserting the SBTS input for
one or more cycles once the deadlock is detected (i.e. when the system
bus to local bus buffer is enabled from both sides). SBTS is the Suspend
Bus Tristate pin of the ADSP-2106x.

The combination of SBTS and HBR puts the master ADSP-2106x into
slave mode, just like a normal HBR assertion, and suspends the
ADSP-2106x core’s external access. This allows the system access to the
local bus to proceed, once the ADSP-2106x asserts HBG. The
combination of HBR and SBTS should only be applied when there is a
deadlock caused by an ADSP-2106x access to the system bus. It should
not be used when there is a local bus transfer because the WR signal
will be asserted twice, once before the SBTS is asserted and once after
the access resumes. For SHARC-to-SHARC transfers on the local bus,
this will violate the slave timing requirements.

The following sequence of actions allows the host processor to suspend
an ongoing ADSP-2106x access and gain access to its internal
resources, provided that: 1) the access originates from the
ADSP-2106x’s core, not the DMA controller, 2) a DRAM PAGE miss is
not detected for that memory access, and 3) bus lock is not enabled.

1. After HBR is asserted, the host asserts SBTS for one or more cycles.
If SBTS is asserted one or more cycles after HBR is recognized, HBG
is guaranteed to be asserted in the next cycle. SBTS should be
deasserted before HBR is deasserted.

2. The host drives both RD and WR strobes to their correct value
(within the setup time specified in the data sheet) after HBG is
asserted. The host may then perform as many accesses as desired.

3. The host has full control of the bus and may access any of the
ADSP-2106xs or peripherals on the bus.
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4. The host deasserts HBR. HBG will be deasserted when the internal
read buffer is empty.

5. One cycle after the ADSP-2106x deasserts HBG, the ADSP-2106x
restarts its suspended access.

8.8.2.3 ADSP-2106x DMA Access To System Bus
The use of the SBTS and HBR inputs to resolve a system bus deadlock,
as described above, cannot be used for DMA transfers because once a
DMA word transfer has begun in the ADSP-2106x, it must be
completed (i.e. it must receive the ACK signal). If SBTS and HBR are
asserted during a DMA access, the HBG pin will not be asserted until
the access cycle has completed. If the single DMA access is not allowed
to complete, a deadlock condition may result.

To prevent system bus deadlock when using DMA, you must ensure
that SBG has been asserted before the DMA sequence begins. If a
higher priority access is needed, the DMA sequence may be held off
(by asserting HBR) at any time after a word has been transferred. You
must make sure that SBG is asserted before HBR is deasserted to
prevent the possibility of another deadlock occurring. When the DMA
sequence is complete, the DMA interrupt service routine should clear
the external SBR flag.

Because the system bus is likely to be considerably slower than the
ADSP-2106x local bus, performance on the local bus may be
considerably improved by using handshake mode DMA. In this case,
the SBG signal is tied to the DMA request line, DMARx. Thus the local
bus and system bus access will only be initiated when the system bus
is available.

The use of a FIFO in the system interface unit, to allow DMA data from
the local bus to be posted, may also increase performance on the local
bus when using a slow system bus.
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8.8.3 Multiprocessing With Local Memory
Figure 8.9 shows how several ADSP-2106x subsystems may be
connected together on a system bus for high throughput. The gate
array implements bus arbitration when the system bus is accessed. The
buffers isolate the ADSP-2106x local buses from the system bus.

This example system works in the following way:

• An ADSP-2106x requests the system bus with SBR when it asserts
the MS3 line (for example). The gate array arbitrates between the
SBR lines and then enables the highest priority group by asserting
SBG, which is tied to ACK.

• The master ADSP-2106x may connect to system memory or to other
ADSP-2106x groups. When the bus buffer is enabled, the read or
write strobe enables should be asserted with a delay to allow the
address to stabilize.

• To access an ADSP-2106x slave in another group, the master
ADSP-2106x addresses that group’s multiprocessor memory space.
The gate array detects group multiprocessor memory space from
three high-order address bits and asserts the HBR line for the
selected group. When HBG is asserted, the gate array enables the
slave’s bus buffer. The high-order group address bits are cleared by
the buffer to allow the group to decode the E, M, and S address
fields as local multiprocessor memory space. The access will be
synchronous because the CS line is not asserted. The single wait
state option for the bus should be enabled.

• If two groups access each other in the same cycle, a deadlock may
occur. The SBTS pin may be used to clear the deadlock.
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Figure 8.9  ADSP-2106x Subsystems On A System Bus

8.8.4 ADSP-2106x To Microprocessor Interface
An ADSP-2106x without external memory may connect more or less
directly to a host microprocessor’s bus, and the interface may not
require any buffers. This type of connection assumes that the
ADSP-2106x can execute its application from internal memory most of
the time and only occasionally needs to request an external access. The
host microprocessor should always keep the HBR request asserted
unless it sees BR1 asserted (i.e. the BRx line of the ADSP-2106x with
ID=001). It can then deassert HBR to allow the ADSP-2106x to perform
an external access when the host is ready to give up its bus. Most of the
time, however, the host can read or write to the ADSP-2106x at will.
The host accesses the ADSP-2106x by asserting CS and handshaking
with REDY. HBG need not be used in this scenario.
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Link Ports

9.1 OVERVIEW
The ADSP-2106x SHARC provides additional I/O capability through
six dedicated 4-bit link ports. Each link port consists of four
bidirectional data lines, a bidirectional clock line, and a bidirectional
acknowledge line. The link ports can be clocked twice per processor
clock cycle, allowing each port to transfer up to 8 bits of data per cycle.
Link port I/O allows a variety of interconnection schemes to I/O
peripheral devices as well as coprocessing and multiprocessing
schemes. Using link port I/O, it is also possible to configure
multidimensional, multiprocessor arrays.

➠ Note that the ADSP-21061 processor does not have link ports; the
discussion in this chapter does not apply to the ADSP-21061.

Link port features and functions include:

• Link ports can operate independently and simultaneously.
• Link port data is packed into 32-bit or 48-bit words, and can be directly

read by the ADSP-2106x core processor or DMA-transferred to on-chip
memory.

• Link port data can also be accessed by the external host processor, using
direct reads and writes.

• Double-buffered transmit and receive data registers.
• Clock/acknowledge handshaking controls link port transfers which are

programmable as either transmit or receive with each link port
supported by a separate DMA channel.

• Link ports provide high-speed, point-to-point data transfers to other
ADSP-2106x processors. This allows a variety of interconnection
schemes between multiple ADSP-2106x processors and external
devices, including 1-, 2- and 3-dimensional arrays.
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The six pins associated with each link port are listed in Table 9.1. Each
link port consists of four bidirectional data lines, LxDAT3-0, and two
handshake lines, Link Clock (LxCLK) and Link Acknowledge
(LxACK). The LxCLK line allows asynchronous data transfers and the
LxACK line provides handshaking. When configured as a transmitter,
the port drives both the data and LxCLK lines. When configured as a
receiver, the port drives the LxACK line.

Pin(s) Function
LxDAT3-0 Link Port x Data
LxCLK Link Port x Clock
LxACK Link Port x Acknowledge

Table 9.1  Link Port Pins
“x” denotes the link port number, 0-5.

Figure 9.a  Link Port Pin Connections

Figure 9.b shows examples of different link port communications
schemes. See Chapter 7, Multiprocessing, for a discussion of these
multiprocessor communications schemes.

9.1.1 Link Port To Link Buffer Assignment
There are six internal data buffer registers which are independent of
the actual link ports—these link buffers, LBUF0-LBUF5, may be
connected to any of the six link ports. The link ports receive and
transmit data on their LxDAT3-0 data pins, but any of the six link
buffers may be assigned to handle data for a particular link port. The
link buffers read from or write to internal memory under DMA
control.

Remember that “Link Port x” does not automatically mean “Link Buffer x.”
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Figure 9.b  Link Port Communication Examples

The Link Assignment Register (LAR) is used to assign the link buffer
to link port connections. Memory-to-memory transfers may be
accomplished by assigning the same link port to two buffers. Details
on the LAR register can be found in the “Link Port Control Registers”
section of this chapter. Figure 9.1 shows a block diagram of the link
ports and link buffers.
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9.1.2 Link Port DMA Channels
Link buffers 0-5 are supported by DMA channels 1, 3, 4, 5, 6, and 7
respectively:

DMA Channel 1 Link Buffer 0 (shared with SPORT1 Receive)
DMA Channel 3 Link Buffer 1 (shared with SPORT1 Transmit)
DMA Channel 4 Link Buffer 2
DMA Channel 5 Link Buffer 3
DMA Channel 6 Link Buffer 4 (shared with Ext. Port Buffer 0)
DMA Channel 7 Link Buffer 5 (shared with Ext. Port Buffer 1)

Some channels are dedicated to link ports. Some are shared with serial
ports or the external port as described in the “Link Port DMA
Channels” section of this chapter.

External  Packing Register

4

4

Link Clock
(1x or 2x)

mx

Cross-Bar
Connection

Link Buffers 0-5

LAR – Link Assignment Register

LDAT3-0

Internal Register

DM Data Bus
PM Data Bus
I/O Data Bus

32/48

32/48

6

LBUF0
LBUF1

LBUF2
LBUF3

LBUF4
LBUF5

Link Port 0
Link Port 1

Link Port 2
Link Port 3

Link Port 4
Link Port 5

32/48

Link Ports 0-5

Figure 9.1  Link Ports & Buffers
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9.1.3 Link Port Interrupts
Three types of interrupts are dedicated to the link ports:

• If DMA is enabled, a maskable interrupt is generated when the DMA
block transfer has completed.

• If DMA is disabled, then the link buffer may be read or written by the
core processor as a memory-mapped location (part of the IOP register
space). A maskable interrupt is generated while DMA is disabled and
the receive buffer is not empty, or if the transmit buffer is not full.

• When an external source accesses an unassigned link port (or accesses
an assigned link port that has its link buffer disabled), this access causes
a maskable LSRQ interrupt.

9.1.4 Link Port Booting
The link ports may be used to load internal memory at reset. Refer to
the section “Booting” in the System Design chapter of this manual for
details of this operation.

9.2 LINK PORT CONTROL REGISTERS
There are three link port control registers: the Link Buffer Control
Register (LCTL), the Link Common Control Register (LCOM), and the
Link Assignment Register (LAR). To configure link port operations,
these registers should be set up in the following order: LAR, LCOM,
then LCTL. Before reassigning a link port with the LAR register,
disable the link port’s assigned buffer with the LCTL register.

The link port control registers and the serial port control registers
share a common internal bus when being written or read. There is a
one-cycle latency whenever one of these registers is read after one has
been written.

The LCTL and LCOM control registers are initialized to 0x0000 0000
after reset. LAR is initialized to 0x0002 C688, assigning Link Port 0 to
Link Buffer 0, Link Port 1 to Link Buffer 1, Link Port 2 to Link Buffer 2,
Link Port 3 to Link Buffer 3, Link Port 4 to Link Buffer 4, and  Link Port
5 to Link Buffer 5. For complete information about register
initialization after reset, see the Control/Status Registers appendix of this
manual.
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9.2.1 Link Buffer Control Register (LCTL)
The LCTL register contains control bits unique to each link buffer.
Table 9.2 describes the control bits in LCTL.

Bit(s) Name Definition
0-3 * Link buffer 0 controls
4-7 * Link buffer 1 controls
8-11 * Link buffer 2 controls
12-15 * Link buffer 3 controls
16-19 * Link buffer 4 controls
20-23 * Link buffer 5 controls
24 LEXT0 Extended word size: 1=48-bit transfers, 0=32-bit transfers
25 LEXT1 Extended word size: 1=48-bit transfers, 0=32-bit transfers
26 LEXT2 Extended word size: 1=48-bit transfers, 0=32-bit transfers
27 LEXT3 Extended word size: 1=48-bit transfers, 0=32-bit transfers
28 LEXT4 Extended word size: 1=48-bit transfers, 0=32-bit transfers
29 LEXT5 Extended word size: 1=48-bit transfers, 0=32-bit transfers
30-31 reserved

Table 9.2  Link Control Register (LCTL)

* Each four-bit group includes the following control bits for each link buffer
   (x=0,1,2,3,4,5):

Bit# Name Definition
0+4x LxEN LBUFx enable
1+4x LxDEN LBUFx DMA enable
2+4x LxCHEN LBUFx chaining enable
3+4x LxTRAN LBUFx direction: 1=transmit, 0=receive

LCTL Control Bits:

LxEN Enables a link buffer. As a buffer is disabled (LxEN transitions from
high to low), the LxSTAT and LRERR bits are cleared. When its buffer
is disabled, an assigned link port stops receiving (driving LxACK) or
transmitting (driving LxCLK). To pull the LxACK and LXCLK signals
low, enable the pull down resistors with the LCOM register.

LxDEN Enables the associated DMA channel.

LxCHEN Enables DMA chaining for that channel.

LxTRAN Selects the direction of the link buffer, link port and DMA
channel: 0 to receive link data, 1 to transmit link data.
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LEXTx Specifies word size for each link buffer:

    LEXTx=1 specifies 48-bit transfers in link buffer x
    LEXTx=0 specifies 32-bit transfers in link buffer x

Link buffer data is transmitted and received MSB-first. LEXTx
must not be changed while that link buffer is enabled, as this will
cause the nibble packing to initialize to an incorrect value.

The LEXTx bits override the setting of the IMDW memory word
width bits in SYSCON. If LEXTx=1, data to be transmitted will
be read from 48-bit word space in memory, regardless of the
setting of IMDW.

Note that when link buffers are enabled or disabled, it is possible to
generate unwanted interrupt service requests. This can occur if Link
Service Requests (LSRQ) are in use. To avoid this potential problem, the
LSRQ register should be masked out while the link buffers are being
enabled or disabled. See the “Link Port Interrupts” section of this chapter
for more information.
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L0EN
LBUF0 Enable

1=Enable, 0=Disable

L0DEN
LBUF0 DMA Enable

L0CHEN
LBUF0 Chained DMA Enable

L0TRAN
LBUF0 Direction
1=Transmit, 0=Receive

L1EN
LBUF1 Enable

L1DEN
LBUF1 DMA Enable

L1CHEN
LBUF1 Chained DMA Enable

L1TRAN
LBUF1 Direction
1=Transmit, 0=Receive

L3EN
LBUF3 Enable

L3DEN
LBUF3 DMA Enable

L3CHEN
LBUF3 Chained DMA Enable

L3TRAN
LBUF3 Direction

1=Transmit, 0=Receive

L2EN
LBUF2 Enable

L2DEN
LBUF2 DMA Enable

L2CHEN
LBUF2 Chained DMA Enable

L2TRAN
LBUF2 Direction

1=Transmit, 0=Receive
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L4EN
LBUF4 Enable

L4DEN
LBUF4 DMA Enable

L4CHEN
LBUF4 Chained DMA Enable

L4TRAN
LBUF4 Direction
1=Transmit, 0=Receive

L5EN
LBUF5 Enable

L5DEN
LBUF5 DMA Enable

L5CHEN
LBUF5 Chained DMA Enable

L5TRAN
LBUF5 Direction
1=Transmit, 0=ReceiveLEXT0

LBUF0 Extended Word Size
1=48-bit transfers
0=32-bit transfers

LEXT1
LBUF1 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT2
LBUF2 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT3
LBUF3 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT4
LBUF4 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT5
LBUF5 Extended Word Size

1=48-bit transfers
0=32-bit transfers

Figure 9.2  LCTL Register
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9.2.2 Link Common Control Register (LCOM)
The LCOM register contains status bits, packing status bits, and 2X clock
rate bits for each buffer. These bits are listed in Table 9.3.

Bit(s) Name Definition
0-1 L0STAT(0:1) Link buffer 0 status: 11=full, 00=empty,10=one word *
2-3 L1STAT(0:1) Link buffer 1 status: 11=full, 00=empty,10=one word *
4-5 L2STAT(0:1) Link buffer 2 status: 11=full, 00=empty,10=one word *
6-7 L3STAT(0:1) Link buffer 3 status: 11=full, 00=empty,10=one word *
8-9 L4STAT(0:1) Link buffer 4 status: 11=full, 00=empty,10=one word *
10-11 L5STAT(0:1) Link buffer 5 status: 11=full, 00=empty,10=one word *
12 LCLKX20 Transfer data at 2X the clock rate on Link Buffer 0
13 LCLKX21 Transfer data at 2X the clock rate on Link Buffer 1
14 LCLKX22 Transfer data at 2X the clock rate on Link Buffer 2
15 LCLKX23 Transfer data at 2X the clock rate on Link Buffer 3
16 LCLKX24 Transfer data at 2X the clock rate on Link Buffer 4
17 LCLKX25 Transfer data at 2X the clock rate on Link Buffer 5
18 L2DDMA** Enable 2-dimensional DMA
19 LPDRD** Disable internal pulldown resistor for LxCLK and LxACK
20 LMSP** Mesh multiprocessing enable (set to 0 for normal operation)
21-22 LPATHD** Mesh multiprocessing LPATH changeover delay:

00=no additional delay, 01=1 additional delay,
10=2 additional delays, 11=3 additional delays

23-25 reserved
26 LRERR0 Receive pack error status for Link Buffer 0:

1=incomplete, 0=complete
27 LRERR1 Receive pack error status for Link Buffer 1:

1=incomplete, 0=complete
28 LRERR2 Receive pack error status for Link Buffer 2:

1=incomplete, 0=complete
29 LRERR3 Receive pack error status for Link Buffer 3:

1=incomplete, 0=complete
30 LRERR4 Receive pack error status for Link Buffer 4:

1=incomplete, 0=complete
31 LRERR5 Receive pack error status for Link Buffer 5:

1=incomplete, 0=complete

Table 9.3  Link Common Control Register (LCOM)
Status bits are read-only.
* The code 01 does not appear as a valid status.
** Common to all link ports.
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LCOM Control Bits:

LxSTAT(0:1) When transmitting, these status bits indicate whether there is room
in the buffer for more data. When receiving, these status bits indicate
whether new (unread) data is available in the receive buffer.
LxSTAT(1)=1 if there is data in the buffer. LxSTAT(0)=0 if there is
room in the buffer. These bits are read-only. They are cleared when
LxEN changes from 1 to 0. They may subsequently change state
when the data buffer is read or written.

LCLKX2x This specifies link buffers to transfer at twice the ADSP-2106x clock
rate. If LCLKX2x=0, transmit transfers occur at the ADSP-2106x
clock frequency, and receive transfers occur at (up to) the ADSP-
2106x clock frequency. Set LCLKX2x=1 for receive transfers
occurring at greater than the ADSP-2106x clock frequency.

L2DDMA This directs the DMA controller to address memory as a two-
dimensional array as specified in the DMA address registers. Only
DMA channels 0-5 support 2D DMA. Link buffers 4 and 5 on DMA
channels 6 and 7 do not support 2D DMA.

LPDRD Disables pulldown resistors on signals for unassigned link ports (or on
assigned link ports that have their link buffers disabled). These pulldown
resistors are 50 kΩ and apply to the LxACK, LxCLK, and LxDAT3-0 signals.
Enabling these pulldown resistors keeps the unassigned link port in an
inactive state when accessed by another link port. In an application
where several ADSP-2106xs share a link port, only one ADSP-2106x
should have this bit cleared during operation to prevent too many
pulldowns on these lines. External resistors may be used in place of
these if needed. LxACK, LxCLK, and LxDAT3-0 should never be left
unconnected unless the internal pulldowns are enabled.

LMSP Enables mesh multiprocessing mode. Set LMSP=0 for normal
operation.

LPATHD In a mesh multiprocessing application, these bits allow 1, 2 or 3
additional clock delays to be inserted before changing to the next
LPATH register. This allows the current receive operation to
complete on the current link port before a new link port is selected.
In some mesh multiprocessing applications, this completion delay is
significant.

LRERRx These bits reflects the status of the receive nibble packer for each link
buffer. LRERRx will equal 0 when the nibble packer is set to start
receiving a new word. Otherwise it will be 1. If this bit is equal to 1
after a word is received, then an error has occurred (e.g. clock glitch).
The LRERRx bits are cleared when LxEN changes from 1 to 0. They
may subsequently change state when the link buffer is read or
written or while a word is being received.
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L0STAT
Link Buffer 0 Status (read-only)
11=full, 00=empty, 10=one word

L1STAT
Link Buffer 1 Status (read-only)
11=full, 00=empty, 10=one word

L2STAT
Link Buffer 2 Status (read-only)
11=full, 00=empty, 10=one word

L3STAT
Link Buffer 3 Status (read-only)
11=full, 00=empty, 10=one word

L4STAT
Link Buffer 4 Status (read-only)
11=full, 00=empty, 10=one word

L5STAT
Link Buffer 5 Status (read-only)
11=full, 00=empty, 10=one word

LCLKX23
Transfer at 2x Clock Rate 

on Link Buffer 3

LCLKX22
Transfer at 2x Clock Rate 

on Link Buffer 2

LCLKX21
Transfer at 2x Clock Rate 

on Link Buffer 1

LCLKX20
Transfer at 2x Clock Rate 

on Link Buffer 0

LPATHD
Mesh Multiproc. LPATH Changeover Delay
00=no additional delay, 01=one additional delay
10=two additional delays, 11=three additional delays

LCLKX24
Transfer at 2x Clock Rate 
on Link Buffer 4

LCLKX25
Transfer at 2x Clock Rate 
on Link Buffer 5

L2DDMA
Enable 2-D DMA

LPDRD
Link Pull-Down Resistor Disable
1=disable, 0=enable

LMSP
Mesh Multiproc.-Coupled Transmission

LRERR5
Rcv. Pack Error Status for Link Buffer 5

1=incomplete, 0=complete
LRERR4

Rcv. Pack Error Status for Link Buffer 4
1=incomplete, 0=complete

LRERR3
Rcv. Pack Error Status for Link Buffer 3

1=incomplete, 0=complete
LRERR2

Rcv. Pack Error Status for Link Buffer 2
1=incomplete, 0=complete

LRERR1
Rcv. Pack Error Status for Link Buffer 1

1=incomplete, 0=complete
LRERR0

Rcv. Pack Error Status for Link Buffer 0
1=incomplete, 0=complete

Figure 9.3  LCOM Register
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9.2.3 Link Assignment Register (LAR)
Each link port is assigned to a link buffer by a 3-bit group in the
Link Assignment Register (LAR). There are 6 such groups, one for each
buffer, as shown in Table 9.4. The LAR can be thought of as
performing a logical (i.e. the link buffer) to physical (i.e. the link port)
mapping.

Bits Name Description
0-2 A0LB* Link port assignment for LBUF0
3-5 A1LB* Link port assignment for LBUF1
6-8 A2LB* Link port assignment for LBUF2
9-11 A3LB* Link port assignment for LBUF3
12-14 A4LB* Link port assignment for LBUF4
15-17 A5LB* Link port assignment for LBUF5
18-31 reserved (must be set to 0)

Table 9.4  Link Assignment Register (LAR)

* AxLB Link Port #
000 Link Port 0
001 Link Port 1
010 Link Port 2
011 Link Port 3
100 Link Port 4
101 Link Port 5
110 reserved
111 inactive buffer

The AxLB bits assign a link port to the link buffer x. A link port is
DISABLED if it has no buffers assigned or if the link port’s assigned
buffers are disabled. When a link port is disabled, its LxDAT3-0,
LxCLK, and LxACK pins are three-stated. If a buffer is intended to be
inactive, the corresponding link port assignment field should be set to
7.

Memory-to-memory transfers may be accomplished by assigning the
same link port to two buffers, disabling the port partially. One buffer
transmits while the other receives. Up to three memory-to memory
transfers may occur simultaneously, by using all six link buffers. This
partially disabled mode is known as loopback mode. Using this
configuration, LxDAT3-0 and LxACK will not be driven or sensed and
LxCLK will not be driven. However, LxCLK should not be driven
externally in this mode, due to the fact that an LxCLK transition may
be sensed and result in a nibble shift in the received data buffer.
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A0LB
Link Port Assigned to LBUF0
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A1LB
Link Port Assigned to LBUF1

A2LB
Link Port Assigned to LBUF2

A5LB
Link Port Assigned to LBUF5

A4LB
Link Port Assigned to LBUF4

A3LB
Link Port Assigned to LBUF3

Figure 9.4  LAR Register

9.3 HANDSHAKE CONTROL SIGNALS
The LxCLK and LxACK pins of each link port allow handshaking for
asynchronous data communication between ADSP-2106xs. Other
devices that follow the same protocol may also communicate with
these link ports.

A link-port-transmitted word consists of 8 nibbles (for a 32-bit word)
or 12 nibbles (for a 48-bit word). The transmitter asserts the clock
(LxCLK) high with each new nibble of data. The falling edge of LxCLK
is used by the receiver to latch the nibble. The receiver asserts LxACK
when it is ready to accept another word in the buffer. The transmitter
samples LxACK at the beginning of each word transmission (i.e. after
every 8 or 12 nibbles). If LxACK is deasserted at that time, the
transmitter will not transmit the new word—see Figure 9.5. The
transmitter will leave LxCLK high and continue to drive the first
nibble if LxACK is deasserted. When LxACK is eventually asserted
again, LxCLK will go low and begin transmission of the next word. If
the transmit buffer is empty, LxCLK will remain low until the buffer is
refilled, regardless of the state of LxACK.

The receive buffer may fill if a higher priority DMA or chain loading
operation is occurring. LxACK may deassert when it anticipates the
buffer may fill. However, LxACK will be reasserted by the receiver as
soon as the internal DMA grant signal has occurred, freeing a buffer
location.
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Figure 9.5  Link Port Handshake Timing

Data is latched in the receive buffer on the falling edge of LxCLK. The
receive operation is purely asynchronous and can occur at any
frequency up to twice CLKIN, the processor clock frequency. If the
receive clock frequency is less than or equal to CLKIN, the LCLKX2
bit for the receive buffer should be set to 0 in LCOM. If the receive
clock frequency is between CLKIN and (2 * CLKIN), the LCLKX2 bit
should be set to 1 in LCOM. This causes the buffer status to change,
generating an internal DMA request, after the sixth nibble (of eight) or
tenth nibble (of twelve) has been received. Because a preemptive DMA
request is made, the entire word must be received in a single burst,
with no gated clocks used during the word.

When a link port is not enabled, LxDAT3-0, LxCLK and LxACK are
tristated. When a port is enabled to transmit, the data pins will be
driven with whatever data is in the output buffer, LxCLK will be
driven high and LxACK will be tristated. When a port is enabled to
receive, the data pins and LxCLK will be tristated and LxACK will be
driven high.

LCLK

nibble 1 nibble 2
nibble  0 
(MSBs)

LACK

Transmitter samples LACK 
here to determine whether 
to transmit next word

nibble 7
(LSBs)

Receiver will accept remaining nibbles  in  the 
current word even if  LACK is deasserted.

The transmitter will not send  the following word. 

Transmit data for next word  is 
held until LACK is asserted

Note: LCLK high indicates a stall

LDAT3-0

Minimum
LACK 
set-up 
time

LACK may deassert 
after the second 
nibble

LCLK stays high at nibble 0 if LACK is 
sampled low on previous LCLK rising edge

LACK will  reassert 
as soon as the link 
buffer is "not full"
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To allow a transmitter and a receiver to be enabled (assigned and link
buffer enabled) at different times, LxACK, LxCLK, and LxDAT3-0 may
be held low with the 50 kΩ internal pulldown resistors if LPDRD is
cleared when the link port is disabled. Thus, if the transmitter is
enabled before the receiver, LxACK will be low and the transmission is
held off. Similarly, if the receiver is enabled before the transmitter,
LxCLK will be held low and the receiver will be held off. If many link
ports are bused together, one external resistor should be used to pull
down each bused line instead of the internal pulldowns. This will
guarantee that the bused lines are not pulled down too strongly.

LxACK, LxCLK, and LxDAT3-0 should not be left unconnected unless
external pulldown resistors or the internal pulldowns are used.

9.4 LINK BUFFERS
Each link buffer consists of an external and an internal register (see
Figure 9.1). When transmitting, the internal register is used to accept
the DMA data from internal memory. The external register performs
the unpacking for the link port, most significant nibble first. These two
registers form a two-stage FIFO, the LBUFx buffer. Two words can be
written into the register (by DMA or from the core) before it signals a
full condition. As each word is unpacked and transmitted, the next
location in the FIFO becomes available and a new DMA request is
made. If the register becomes empty, the LxCLK signal will be
deasserted.

Full/empty status for the link buffer FIFOs is given by the LxSTAT bits
of the LCOM register. This status is cleared for a link buffer when its
LxEN enable bit is cleared in the LCTL register.

During receiving, the external buffer is used to pack the receive port
data (most significant nibble first) and pass it to the internal register
before DMA-transferring it to internal memory. This buffer is a two-
deep FIFO. If the ADSP-2106x’s DMA controller does not service it
before both locations are filled, then the LxACK signal will be
deasserted.

The link buffer width may be selected to be either 32 or 48 bits. This
selection is made individually for each buffer with the LEXT bits in the
LCTL register. For 40-bit extended precision data or 48-bit instruction
transfers, the width must be set to 48 bits.
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9.4.1 Core Processor Access To Link Buffers
In applications where the latency of link port DMA transfers to and
from internal memory is too long, or where a process is continuous
and has no block boundaries, the ADSP-2106x processor core may read
or write link buffers directly using the full/empty status bit of the link
buffer to automatically pace the operation. The full or empty status of a
particular LBUFx buffer can be determined by reading the LCOM
control/status register. DMA should be disabled (i.e. the LxDEN bit
should be cleared) when using this capability. A programming
example of core-driven transfers is shown at the end of this chapter.

If a read is attempted from an empty receive buffer, the core will hang
until the link port completes transmission of a word. Similarly, if a
write is attempted to a full transmit buffer, the core will hang until the
external device accepts the complete word. Up to four words (2 in the
receiver and 2 in the transmitter) may be sent without a hang before
the receiver core must read a link buffer register. To prevent this type
of hang condition from occurring, the BHD (Buffer Hang Disable) bit
can be set in the SYSCON register.

9.4.2 Host Processor Access To Link Buffers
The link buffers can also be accessed by the external host processor,
using direct reads and writes. When the host reads or writes to these
buffers, the word width is determined only by the host packing mode,
as selected by the HPM bits in the SYSCON register, and not by the
LEXT bit in LCTL.

9.5 LINK PORT DMA CHANNELS
Link buffers 0-5 are supported by DMA channels 1, 3, 4, 5, 6, and 7
respectively. Some DMA channels are dedicated and others are shared:

• DMA channel 1 is shared by SPORT1 receive and link buffer 0 (LBUF0).
• DMA channel 3 is shared by SPORT1 transmit and link buffer 1 (LBUF1).
• DMA channel 4 is dedicated to link buffer 2 (LBUF2).
• DMA channel 5 is dedicated to link buffer 3 (LBUF3).
• DMA channel 6 is shared by ext. port buffer 0 (EPB0) and link buffer 4.
• DMA channel 7 is shared by ext. port buffer 1 (EPB1) and link buffer 5.
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DMA Channels 1 and 3 are shared by link buffers 0 and 1, respectively,
and by SPORT1. This has several functional implications:

• If the SPORT1 receive DMA enable bit or chaining enable bit is set, then
SPORT1 receive is assigned DMA channel 1.

• If the LBUF0 DMA enable bit is set, then link buffer 0 is assigned this
DMA channel.

• If both enables are set, the SPORT is selected.

• If neither the SPORT DMA enable or LBUF0 DMA enable is set, then
interrupts from both buffers are ORed.

SPORT1 transmit and LBUF1 are shared and selected in the same way.

DMA Channel 6 is shared by the external port buffer EPB0 and link
buffer 4 (LBUF4). Functional implications include:

• If the EPB0 DMA enable bit or chaining enable bit is set, then EPB0 is
assigned DMA channel 6.

• If the LBUF4 DMA enable bit is set, then link buffer 4 is assigned this
DMA channel.

• If both enables are set, EPB0 is selected.

• If neither the external port DMA enable or LBUF4 DMA enable is set,
then interrupts from both buffers are ORed.

EPB1 and LBUF5 share DMA channel 7 and are selected in the same
way.

A maskable interrupt is generated when the DMA block transfer has
completed. A more complete discussion on interrupts can be found in
the “Link Port Interrupts” section of this chapter.

If DMA is disabled for a buffer, then the buffer may be read or written
by the core processor as a memory-mapped location. A maskable
interrupt is generated while DMA is disabled and the receive buffer is
not empty or if the transmit buffer is not full.
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9.5.1 DMA Chaining For Link Ports
In chained DMA operations, the ADSP-2106x automatically sets up
another DMA transfer when the contents of the current buffer have
been transmitted (or received). The chain pointer register (CPx) is used
to point to the next set of buffer parameters stored in memory. The
ADSP-2106x’s DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. Refer to the DMA
chapter of this manual for details on how to set up chaining
parameters in memory.

DMA chaining is enabled on each link port by setting the LxCHEN bit
in LCTL. When chaining is enabled, DMA transfers are initiated by
writing a memory address to the CP register.

Six DMA parameter registers are initialized for the chained operation,
in the following order:

IIx Index (start address of memory buffer)
IMx Modify (increment)
Cx Count
CPx Chain Pointer

9.6 LINK PORT INTERRUPTS
Link ports have 3 different types of interrupts:

1. nterrupts caused by the received or transmitted data when the ADSP-
2106x core is accessing the buffers directly and DMA is not enabled.

2. Interrupts generated by the completion of a DMA cycle.
3. Interrupts caused by an attempted external access of a link port that is

unassigned or assigned to a link buffer that is not enabled.

Types 1 and 2 are mutually exclusive and use the same interrupt.
Type 3 is independent of 1 and 2 and uses a different interrupt vector.
Details of each kind of interrupt follow below.

9.6.1 Link Port Interrupts With DMA Disabled
If DMA is disabled for a link port buffer, then the buffer may be
written or read by the ADSP-2106x core as a memory-mapped IOP
register.
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If the DMA is disabled but the associated link buffer is enabled, then a
maskable interrupt is generated whenever a receive buffer is not
empty or when a transmit buffer is not full.

The interrupt latch bit in IRPTL may be masked in the corresponding
IMASK register bit. When initially enabling the IMASK bit, the
corresponding bit in IRPTL should be cleared first to clear out any
request that may have been inadvertently latched.

The interrupt service routine should test the buffer status after each
read or write to check when the buffer is empty or full, in order to
determine when it should return from interrupt. This will reduce the
number of interrupts it must service.

9.6.2 Link Port Interrupts With DMA Enabled
A link port interrupt is generated when the DMA operation is done—
i.e. when the block transfer has completed and the DMA count register
is zero.

There is an option for implementing a protocol to send additional
control information at the end of a block transfer. Because the receive
DMA buffer is empty when the DMA block has completed, the
external bus master can send up to two additional words to the slave
ADSP-2106x’s buffer which has space for the two words. The slave’s
DMA done interrupt service routine could then read the buffer and use
these control words to determine the next course of action.

9.6.3 Link Port Service Request Interrupts (LSRQ)
Link port service requests allow a disabled (unassigned or assigned
and buffer disabled) link port to cause an interrupt when an external
access is attempted. The transmit and receive request status bits of the
LSRQ register (bits 20-31) allow an ADSP-2106x to determine if
another ADSP-2106x is attempting to send or receive data through a
particular link port. This lets two processors comunicate without prior
knowledge of the transfer direction, link port number, or exactly when
the transfer is to occur.

When LxACK or LxCLK is asserted externally, a link service request
(LSR) is generated in a disabled (unassigned or assigned and buffer
disabled) link port. LSRs will not be generated for a link port that is
disabled by loopback mode. Each LSR is gated by mask bits before
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being latched in the LSRQ register. The six possible receive LSRs and
the six possible transmit LSRs are ORed together to generate the link
service request interrupt. The LSRQ interrupt request may be masked
by the LSRQI mask bit of the IMASK register. When the mask bit is set,
the interrupt is allowed to pass into the interrupt priority encoder. A
diagram of this logic appears in Figure 9.5a.

LxRRQ

LxTRQ
LSR Mask

LSR Status

LSRQ

IRPTL, LSRQI

MODE1, IRPTEN

IMASK, LSRQI

Link 
Service 
Request 
Interrupt

Figure 9.5a  Logic For Link Port Interrupts

The interrupt routine must read the LSRQ register to determine which
link port to service and whether it is a transmit or receive request.

LSR interrupts have a latency of two cycles. Note that the link service
request interrupt is different from the link receive and transmit
interrupt—this is also true in IMASK.

The 32-bit LSRQ register holds the masked link status of each link port
and the corresponding interrupt mask bits. The link status of the port
is set whenever the port is not enabled and one of LxACK or LxCLK is
asserted high. The LSRQ status bits are read-only. Table 9.5 and Figure
9.6 show the individual bits of the LSRQ register.

To determine which link port to service, transfer LSRQ to a register Rx
(in the register file), then use the leading 0s detect instruction,
Rn=LEFTZ Rx. Rn indicates which link port is active in order of
priority.

If link service requests are in use, they should be masked out when the
assigned link buffers are being enabled, disabled, or when the link port
is being unassigned in LAR, otherwise spurious service requests may
be generated.



9Link Ports

9 – 21

This need for masking is due to a delay before LxCLK or LxACK (if
already asserted) signals are pulled (if pulldowns enabled) or driven
externally (if pulldowns disabled) below logic threshold. During this
delay, these signals are sampled asserted and generate an LSRQ.

To avoid the possiblity of spurious interrupts, mask the LSRQ
interrupt or the appropriate request bit in the LSRQ register and allow
an appropriate delay before unmasking. Alternatively, mask the LSRQ
interrupt and poll the appropriate request status bit until it is cleared
and then unmask the interrupt.

Bit Name Description
0-3 reserved
4 L0TM Link Port 0 transmit mask
5 L0RM Link Port 0 receive mask
6 L1TM Link Port 1 transmit mask
7 L1RM Link Port 1 receive mask
8 L2TM Link Port 2 transmit mask
9 L2RM Link Port 2 receive mask
10 L3TM Link Port 3 transmit mask
11 L3RM Link Port 3 receive mask
12 L4TM Link Port 4 transmit mask
13 L4RM Link Port 4 receive mask
14 L5TM Link Port 5 transmit mask
15 L5RM Link Port 5 receive mask
16-19 reserved
20 L0TRQ Link Port 0 transmit request status   (read-only)
21 L0RRQ Link Port 0 receive request status  (read-only)
22 L1TRQ Link Port 1 transmit request status   (read-only)
23 L1RRQ Link Port 1 receive request status  (read-only)
24 L2TRQ Link Port 2 transmit request status   (read-only)
25 L2RRQ Link Port 2 receive request status  (read-only)
26 L3TRQ Link Port 3 transmit request status   (read-only)
27 L3RRQ Link Port 3 receive request status  (read-only)
28 L4TRQ Link Port 4 transmit request status   (read-only)
29 L4RRQ Link Port 4 receive request status  (read-only)
30 L5TRQ Link Port 5 transmit request status   (read-only)
31 L5RRQ Link Port 5 receive request status  (read-only)

Table 9.5  Link Service Request Register (LSRQ)

For transmit request status bits, LxTRQ=1 means LxACK=1, LxTM=1, and LxEN=0.
For receive request status bits, LxRRQ=1 means LxCLK=1, LxRM=1, and LxEN=0.
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27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28
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000000000000
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0000

L0TM
Link Port 0 Transmit Mask

L0RM
Link Port 0 Receive Mask

L1TM
Link Port 1 Transmit Mask

L1RM
Link Port 1 Receive Mask

L2TM
Link Port 2 Transmit Mask

L2RM
Link Port 2 Receive Mask

L3RM
Link Port 3 Receive Mask

L3TM
Link Port 3 Transmit Mask

L4RM
Link Port 4 Receive Mask

L4TM
Link Port 4 Transmit Mask

L5RM
Link Port 5 Receive Mask

L5TM
Link Port 5 Transmit Mask

0000000000000000

L0TRQ
Link Port 0 Transmit Request

L0RRQ
Link Port 0 Receive Request

L1TRQ
Link Port 1 Transmit Request

L1RRQ
Link Port 1 Receive Request

L2TRQ
Link Port 2 Transmit Request

L2RRQ
Link Port 2 Receive Request

L3RRQ
Link Port 3 Receive Request

L3TRQ
Link Port 3 Transmit Request

L4RRQ
Link Port 4 Receive Request

L4TRQ
Link Port 4 Transmit Request

L5RRQ
Link Port 5 Receive Request

L5TRQ
Link Port 5 Transmit Request

Request Bits are Read-Only Status

Figure 9.6  LSRQ Register

For transmit request status bits, LxTRQ=1 means LxACK=1, LxTM=1, and LxEN=0.
For receive request status bits, LxRRQ=1 means LxCLK=1, LxRM=1, and LxEN=0.
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9.7 TRANSMISSION ERROR DETECTION
Transmission errors on the link ports may be detected by reading the
LRERRx bits in the LCOM register. These bits reflects the status of each
nibble counter. The LRERRx bit will be zero if the pack counter of the
corresponding link buffer is zero (i.e. a multiple of 8 or 12 nibbles have
been received). If LRERR is high when a transmission has completed,
then an error occurred during transmission. (Note that the DMA word
count provides an exact count of the number of words to be
transferred.)

To allow checking of this status, the transmitter and receiver should
follow a protocol such as the one described below:

Transmitter Protocol—To make use of the LRERRx status, one
additional dummy word should always be transmitted at the end of a
block transmission. The transmitter must then deselect the link port to
allow the receiver to send an appropriate message back to the
transmitter.

Receiver Protocol—When the receiver has received the data block,
indicated by a DMA done interrupt, it checks that it has received an
additional word in the link buffer and then reads the LRERR bit. The
receiver may then clear the link buffer (LxEN=0) and transmit the
appropriate message back to the transmitter on the same, or a
different, link port.

9.8 TOKEN PASSING
Two processors wishing to communicate on a link port need to know
which of them is currently the transmitter and which is the receiver,
otherwise they might both try to transmit at the same time. Token
passing is a way of accomplishing this. Figure 9.7 shows a flow chart of
the token passing process.

Token passing is a way of establishing which of two ADSP-2106xs is
the current transmitter. The token is a software flag, similar to a
semaphore, that is passed between the processors. At reset, by
convention, the token (flag) is set to reside in the link port of one
device, making him the master and the transmitter. When a receiver
link port (slave) wants to become the master, he may assert his LxACK
line (request data) to get the master’s attention. The master will know,
through software protocol, whether he is supposed to respond with
actual data or whether he is being asked for the token.
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Figure 9.7  Token Passing Flow Chart
Notes:
The token release word  can be any user-defined value. Since both the transmitter
and receiver are expecting a code word, this need not be exclusive of normal data
transmission.

Original Master Original Slave

• DMA transfer complete
• LBUF disabled
• LSRQ interrupt enabled

• DMA transfer complete
• LBUF disabled
• LBUF RX non-DMA enabled

• LACK assertion causes LSRQ interrupt
• LBUF TX non-DMA enabled
• Send TRW 4 times to fill LBUF FIFOs on both sides
• Check LCOM  for slave read of TRW  
   before acceptance test

• Read LBUF
• Test for TRW

• Check LCOM to see if slave accepted 
   token by emptying FIFOs in an allotted 
   time period

• Accept token by emptying LBUF FIFOs 
   through 3 more reads within the
   allotted time period

• Setup LBUF for RX non-DMA to accept 
   DMA size
• Setup LBUF for RX DMA and DMA complete interrupt

• Disable LBUF and LSRQ interrupt
• Poll LSRQ status for Link port transmit 
   request to be sure that the original 
   master is now a slave

• DMA transfer complete
• Setup LBUF for RX non-DMA

• LACK assertion assures that it is safe 
  to begin transmitting
• Setup LBUF for TX non-DMA to send 
  DMA size
• Setup LBUF for TX DMA and DMA 
  complete interrupt

• DMA transfer complete
• Setup LBUF for TX non-DMA
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If the master wishes to give up the token, he may send back a user-
defined token release word and thereafter clear his token flag.
Simultaneously, the slave examines the data sent back and if it is the
token release word, the slave will set his token, and can thereafter
transmit. If the received data is not the token release word, then the
slave must assume the master was beginning a new transmission.

Through software protocol, the master can also ask to receive data by
sending the token release word without the LxACK (data request)
going low first.

An example of software protocol for token passing through the link
ports is included at the end of this chapter. Figure 9.7 shows a flow
chart of the example code and the following is a description of the
process:

The example code is to be loaded on both the original master and the
original slave. The code is ID intelligent for multiprocessor systems:
ID1 is the original master (transmitter) and ID2 is original slave
(receiver). The master transmits a buffer via DMA through LPORT0
using LBUF3 and the slave receives through LPORT0 using LBUF2.
The slave then requests the token by generating an LSRQ interrupt in
the disabled link port of the master (LPORT0). The master responds by
sending the token release word and waiting to see if it is accepted. The
slave checks to see that it is the token release word and will accept the
token by emptying the master’s link buffer FIFO within a
predetermined amount of time. If the token is accepted the slave will
become the master and transmit a buffer of data to the new slave. If the
token is rejected, the master will transmit a second buffer. When
complete, the original master will finish by setting up LBUF2 to receive
without DMA, and the original slave will set up LBUF3 to transmit
without DMA.

The following is a list of the major areas of concern when
implementing a software protocol scheme for token passing:

• Ensure that both link buffers are not enabled to transmit at the same
time. In the event that this is allowed, data may be transmitted and lost
due to the fact that neither link port will be driving LxACK. In the
example provided at the end of the chapter, the LSRQ register status
bits are polled to ensure that the master becomes the slave before the
slave becomes the master, thus avoiding the two transmitter conflict.
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• Ensure that the link interrupt selection matches the application. If a
status detection scheme using the status bits of the LSRQ register is to
be used, it is important to note the following: If a link port that is
configured to receive is disabled while LxACK is asserted, there will be
an RC delay before the 50k ohm pulldown resistor on LxACK (if
enabled) can pull the value below logic threshold. Likewise, if a link
port that is configured to transmit is disabled while LxCLK is asserted,
there will be an RC delay before the 50k ohm pulldown resistor on
LxCLK (if enabled) can pull the value below logic threshold. If the
appropriate request status bit is unmasked in the LSRQ register (in this
instance), then an LSR will be latched and the LSRQ interrupt may be
serviced, even though unintended, if enabled.

• Ensure that synchronization is not disrupted by unrelated influences at
critical sections where timing control loops are used to synchronize
parallel code execution. Disabling of nested interrupts is one of the
techniques used in the example to control this.

9.9 LINK TRANSMISSION LINES
The link ports are designed to allow long distance connections to be
made between the driver and the receiver. This is possible because the
links are self-synchronizing, i.e. the clock and data are transmitted
together. Only relative delay, not absolute delay between clock and
data is of importance.

In addition, the LACK signal inhibits transmission of the next word,
not of the current nibble (i.e. the current word is always allowed to
complete transmission). This allows delays of 2 to 3 cycles for the
LxACK signal to reach the transmitter.

The links are designed to drive transmission lines with characteristic
impedances of 50Ω or greater. A higher transmission line impedance
reduces the on-chip effect of driver impedance variations, for distances
longer than about 6 inches. It is recommended that an external series
termination resistor be used at each link port pin to absorb reflections
from the open circuit at the destination. The external resistor should be
selected such that its value (plus the internal resistance of the driver)
be equal to the characteristic impedance of the transmission line.

Thus, if the typical internal drive resistance is 10Ω and the
characteristic impedance is 50Ω, then the link port pin resistor should
be 40Ω.



9Link Ports

9 – 27

9.10 SYSTEM DESIGN EXAMPLE: LOCAL DRAM INTERFACE
The example shown in Figure 9.8 shows how a multiprocessing system
can use link ports to connect to local memories and I/O devices. An
ASIC implements the interface between the link port and DRAM or an
I/O device. This minimal hardware solution frees the ADSP-2106x’s
external bus for other shared-bus communication. The DRAM and
ASIC may be implemented on a single 10-pin SIMM module.

Accesses to the DRAM via a link is most efficient under DMA control.
The ASIC receives DMA control information from the link port and
sets up the access to the DRAM. It unpacks 16-bit data words from the
DRAM or packs 4-bit nibbles from the link. At the end of the DMA
transfer, an interrupt will allow the ADSP-2106x to send new control
information to the ASIC. The ASIC always reverts to receive mode at
the end of a transfer. The LxACK signal is deasserted by the ASIC
whenever a page change, memory refresh cycle, or any other access to
the DRAM occurs.

Memory modules may be shared by multiple ADSP-2106xs when the
link port is bused. Each link port supports 40 Mbyte access throughput
for either instructions or data. The ASIC is responsible for generating
the 2X clock when transmitting to the ADSP-2106x. The ASIC is also
responsible for generating sequential DMA addresses based on a start
address and word count.

Figure 9.8  Local DRAM With Link Ports
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9.11 PROGRAMMING EXAMPLES
Listings 9.1 and 9.2 illustrate two ways to perform link port data
transfers.

9.11.1 Core-Driven Single-Word Transfers
Listing 9.1 shows an example of single-word data transfers controlled
by the ADSP-2106x core.

9.11.2 DMA Transfers
Listing 9.2 shows an example DMA transfer program.

/*___________________________________________________________
  ADSP-2106x Core-Driven LINK Loopback Example

This example shows an internally looped-back link port transfer. The core directly
writes to the transfer link buffer (LBUF3) and reads from the receive link buffer
(LBUF2). The core will hang on the read of LBUF2 until the data is ready. Loopback is
achieved by assigning the transmit and receive link buffers to the same port (Port
0).
_____________________________________________________________*/

#include “def21060.h”

.segment/pm rst_svc; /* Reset vector from architecture file.*/
nop; /* First location is used for booting. */
jump start;

.endseg;

/*____________________main routine____________________*/
.segment/pm pm48_1b0;   /* Main code segment from arch file.*/

start:
r0=0x0000c000; /* LCOM Register: 2x rate  */
dm(LCOM)=r0; /* note: use r0=0x00010000 on rev. 0.X silicon */

r0=0x0003f03f; /* LAR Register: LBUF2->Port0, LBUF3->Port0   */
dm(LAR)=r0; /* All others inactive.                        */

r0=0x00009100; /* LCTL Register: 32-bit data, LBUF2=rx, LBUF3=tx */
dm(LCTL)=r0; /* Always write LCTL after LAR.                   */

r0=0x12345678; /* Test data to transmit.     */
dm(LBUF3)=r0; /* Write to LBUF3 to transmit.*/

r1=dm(LBUF2); /* Read—Core will hang here until data is received.*/

wait: jump wait;

.endseg;
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/*_______________________________________________________________
  ADSP-2106x DMA-Driven LINK Loopback Example

This example shows an internally looped-back link port transfer.
Two DMA channels are used. Link buffer 3 (LBUF3) and corresponding
DMA channel 5 is used for transmit. Link buffer 2 (LBUF2) and
corresponding DMA channel 5 is used for receive. The LBUF2 interrupt
will occur when the DMA transfer is complete. Loopback is achieved
by assigning the transmit and receive link buffers to the
same port (Port 0).
_______________________________________________________________*/

#define N 8
#include “def21060.h”

.segment/dm dm32_b1; /* Data segment name described in arch. file.*/

.var source[N] = 0x11111111, 0x22222222, 0x33333333, 0x44444444,
                 0x55555555, 0x66666666, 0x77777777, 0x88888888;
.var destination[N];
.endseg;

.segment/pm rst_svc; /* Reset vector from arch. file.      */
nop; /* First location is used for booting.*/
jump start;

.endseg;

.segment/pm lp2_svc; /* Link buffer 2 interrupt vector.*/
jump lp2rx;

.endseg;

/*____________________main routine____________________*/

.segment/pm pm48_1b0;   /* Main code segment from arch. file.*/

start:
r0=source;
dm(II5)=r0; /* Set DMA tx index to start of source buffer.*/
r0=destination;
dm(II4)=r0; /* Set DMA rx index to start of destination buffer.*/
r0=1;
dm(IM5)=r0; /* Set DMA modify (stride) to 1.*/
dm(IM4)=r0;
r0=@source;
dm(C5)=r0; /* Set DMA count to length of data buffer.*/
dm(C4)=r0;

r0=0x0000c000; /* LCOM Register: 2x rate */
dm(LCOM)=r0; /* note: use r0=0x00010000 on rev. 0.X silicon */

(listing continues on next page)
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r0=0x0003f03f; /* LAR Register: LBUF2->Port0, LBUF3->Port0 */
dm(LAR)=r0; /* All others inactive.                     */

r0=0x0000b300; /* LCTL Register: 32-bit data, LBUF2=rx, LBUF3=tx */
dm(LCTL)=r0; /* Enable DMA on LBUF2 and LBUF3.                 */

    /* This will start off the DMA transfer.      */
    /* Always write LCTL after LAR.               */

bit set imask LP2I;     /* Enable link buffer 2 interrupt. */
bit set mode1 IRPTEN;    /* Global interrupt enable.        */

wait: idle; /* Wait for link buffer 2 interrupt.*/
   jump wait; /* Will end up here after entire DMA completes.*/

/*_____________Link Buffer 2 Receive Interrupt Routine_________________*/

lp2rx: rti; /* This interrupt will occur only once.*/

.endseg;

Listing 9.2  DMA Transfer Example
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/*_____________________________________________________________________________
ADSP-2106x LINK Token Pass Example

This is an example of software protocol for token ring passing through the link
ports using LSRQ. This code is to be loaded on both the original master and the
original slave. The code is ID intelligent for multiprocessor systems: ID1 is
the original master (transmitter) and ID2 is original slave (receiver). The
master transmits a buffer via dma through LPORT0 using LBUF3 and the slave
receives through LPORT0 using LBUF2. The slave then requests the token by
generating an LSRQ interrupt in the disabled link port of the master (LPORT0).
The master responds by sending the token release word and waiting to see if it
is accepted. The slave checks to see that it is the token release word and will
accept the token by emptying the master’s link buffer FIFO within a
predetermined amount of time. If the token is accepted the slave will become
the master and transmit a buffer of data to the new slave. If the token is
rejected, the master will transmit a second buffer. When complete the original
master will finish by setting up LBUF2 to receive without DMA and the original
slave will set up LBUF3 to transmit without DMA. FLAG0 is used as a software
flac to indicate the original master.
________________________________________________________________________________*/

#include “def21060.h”

#define N 8 /* Size of buffer */

#define trw 0x0 /* Token release word */

#define orig_master_id 1 /* ID of SHARC to be original master */
#define orig_slave_id 2 /* ID of SHARC to be original slave */

.SEGMENT/DM     dm_data;

.var source_1[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
  0x11111111, 0x22222222, 0x33333333, 0x44444444;

.var source_2[N]= 0x55555555, 0x66666666, 0x77777777, 0x88888888,
  0x55555555, 0x66666666, 0x77777777, 0x88888888;

Listing 9.3  Link Token Passing Example (continues)
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.var source_3[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
  0x55555555, 0x66666666, 0x77777777, 0x88888888;

.var destination_1[N];

.var destination_2[N];

.var destination_3;

.ENDSEG;

.SEGMENT/PM   isr_tabl; /* Interrupt Service Table */

NOP; NOP;NOP;NOP; /* Reserved interrupt */
rst_svc:        nop; jump start; nop; nop;

NOP; NOP; NOP; NOP;
sovfi_svc:      RTI; RTI; RTI; RTI;
tmzhi_svc:      rti; RTI; RTI; RTI;
vrpti_svc:      RTI; RTI; RTI; RTI;
irq2_svc:       rti; RTI; RTI; RTI;
irq1_svc:       rti; RTI; RTI; RTI;
irq0_svc:       rti; RTI; RTI; RTI;

NOP; NOP; NOP; NOP;
spr0_svc:       RTI; RTI; RTI; RTI;
spr1_svc:       RTI; RTI; RTI; RTI;
spt0_svc:       RTI; RTI; RTI; RTI;
spt1_svc:       RTI; RTI; RTI; RTI;
lp2_svc:        nop; jump lp2; nop; nop;
lp3_svc:        nop; jump lp3; nop; nop;
ep0_svc:        RTI; RTI; RTI; RTI;
ep1_svc:        RTI; RTI; RTI; RTI;
ep2_svc:        RTI; RTI; RTI; RTI;
ep3_svc:        RTI; RTI; RTI; RTI;
lsrq_svc:       nop; jump lsrq; nop; nop;
cb7_svc:        RTI; RTI; RTI; RTI;
cb15_svc:       RTI; RTI; RTI; RTI;
tmzl_svc:       rti; RTI; RTI; RTI;

.ENDSEG;

Listing 9.3  Link Token Passing Example (continues)
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Listing 9.3  Link Token Passing Example (continues)

/*____________________main routine____________________*/

.SEGMENT/PM   pm_code;

start:
bit set mode2 FLG0O; /* Set Flag0 for output */
bit clr astat FLG0; /* Clear Flag0 for use as flag to test */

/* if this SHARC is the original master */
r0=dm(SYSTAT);
r0=FEXT r0 BY 8:3; /* Extract Processor ID from SYSTAT */

r1=orig_master_id;
r1=r0-r1; /* Test if this SHARC is original */
if eq jump start_as_master; /* master and jump appropriately */

r1=orig_slave_id;
r1=r0-r1; /* Test if this SHARC is original */
if eq jump start_as_slave; /* slave and jump appropriately */

idle;
nop;

/*_______________Start of Original Master Routine_______________________*/

start_as_master:

bit set astat FLG0; /* Set Flag0 to signify original master */

r0=source_1;
dm(II5)=r0; /* Set DMA tx index to start of source buffer */

r0=1;
dm(IM5)=r0; /* Set DMA modify (stride) to 1 */

r0=@source_1;
dm(C5)=r0; /* Set DMA count to length of data buffer */
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r0=0xc000; /* LCOM Register: 2x rate on LBUF3, */
dm(LCOM)=r0; /* note:use r0=0x00010000 on rev. 0.X silicon */

r0=0x3f1ff; /* LAR Register: LBUF3->port 0 */
dm(LAR)=r0; /* All others inactive */

bit set imask LP3I; /* Enable Link buffer 3 interrupt */
bit set mode1 IRPTEN; /* Global interrupt enable */

r0=0x0000b000; /* LCTL Register: 32-bit data, LBUF3=tx */
dm(LCTL)=r0; /* enable DMA on LBUF3 */

/* This will start off the DMA transfer */
/* Always write LCTL after LAR */

wait_1:   idle; /* Wait for Link buffer 3 interrupt */
          jump wait_1; /* Will end up here after entire DMA complete
*/

  nop; /* All master interrupts will come back to here */
  nop;

/*__________________Link buffer 3 Interrupt Routine_____________________*/

lp3:
if  NOT FLAG0_IN jump lp3_orig_slave; /* Test for original master */
nop; /* and jump appropriately */
nop;

/*_______________Link buffer 3 Tx finish Interrupt Routine______________*/

lp3_orig_master:

Listing 9.3  Link Token Passing Example (continues)
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/*_______________Allow for pulldown delay on LxACK of the
slave_________________*/

bit clr imask LSRQI;    /* Disable Link port service request interrupt
*/

r0=0x10;
dm(LSRQ)=r0; /* Unmask LSRQ lport 0 transmit request status */

r0=0x00000000;
dm(LCTL)=r0; /* LCTL: disable all LBUFs */

disabled1:
r0=dm(LSRQ); /* Check to ensure that the pull down on LxACK */
r0=FEXT r0 BY 20:1; /* has pulled the LxACK low.  Both the original */
r0=pass r0; /* slave and original master will be in sync. */
if NE jump disabled1; /* The next assertion of LxACK will signify to  */

/* the master that slave is requesting the token*/

/
*______________________________________________________________________________*/

r0=0x00000000;
dm(LCTL)=r0; /* disable all LBUFs */

bit set imask LSRQI;    /* Enable Link port service request interrupt
*/

r0=0x10;
dm(LSRQ)=r0; /* Unmask LSRQ lport 0 transmit request status */

rti;

/*_______________Link buffer 2 Tx finish Interrupt Routine______________*/

Listing 9.3  Link Token Passing Example (continues)



9 Link Ports

9 – 36

lp3_orig_slave:
/* Finish by setting up Tx without DMA */

bit clr imask LP3I;     /* disable Link buffer 2 interrupt */

r0=0x3f1ff;
dm(LAR)=r0; /* LAR Register:  LBUF3->port 0 */

r0=0x00009000;
dm(LCTL)=r0; /* enable LBUF3 Tx, No DMA */

rti;

/*_______________Link Service Request Interrupt Routine______________*/

lsrq:
bit clr imask LP3I; /* disable Link buffer 3 interrupt */

r0=0x00009000; /* LCTL Register:32-bit data, LBUF3=tx */
dm(LCTL)=r0; /* disable DMA on LBUF3 */

r0=trw; /* Get token release word */

dm(LBUF3)=r0; /* Send token release word to slave */
dm(LBUF3)=r0; /* fill slave’s and master’s LP fifos by */
dm(LBUF3)=r0; /* writing four times, leaving the fifos */
dm(LBUF3)=r0; /* completely filled on both sides */

token_read:
r1=0x40; /* check if slave read the token */
r0=dm(LCOM); /* check if slave read the first word */
r0=r0 AND r1; /* to be sure they are in sync for the */
if NE jump token_read; /* reject test */

LCNTR=10, DO wait_for_slave UNTIL LCE;
wait_for_slave: nop; /* Give slave chance to accept or reject token

Listing 9.3  Link Token Passing Example (continues)
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*/

r1=0xc0; /* check if slave wants the token */
r0=dm(LCOM); /* check if slave emptied the fifos     */
r0=r0 AND r1; /* within 10 cycles */
if NE jump second_master_mode; /* else second master mode */

slave_mode:

/*_______________Protection to avoid two transmitting link
ports________________*/

bit clr imask LSRQI;    /* Disable Link port service request interrupt
*/

r0=0x10;
dm(LSRQ)=r0; /* Unmask LSRQ lport 0 transmit request status */

r0=0x00000000;
dm(LCTL)=r0; /* LCTL: disable all LBUFs */

slave_disabled:
r0=dm(LSRQ); /* Check to ensure that the original slave */
r0=FEXT r0 BY 20:1; /* is now disabled.  If disabled, will deassert */
r0=pass r0; /* LxACK and stop generating LxTRQ */
if NE jump slave_disabled;

/
*______________________________________________________________________________*/

r0=0x3fe3f;
dm(LAR)=r0; /* LAR Register:  LBUF2->port 0 */

r0=0x00000100;
dm(LCTL)=r0; /* LCTL: enable LBUF2 (Rx), non DMA */

Listing 9.3  Link Token Passing Example (continues)
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r0=dm(LBUF2); /* read DMA size */
dm(C4)=r0; /* Set DMA count to length of data buffer */

r0=destination_3;
dm(II4)=r0; /* Set DMA rx index to start of destin buffer */

r0=1;
dm(IM4)=r0; /* step size */

r0=0x00000300;
dm(LCTL)=r0; /* enable LBUF2 DMA Rx */

bit clr irptl LP2I; /* clear pending Link buffer 2 interrupt */
bit set imask LP2I; /* Enable Link buffer 2 interrupt */
bit set mode1 IRPTEN; /* Global interrupt enable */

rti;

second_master_mode:

token_read2:
r1=0xC0; /* check if slave read the tokens */
r0=dm(LCOM); /* check if slave emptied fifos */
r0=r0 AND r1; /* to be sure they are in sync for the */
if NE jump token_read2; /* the second DMA transfer */

r0=0x3fe3f;
dm(LAR)=r0; /* LAR Register:  LBUF2->port0 */

r0=0x00000900;
dm(LCTL)=r0; /* LBUF2: Tx, non DMA */

r0=@source_2;
dm(LBUF2)=r0; /* Tx size of DMA to the slave */

r0=source_2;
dm(II4)=r0; /* Set DMA tx index to start of source buffer. */

r0=1;

Listing 9.3  Link Token Passing Example (continues)
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dm(IM4)=r0; /* Set DMA modify (stride) to 1 */

r0=@source_2;
dm(C4)=r0; /* Set DMA count to length of data buffer. */

r0=0x00000b00; /* LCTL Register:32-bit data, LBUF2=tx */
dm(LCTL)=r0; /* enable DMA on LBUF2. */

/* This will start off the DMA transfer. */
/* Always write LCTL after LAR. */

bit clr irptl LP2I; /* clear pending Link buffer 2 interrupt */
bit set imask LP2I; /* Enable Link buffer 2 interrupt */
bit set mode1 IRPTEN; /* Global interrupt enable */

rti;

/*__________________Link buffer 2 Interrupt Routine_____________________*/

lp2:

if NOT FLAG0_IN jump lp2_orig_slave; /* Test for original master */
nop; /* and jump appropriately */
nop;

/*_______________Link buffer 2 Rx finish Interrupt Routine______________*/

lp2_orig_master:
/* Finish by setting up Rx without DMA */

r0=0x3fe3f;
dm(LAR)=r0; /* LAR Register:  LBUF2->port0 */

r0=0x00000100;
dm(LCTL)=r0; /* LBUF2: Rx, non DMA */

rti; /* This interrupt will occur only once. */

Listing 9.3  Link Token Passing Example (continues)
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/*_______________Link buffer 2 Rx Interrupt Routine_____________________*/

lp2_orig_slave:

/*_______________Allow for pulldown delay on LxACK of the
slave_________________*/

bit clr imask LSRQI;    /* Disable Link port service request interrupt
*/

r0=0x10;
dm(LSRQ)=r0; /* Unmask LSRQ lport 0 transmit request status */

r0=0x00000000;
dm(LCTL)=r0; /* LCTL: disable all LBUFs */

disabled2:
r0=dm(LSRQ); /* Check to ensure that the pull down on LxACK */
r0=FEXT r0 BY 20:1; /* has pulled the LxACK low.  Both the original */
r0=pass r0; /* slave and original master will be in sync. */
if NE jump disabled2; /* The next assertion of LxACK will signify to  */

/* the master that slave is requesting the token*/

/
*______________________________________________________________________________*/

bit clr imask LP2I;     /* disable Link buffer 2 interrupt */

r0=0x3fe3f;
dm(LAR)=r0; /* LAR Register:  LBUF2->port 0 */

Listing 9.3  Link Token Passing Example (continues)
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r0=0x00000100;
dm(LCTL)=r0; /* LBUF2=rx (slave), No DMA */

bit clr mode1 NESTM;    /* disable interrupt nesting */
/* to avoid breaking sync */

r0=dm(LBUF2); /* read token permission from master */

/* The following check if the first word after DMA is token */
/* permission.  If it is not, the slave read other dummy words */
/* and continue to be slave.  If it is token permission, */
/* continue the original flow and the slave will decide if */
/* if will accept the permissiom. */

r1=trw; /* token release word */

r0 = r0 - r1; /* test received word and set ALU flag */
if NE jump second_slave_mode;   /* not token permission */
nop;
nop;

/* The following 3 lines shows how to reject token      */
/* If commented-out, this slave will change to master   */
/* if uncommented, this slave will continue to be slave */

/* LCNTR=20, DO reject_token UNTIL LCE;
reject_token: nop;
jump second_slave_mode;
nop; /* delay read of incoming message */
nop;

master_mode:

r0=dm(LBUF2); /* Read 3 times to clean the */
r0=dm(LBUF2); /* ex-master’s LBUF.  So, ex-master */
r0=dm(LBUF2); /* will release the token */

Listing 9.3  Link Token Passing Example (continues)
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/*_______________Protection to avoid two transmitting link
ports________________*/

bit clr imask LSRQI;    /* Disable Link port service request interrupt
*/

r0=0x10;
dm(LSRQ)=r0; /* Unmask LSRQ lport 0 transmit request status */

r0=0x00000000;
dm(LCTL)=r0; /* LCTL: disable all LBUFs */

disabled3:
r0=dm(LSRQ); /* Check to ensure that the pull down on LxACK */
r0=FEXT r0 BY 20:1; /* has pulled the LxACK low.  Both the original */
r0=pass r0; /* slave and original master will be in sync. */
if NE jump disabled3; /* The next assertion of LxACK will signify the */

/* master has become the slave. */
slave_enabled:

r0=dm(LSRQ); /* Check to ensure that the original master has */
r0=FEXT r0 BY 20:1; /* become the slave by observing that the */
r0=pass r0; /* assertion of LxACK has generated an LxRRQ */
if EQ jump slave_enabled;

/
*______________________________________________________________________________*/

r0=0x3f1ff;
dm(LAR)=r0; /* LAR Register:  LBUF3->port 0 */

r0=0x00009000;
dm(LCTL)=r0; /* LBUF3=tx,  no DMA */

r0=@source_3; /* Tx DMA size */
dm(LBUF3)=r0; /* send DMA size across */

Listing 9.3  Link Token Passing Example (continues)
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r0=0xc0;
wait: r1=dm(LCOM); /* check if LBUF3 is empty */

r0=r0 AND r1;
if NE jump wait; /* if DMA size not thru, wait */
nop;

r0=source_3;
dm(II5)=r0; /* Tx DMA setup */

r0=1;
dm(IM5)=r0; /* Set modify to 1 */

r0=@source_3;
dm(C5)=r0; /* Set DMA count to length of data buffer */

r0=0x0000b000; /* LCTL Register:32-bit data,   LBUF3=Tx */
dm(LCTL)=r0; /* enable DMA on LBUF3 */

/* This will start off the DMA transfer */
/* Always write LCTL after LAR */

bit clr irptl LP3I;     /* clear pending Link buffer 3 interrupt. */
bit set imask LP3I;     /* Enable Link buffer 3 interrupt */

rti;

second_slave_mode:

r0=dm(LBUF2);           /* read 3 times to clean the */
r0=dm(LBUF2);           /* ex-master’s LBUF.  So, ex-master */
r0=dm(LBUF2);           /* will release the token */

r0=0x3f1ff;
dm(LAR)=r0; /* LAR Register:  LBUF3->port 0 */

r0=0x00001000;
dm(LCTL)=r0; /* enable LBUF3 Rx, No DMA */

r1=dm(LBUF3); /* read new DMA size */

Listing 9.3  Link Token Passing Example (continues)



9 Link Ports

9 – 44

r0=destination_2;
dm(II5)=r0; /* Set DMA rx index to start of dest buffer */

r0=1;
dm(IM5)=r0; /* Set modify to 1 */

r0=@destination_2;
dm(C5)=r1; /* real DMA Rx size should be got from master */

r0=0x00003000; /* LCTL Register:32-bit data,      LBUF3=Rx */
dm(LCTL)=r0; /* enable DMA on LBUF3 */

/* This will start off the DMA transfer */
/* Always write LCTL after LAR */

bit clr irptl LP3I;     /* clear pending Link buffer 3 interrupt. */
bit set imask LP3I;     /* Enable Link buffer 3 interrupt */

rti;

/*_______________Start of Original Slave Routine________________________*/

start_as_slave:

r0=destination_1;
dm(II4)=r0; /* Set DMA rx index to start of dest buffer */

r0=1;
dm(IM4)=r0; /* Set DMA modify (stride) to 1 */

r0=@destination_1;
dm(C4)=r0; /* real DMA Rx size should be from master */

r0=0xc000; /* LCOM Register: 2x rate, */
dm(LCOM)=r0; /* note:use r0=0x10000 on rev. 0.X silicon */

/* original :  0x0000c000 */

r0=0x3fe3f; /* LAR Register:  LBUF2->port 0 */
dm(LAR)=r0; /* All others inactive */

Listing 9.3  Link Token Passing Example (continues)
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bit set imask LP2I;     /* Enable Link buffer 2 interrupt */
bit set mode1 IRPTEN;   /* Global interrupt enable */

r0=0x00000300; /* LCTL Register:32-bit data,   LBUF2=Rx */
dm(LCTL)=r0; /* enable DMA on LBUF2 */

/* This will start off the DMA transfer */
/* Always write LCTL after LAR */

wait_2:   idle; /* Wait for Link buffer 2 interrupt */
          jump wait_2; /* Will end up here after entire DMA complete
*/

  nop; /* All slave interrupts will come back to here */
  nop;

.ENDSEG;

Listing 9.3  Link Token Passing Example
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Serial Ports

10.1 OVERVIEW
The ADSP-2106x has two independent, synchronous serial ports,
SPORT0 and SPORT1, that provide an I/O interface to a wide variety
of peripheral devices. Each serial port has its own set of control
registers and data buffers. With a range of clock and frame
synchronization options, the SPORTs allow a variety of serial
communication protocols and provide a glueless hardware interface to
many industry-standard data converters and CODECs.

The serial ports can operate at the full clock rate of the processor,
providing each with a maximum data rate of n Mbit/s, where n equals
the processor clock frequency. Independent transmit and receive
functions provide greater flexibility for serial communications. Serial
port data can be automatically transferred to and from on-chip
memory using DMA block transfers. Each of the serial ports offers a
TDM (time division multiplexed) multichannel mode.

Serial port clocks and frame syncs can be internally generated by the
ADSP-2106x or received from an external source. The serial ports can
operate with little-endian or big-endian transmission formats, with
word lengths selectable from 3 to 32 bits. They offer selectable
synchronization and transmit modes as well as optional µ-law or
A-law companding in hardware.

The serial ports offer the following features and capabilities:

• Independent transmit and receive functions.
• Can transfer data words up to 32 bits in length, either MSB-first or LSB-first.
• Double-buffering of data—both receive and transmit functions have a

data buffer register as well as a shift register; the double-buffering
provides additional time to service the SPORT.

• A-law and µ-law hardware companding on transmitted and received
words.

• Serial clock and frame sync signals can be generated internally, in a
wide range of frequencies, or input from an external source.

• Interrupt-driven, single-word transfers to and from on-chip memory
controlled by the ADSP-2106x core.
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• DMA transfers to and from on-chip memory—each SPORT can
automatically receive and/or transmit an entire block of data.

• Chained DMA operations of multiple data blocks.
• Multichannel mode for TDM interfaces—each SPORT can receive and

transmit data selectively from channels of a time-division-multiplexed
serial bitstream; this mode can be useful for T1 interfaces.

Table 10.1 shows the pins of each serial port:

SPORT0 SPORT1
Function Pins Pins
Transmit Data DT0 DT1
Transmit Clock TCLK0 TCLK1
Transmit Frame Sync TFS0 TFS1
Receive Data DR0 DR1
Receive Clock RCLK0 RCLK1
Receive Frame Sync RFS0 RFS1

Table 10.1  Serial Port Pins

A serial port receives serial data on its DR input and transmits serial
data on its DT output. It can receive and transmit simultaneously, for
full duplex operation.

Serial communications are synchronized to a clock signal—every data
bit must be accompanied by a clock pulse. Each serial port can
generate or receive its own transmit clock signal (TCLK) and receive
clock signal (RCLK). Internally-generated serial clock frequencies are
configured in the TDIVx and RDIVx registers.

In addition to the serial clock signal, data may be signalled by a frame
synchronization signal. The framing signal can occur either at the
beginning of an individual word or at the beginning of a block of
words. The configuration of frame synch signals depends upon the
type of serial device connected to the ADSP-2106x. Each serial port can
generate or receive its own transmit frame sync signal (TFS) and
receive frame sync signal (RFS). Internally-generated frame sync
frequencies are configured in the TDIVx and RDIVx registers.

Figure 10.1 shows a block diagram of a serial port. Data to be
transmitted is written to the TX buffer. The data is (optionally)
compressed in hardware, then automatically transferred to the
transmit shift register. The data in the shift register is then shifted out
on the SPORT’s DT pin, synchronous to the TCLK transmit clock. If
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framing signals are used, the TFS signal indicates the start of the serial
word transmission. The DT pin is always driven, i.e. not tristated, if the
serial port is enabled (SPEN=1 in the STCTLx control register), unless
it is in multichannel mode and an inactive time slot occurs. (See Section
10.7, “Multichannel Operation.”)

The receive portion of the SPORT shifts in data from the DR pin,
synchronous to the RCLK receive clock. If framing signals are used, the
RFS signal indicates the beginning of the serial word being received.
When an entire word is shifted in, the data is (optionally) expanded,
then automatically transferred to the RX buffer.

Note: The ADSP-2106x SPORTs are not UARTs and cannot be used to
communicate with an RS-232 device or any other asynchronous
communications protocol. One way to implement RS-232-compatible
communications with the ADSP-2106x, however, is to use two of the
FLAG pins as asynchronous data receive and transmit signals. For an
example of how to do this, see the Software UART chapter of Digital
Signal Processing Applications Using The ADSP-2100 Family, Volume 2.

32

DM Data Bus
PM Data Bus
I/O Data Bus

32

TXn

Transmit Data Buffer

Hardware Companding
(Compression)

Transmit Shift Register

32

32

RXn

Receive Data Buffer
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(Expansion)

Receive Shift Register

32

Serial Port
Control

DRnRCLKnRFSnTCLKn TFSnDTn

Figure 10.1  Serial Port Block Diagram
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10.1.1 SPORT Interrupts
Each serial port has a transmit DMA interrupt and a receive DMA
interrupt. When serial port DMA is not enabled, the interrupts occur
for each data word transmitted and received. The priority of the serial
port interrupts is shown in Table 10.2.

Interrupt
Name* Interrupt
SPR0I SPORT0 Receive DMA Channel Highest Priority
SPR1I SPORT1 Receive DMA Channel
SPT0I SPORT0 Transmit DMA Channel
SPT1I SPORT1 Transmit DMA Channel Lowest Priority

Table 10.2  SPORT Interrupts
* These names are defined in the def21060.h include file supplied with the
ADSP-21000 Family Development Software.

SPORT Interrupts occur on the second system clock (CLKIN) after the
last bit of the serial word is latched in or driven out.

10.2 SPORT RESETRESET
There are two ways to reset the serial ports: a hardware reset using the
RESET pin of the processor, and a software reset accomplished by
clearing the serial port’s enable bit (SPEN) in the STCTLx and SRCTLx
control registers. Each method has a different effect on the serial port.

A hardware reset disables the serial ports by clearing the STCTLx and
SRCTLx control registers (including the SPEN enable bits) and the
TDIVx and RDIVx frame sync divisor registers. Any ongoing
operations are aborted.

A software reset of the SPEN enable bit(s) disables the serial port(s)
and aborts any ongoing operations. Status bits are also cleared.

The serial ports will be ready to start transmitting or receiving data
two CLKIN cycles after they are enabled (in the STCTLx or SRCTLx
control register). No serial clocks will be lost from this point on.
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10.3 SPORT CONTROL REGISTERS & DATA BUFFERS
The registers used to control and configure the serial ports are part of the
IOP register set. Each SPORT has its own set of the following control
registers and data buffers:

Register
Name* Function
STCTLx SPORT Transmit Control Register
TXx Transmit Data Buffer
TDIVx Transmit Clock & Frame Sync Divisors
MTCSx Multichannel Transmit Select
MTCCSx Multichannel Transmit Compand Select

SRCTLx SPORT Receive Control Register
RXx Receive Data Buffer
RDIVx Receive Clock & Frame Sync Divisors
MRCSx Multichannel Receive Select
MRCCSx Multichannel Receive Compand Select

SPATHx SPORT Path Length (for mesh multiprocessing)

KEYWDx SPORT Receive Comparison**
KEYMASKx SPORT Receive Comparison Mask**
 * x = 0, 1
** ADSP-21061 only

Table 10.3 (on the next page) shows the memory-mapped address and
reset initialization value of each SPORT register. All of the registers are 32
bits wide, except for the 16-bit SPATHx register and location 0x00FF.
(Note that for standard, non-mesh-multiprocessing operation of the serial
ports, the SPATHx register and location 0x00FF must remain equal to the
reset initialization value, 0x0001.)

The SPORT control registers are programmed by writing to the
appropriate address in memory. The symbolic names of the registers and
individual control bits can be used in ADSP-2106x programs—the
#define definitions for these symbols are contained in the file
def21060.h which is provided in the INCLUDE directory of the ADSP-
21000 Family Development Software. The def21060.h file is shown in
the Control/Status Registers appendix of this manual. All control and status
bits in the SPORT registers are active high unless otherwise noted.

Because the SPORT registers are memory-mapped they cannot be written
with data coming directly from memory. They must instead be written
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Memory Register Initialization
Address Name After RESET Description

0x00E0 STCTL0 0x0000 0000 SPORT0 Transmit Control Register
0x00E1 SRCTL0 0x0000 0000 SPORT0 Receive Control Register
0x00E2 TX0 ni SPORT0 Transmit Data Buffer
0x00E3 RX0 ni SPORT0 Receive Data Buffer
0x00E4 TDIV0 ni SPORT0 Transmit Divisor
0x00E5 reserved
0x00E6 RDIV0 ni SPORT0 Receive Divisor
0x00E7 reserved
0x00E8 MTCS0 ni SPORT0 Multichannel Transmit Select
0x00E9 MRCS0 ni SPORT0 Multichannel Receive Select
0x00EA MTCCS0 ni SPORT0 Multichannel Transmit Compand Select
0x00EB MRCCS0 ni SPORT0 Multichannel Receive Compand Select
0x00EC KEYWD ni SPORT0 Receive Comparison (ADSP-21061)
0x00ED KEYMASK ni SPORT0 Receive Comparison Mask (ADSP-21061)
0x00EE SPATH0 0x0001 SPORT0 Path Length (Mesh Multiprocessing)
0x00EF 0x0001 reserved

0x00F0 STCTL1 0x0000 0000 SPORT1 Transmit Control Register
0x00F1 SRCTL1 0x0000 0000 SPORT1 Receive Control Register
0x00F2 TX1 ni SPORT1 Transmit Data Buffer
0x00F3 RX1 ni SPORT1 Receive Data Buffer
0x00F4 TDIV1 ni SPORT1 Transmit Divisor
0x00F5 reserved
0x00F6 RDIV1 ni SPORT1 Receive Divisor
0x00F7 reserved
0x00F8 MTCS1 ni SPORT1 Multichannel Transmit Select
0x00F9 MRCS1 ni SPORT1 Multichannel Receive Select
0x00FA MTCCS1 ni SPORT1 Multichannel Transmit Compand Select
0x00FB MRCCS1 ni SPORT1 Multichannel Receive Compand Select
0x00FC KEYWD ni SPORT1 Receive Comparison (ADSP-21061)
0x00FD KEYMASK ni SPORT1 Receive Comparison Mask (ADSP-21061)
0x00FE SPATH1 0x0001 SPORT1 Path Length (Mesh Multiprocessing)
0x00FF 0x0001 reserved

  ni= not initialized

Table 10.3  SPORT Register Addresses & Initialization

from (or read into) ADSP-2106x core registers, usually one of the general-
purpose universal registers of the register file (R15–R0). The SPORT
control registers can also be written or read by external devices, i.e.
another ADSP-2106x or a host processor, to set up a serial port DMA
operation, for example.

10.3.1 Register Writes & Effect Latency
SPORT register writes are internally completed at the end of the same
CLKIN cycle in which they occur. The register will therefore read back
the newly written value on the very next cycle. When a read of one of the
STCTLx or SRCTLx control registers is immediately followed by a write
to that register, however, the write may take two cycles to complete.
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After a write to a SPORT register, control and mode bit changes
generally take effect in the second CLKIN cycle after the write is
completed. The serial ports will be ready to start transmitting or
receiving two CLKIN cycles after they are enabled (in the STCTLx or
SRCTLx control register). No serial clocks will be lost from this point
on.

10.3.2 Transmit & Receive Data Buffers (TX, RX)
TX0 and TX1 are the transmit data buffers for SPORT0 and SPORT1.
They are 32-bit buffers which must be loaded with the data to be
transmitted; the data is loaded either by the DMA controller or by the
program running on the ADSP-2106x core. RX0 and RX1 are the
receive data buffers for SPORT0 and SPORT1. They are 32-bit buffers
which are automatically loaded from the receive shifter when a
complete word has been received. Word lengths of less than 32 bits are
right-justified in the receive and transmit buffers.

The TX buffers act like a two-location FIFO because they have a data
register plus an output shift register (see Figure 10.1); two 32-bit words
may be stored in TX at any one time. When the TX buffer is loaded and
any previous word has been transmitted, the buffer contents are
automatically loaded into the output shifter. An interrupt is generated
when the output shifter has been loaded, signifying that the TX buffer
is ready to accept the next word (i.e. the TX buffer is “not full”). This
interrupt will not occur if serial port DMA is enabled or if the
corresponding mask bit in the IMASK register is set.

The transmit underflow status bit (TUVF) will be set in the transmit
control register when a transmit frame synch occurs and no new data
has been loaded into TX. The TUVF status bit is “sticky” and is only
cleared by disabling the serial port.

The RX buffers act like a three-location FIFO because they have two
data registers plus an input shift register. Two complete 32-bit words
can be stored in RX while a third word is being shifted in. The third
word will overwrite the second if the first word has not been read out
(by the ADSP-2106x core or the DMA controller). When this happens,
the receive overflow status bit (ROVF) will be set in the receive control
register. Almost three complete words can be received without the RX
buffer being read before overflow occurs. The overflow status is
generated on the last bit of third word. The ROVF status bit is “sticky”
and is only cleared by disabling the serial port.
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An interrupt is generated when the RX buffer has been loaded with a
received word (i.e. the RX buffer is “not empty”). This interrupt will be
masked out if serial port DMA is enabled or if the corresponding bit in
the IMASK register is set.

10.3.2.1 Reading & Writing RX, TX
If your ADSP-2106x program causes the core processor to attempt a
read from an empty RX buffer or a write to a full TX buffer, the access
is delayed until the buffer is accessed by the external I/O device. (This
delay is called a core processor hang.) If it is not known whether the
core processor can access the RX or TX buffer without a hang, the
buffer’s full or empty status should be read first (in STCTLx or SRCTLx)
to determine if the access can be made. To prevent this type of hang
condition from occurring, the BHD (Buffer Hang Disable) bit can be set
in the SYSCON register.

The status bits in STCTLx and SRCTLx are updated during reads and
writes from the core processor even when the serial port is disabled.

The serial port should be disabled when writing to the RX buffer or
reading from the TX buffer.

10.3.3 Transmit & Receive Control Registers (STCTL, SRCTL)
The main control registers for each serial port are the transmit control
register, STCTLx, and the receive control register, SRCTLx. These
registers are defined in Tables 10.4 and 10.5, and are pictured in
Figures 10.2 and 10.3. When changing operating modes, a serial port
control register should be cleared (i.e. written with all zeros) before the
new mode is written to the register.

The Transmit Underflow Status bit (TUVF) is set whenever the TFS
signal occurs (from either external or internal source) while the TX
buffer is empty. The internally generated TFS may be suppressed
whenever TX is empty by clearing the DITFS control bit (DITFS=0).

When DITFS=0, the default, the transmit frame sync signal (TFS) is
dependent upon new data being present in the TX buffer—the TFS
signal will only be generated for new data. Setting DITFS to 1 selects
data-independent frame syncs. This causes the TFS signal to be
generated whether or not new data is present, transmitting the
contents of the TX buffer regardless. Serial port DMA will typically
keep the TX buffer full, and when the DMA operation is complete the
last word in TX will be continuously transmitted.
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The TXS status bits indicate whether the TX buffer is full (11), empty
(00), or partially full (10). To test for space in TX, therefore, test for
TXS0 (bit 30) equal to zero. To test for the presence of any data in TX,
test for TXS1 (bit 31) equal to one.

Bit(s) Name Definition
0 SPEN* SPORT Enable
1-2 DTYPE Data Type (data format, companding)
3 SENDN Serial Word Endian (1=LSB first)
4-8 SLEN Serial Word Length – 1
9 PACK Data Word Unpacking (32-bit to 16-bit)
10 ICLK* Internally Generated Transmit Clock
11 – reserved
12 CKRE Data, Frame Sync Sampling on Clock Rising Edge
13 TFSR* Transmit Frame Sync Required
14 ITFS* Internally Generated TFS
15 DITFS Data-Independent TFS
16 LTFS Active Low TFS
17 LAFS* Late TFS
18 SDEN SPORT Transmit DMA Enable
19 SCHEN SPORT Transmit DMA Chaining Enable
20-23 MFD Multichannel Frame Delay
24-28 CHNL** Current Channel Status (read-only)
29 TUVF** Transmit Underflow Status (sticky, read-only)
30-31 TXS** TX Buffer Status (read-only)

  11=full, 00=empty, 10=partially full

Table 10.4  STCTLx Transmit Control Register Bits
* Must be set to 0 for multichannel operation.

** Status bits are read-only. They are cleared by disabling the serial port (setting
SPEN=0). TXS may subsequently change state if the data is read or written by the
ADSP-2106x core while the SPORT is disabled.
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MFD
Multichannel Frame Delay

CHNL
Current Channel Select (read-only)

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

LTFS
Active Low TFS
1=active low, 0=active high

LAFS*
Late TFS
1=late TFS, 0=early TFS

TUVF
Transmit Underflow Status (sticky, read-only)

SDEN
SPORT Transmit DMA Enable
1=enable DMA, 0=disable DMA

SCHEN
SPORT Transmit DMA Chaining Enable
1=enable chaining, 0=disable chaining

TXS
TX Data Buffer Status (read-only)

11=full, 00=empty, 10=partially full

11 10 9 8 7 6 5 4 3 2 1 0

00000000000

15 14 13 12

000

SPEN*
SPORT Enable
1=enable, 0=disable

DTYPE
Data Type

SENDN
Serial Word Endian
0=MSB-first, 1=LSB-first

SLEN
Serial Word Length – 1

PACK
16-bit to 32-bit Word Packing
1=packing, 0=no packing

DITFS
Data-Independent TFS

1=data-independent, 0=data-dependent

TFSR*
Tranmsit Frame Sync Required

1=TFS required, 0=TFS not required

CKRE
Clock Edge for Data, Frame Sync Sampling

1=rising edge, 0=falling edge

ICLK
Internally Generated Receive Clock
1=internal clock, 0=external clock

* Must be cleared for multichannel operation.

0 0

ITFS*
Internally Generated TFS

1=internal TDFS, 0=external TFS 

Figure 10.2   STCTL0, STCTL1 Transmit Control Registers
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Bit(s) Name Definition
0 SPEN* SPORT Enable
1-2 DTYPE Data Type (data format, companding)
3 SENDN Serial Word Endian (1=LSB first)
4-8 SLEN Serial Word Length – 1
9 PACK Data Word Packing (16-bit to 32-bit)
10 ICLK Internally Generated Receive Clock
11 – reserved
12 CKRE Data, Frame Sync Sampling on Clock Rising Edge
13 RFSR* Receive Frame Sync Required
14 IRFS Internally Generated RFS
15  – reserved
16 LRFS Active Low RFS
17 LAFS* Late RFS
18 SDEN SPORT Receive DMA Enable
19 SCHEN SPORT Receive DMA Chaining Enable
20  – reserved
21 D2DMA* 2-Dimensional DMA Array Enable
22 SPL* SPORT Loopback (test)
23 MCE Multichannel Enable
24-28 NCH Number of Channels – 1  (multichannel operation)
29 ROVF** Receive Overflow Status (sticky, read-only)
30-31 RXS** RX Buffer Status (read-only)

  11=full, 00=empty, 10=partially full

Table 10.5  SRCTLx Receive Control Register Bits
* Must be cleared for multichannel operation.
** Status bits are read-only. They are cleared by disabling the serial port (setting
SPEN=0). RXS may subsequently change state if the data is read or written by the
ADSP-2106x core while the SPORT is disabled.

The RXS status bits indicate whether the RX buffer is full (11), empty
(00), or partially full (10). To test for space in RX, therefore, test for
RXS0 (bit 30) equal to zero. To test for the presence of any data in RX,
test for RXS1 (bit 31) equal to one.

The Receive Overflow Status bit (ROVF) is set whenever new data is
received while the RX buffer is full; the new data overwrites the
existing data.
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MCE
Multichannel Enable
1=enable, 0=disable

NCH
Number of Channels – 1

SPL*
SPORT Loopback

1=enable, 0=disable
IMAT**
Receive Comparison Accept
1=accept on true, 0=accept on false
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000000000000
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0000

16

LRFS
Active Low RFS
1=active low, 0=active high

LAFS*
Late RFS
1=late RFS, 0=early RFS

ROVF
Receive Overflow Status (sticky, read-only)

SDEN
SPORT Receive DMA Enable
1=enable DMA, 0=disable DMA

SCHEN
SPORT Receive DMA Chaining Enable
1=enable chaining, 0=disable chaining

RXS
RX Data Buffer Status (read-only)

11=full, 00=empty, 10=partially full

11 10 9 8 7 6 5 4 3 2 1 0

00000000000

15 14 13 12

000

SPEN*
SPORT Enable
1=enable, 0=disable

DTYPE
Data Type

SENDN
Serial Word Endian
0=MSB-first, 1=LSB-first

SLEN
Serial Word Length – 1

PACK
16-bit to 32-bit Word Packing
1=packing, 0=no packing

IRFS
Internally Generated RFS

1=internal RFS, 0=external RFS

RFSR*
Receive Frame Sync Required

1=RFS required, 0=RFS not required

CKRE
Clock Edge for Data, Frame Sync Sampling

1=rising edge, 0=falling edge

ICLK
Internally Generated Receive Clock
1=internal clock, 0=external clock*  Must be cleared for multichannel operation.

** ADSP-21061 only

0 0

D2DMA*
2-Dimensional DMA Array Enable

IMODE**
Receive Comparison Enable

1=enable, 0=disable

Figure 10.3   SRCTL0, SRCTL1 Receive Control Registers
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10.3.4 Clock & Frame Sync Frequencies (TDIV, RDIV)
The TDIVx and RDIVx registers contain divisor values which
determine the frequencies for internally generated clocks and frame
syncs. These registers are defined in Tables 10.6 and 10.7, and are
pictured in Figures 10.4 and 10.5.

Bits Name Definition
15-0 TCLKDIV Transmit Clock Divisor
31-16 TFSDIV Transmit Frame Sync Divisor

Table 10.6 Transmit Divisor Register Bit Fields

Bits Name Definition
15-0 RCLKDIV Receive Clock Divisor
31-16 RFSDIV Receive Frame Sync Divisor

Table 10.7  Receive Divisor Register Bit Fields

Figure 10.4  TDIV0, TDIV1 Transmit Divisor Registers

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

TCLKDIV
Transmit Clock Divisor

TFSDIV
Transmit Frame Sync Divisor
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11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

RCLKDIV
Receive Clock Divisor

RFSDIV
Receive Frame Sync Divisor

Figure 10.5  RDIV0, RDIV1 Receive Divisor Registers

TCLKDIV and RCLKDIV specify how many times the ADSP-2106x
system clock (CLKIN) is divided to generate the transmit and receive
clocks. The divisor is a 16-bit value, allowing a wide range of serial
clock rates. The following equation is used to calculate the serial clock
frequency:

       fCLKIN
serial clock frequency  = ———————

(xCLKDIV + 1)

The maximum serial clock frequency is equal to the ADSP-2106x
system clock frequency, which occurs when xCLKDIV is set to zero.

Use the following equation to determine the value of xCLKDIV to use,
given the CLKIN frequency and desired serial clock frequency:

fCLKIN
xCLKDIV  =   —————————— –  1

serial clock frequency

TFSDIV and RFSDIV specify how many transmit or receive clock
cycles are counted before generating a TFS or RFS pulse (when the
frame synch is internally generated). In this way a frame sync can be
used to initiate periodic transfers. The counting of serial clock cycles
applies to either internally or externally generated serial clocks.
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The formula for the number of cycles between frame synch pulses is:

# of serial clock cycles between frame sync assertions = xFSDIV + 1

Use the following equation to determine the value of xFSDIV to use,
given the serial clock frequency and desired frame sync frequency:

serial clock frequency
xFSDIV  =       —————————— –  1

frame sync frequency

The frame sync would thus be continuously active if xFSDIV=0.
However, the value of xFSDIV should not be less than the serial word
length minus one (the value of the SLEN field in the transmit or
receive control register), as this may cause an external device to abort
the current operation or cause other unpredictable results. If the serial
port is not being used, the xFSDIV divisor can be used as a counter for
dividing an external clock or for generating a periodic pulse or
periodic interrupt. The serial port must be enabled for this mode of
operation to work.

10.3.4.1 Maximum Clock Rate Restrictions
Caution should be exercised when operating with externally generated
transmit clocks near the frequency of the ADSP-2106x system clock.
There is a delay between when the clock arrives at the TCLKx pin and
when data is output—this delay may limit the receiver’s speed of
operation. Refer to the data sheet for exact timing specifications. For
reliable operation, it is recommended that full-speed serial clocks only
be used when receiving with an externally generated clock and externally
generated frame sync (ICLK=0, IRFS=0).

Externally-generated late transmit frame syncs also experience a delay
from when they arrive to when data is output—this can also limit the
maximum serial clock speed. Refer to the data sheet for exact timing
specifications.

The serial ports handle word lengths of 3 to 32 bits, but transmitting or
receiving words smaller than 7 bits at the full clock rate of the
ADSP-2106x may cause incorrect operation when DMA chaining is
enabled. Chaining disables the ADSP-2106x’s internal I/O bus for
several cycles while the new TCB parameters are being loaded. Receive
data may be lost (i.e. overwritten) during this period.
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10.4 DATA WORD FORMATS
The format of the data words transmitted over the serial ports is
configured by the DTYPE, SENDN, SLEN, and PACK bits of the
STCTLx and SRCTLx control registers.

10.4.1 Word Length
The serial ports handle word lengths of 3 to 32 bits. The word length is
configured in the 5-bit SLEN field in the STCTLx and SRCTLx control
registers. The value of SLEN is equal to the word length minus one:

SLEN = Serial Word Length – 1

The SLEN value should not be set to zero or one. Words smaller than
32 bits are right-justified in the RX and TX buffers, residing in the least
significant bit positions.

Transmitting or receiving words smaller than 7 bits at the full clock
rate of the ADSP-2106x may cause incorrect operation when DMA
chaining is enabled. Chaining disables the ADSP-2106x’s internal I/O
bus for several cycles while the new TCB parameters are being loaded.
Receive data may be lost (i.e. overwritten) during this period.

10.4.2 Endian Format
Endian format determines whether the serial word is transmitted
MSB-first or LSB-first. Endian format is selected by the SENDN bit in
the STCTLx and SRCTLx control registers. When SENDN=0, serial
words are transmitted (or received) MSB-first. When SENDN=1, serial
words are transmitted (or received) LSB-first.

10.4.3 Data Packing & Unpacking
Received data words of 16 bits or less may be packed into 32-bit
words, and 32-bit words being transmitted may be unpacked into
16-bit words. Word packing and unpacking is selected by the PACK
bit in the SRCTLx and STCTLx control registers.

When PACK=1 in the receive control register (SRCTLx), two
successive words received are packed into a single 32-bit word.

When PACK=1 in the transmit control register (STCTLx), each 32-bit
word is unpacked and transmitted as two 16-bit words.
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The first 16-bit (or smaller) word is right-justified in bits 15-0 of the
packed word, and the second 16-bit (or smaller) word is right-justified
in bits 31-16. This applies for both receive (packing) and transmit
(unpacking) operations. Companding may be used when word
packing or unpacking is being used.

When serial port data packing is enabled, the transmit and receive
interrupts are generated for the 32-bit packed words, not for each
16-bit word.

Hint: When 16-bit received data is packed into 32-bit words and stored
in normal word space in ADSP-2106x internal memory, the 16-bit
words can be read or written with short word space addresses.

10.4.4 Data Type
The DTYPE field of the STCTLx and SRCTLx control registers specifies
one of four data formats (for non-multichannel operation):

 DTYPE Data Formatting
 00 Right-justify, zero-fill unused MSBs
 01 Right-justify, sign-extend into unused MSBs
 10 Compand using µ-law
 11 Compand using A-law

These formats are applied to serial data words loaded into the RX and
TX buffers. (TX data words are not actually zero-filled or sign-
extended, since only the significant bits are transmitted.)

For multichannel operation, the companding selection and MSB-fill
selection is independent:

 DTYPE Data Formatting
 x0 Right-justify, zero-fill unused MSBs
 x1 Right-justify, sign-extend into unused MSBs
 0x Compand using µ-law
 1x Compand using A-law

Linear transfers will occur if the channel is active but companding is
not selected for that channel. Companded transfers will occur if the
channel is active and companding is selected for that channel. The
multichannel compand select registers, MTCCSx and MRCCSx, are
used to specify which transmit and receive channels are companded.
See “Channel Selection Registers” in the “Multichannel Operation”
section of this chapter.
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Transmit sign extension is selected by bit 0 of DTYPE in the STCTLx
register and is common to all transmit channels. Receive sign extension
is selected by bit 0 of DTYPE in the SRCTLx register and is common to
all receive channels. If bit 0 of DTYPE is set, sign extension will occur
on selected channels that do not have companding selected. If this bit
is not set, the word will contain 0s in the MSBs.

10.4.5 Companding
Companding (compressing/expanding) is the process of logarithmically
encoding and decoding data to minimize the number of bits that must
be sent. The ADSP-2106x serial ports support the two most widely
used companding algorithms, A-law and µ-law, performed according
to the CCITT G.711 specification. The type of companding can be
selected independently for each SPORT. Companding is selected by
the DTYPE field of the STCTLx and SRCTLx control registers.

When companding is enabled, the data in the RX0 or RX1 buffer is the
right-justified, sign-extended expanded value of the eight LSBs
received. Likewise, a write to TX0 or TX1 causes the 32-bit value to be
compressed to eight LSBs (sign-extended to the width of the transmit
word) before it is transmitted. If the 32-bit value is greater than the
13-bit A-law or 14-bit µ-law maximum, it is automatically compressed
to the maximum value.

Because the values in the TX and RX buffers are actually companded
in-place, the companding hardware can be used without transmitting
(or receiving) any data, for example during testing or debugging. This
operation requires a single cycle of overhead, as described below. To
compand data in-place, without transmitting, the following sequence
of operations should be used:

1. Enable companding in the DTYPE field of the STCTLx transmit
control register.

2. Write a 32-bit data word to TX. (The companding is calculated in this cycle.)

3. Wait one cycle. A NOP instruction can be used to do this; if a NOP is
not inserted, the ADSP-2106x core will be held off for one cycle
anyway. (This allows the serial port companding hardware to reload TX
with the companded value.)

4. Read the 8-bit companded value from TX.
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To expand data in-place, the same sequence of operations is used but
with RX rather than TX. When expanding data in this way, be sure that
the serial word length (SLEN) is set appropriately in the SRCTLx
control register.

With companding enabled, interfacing the ADSP-2106x serial port to a
codec requires little additional programming effort. If companding is
not selected, there are two formats available for received data words of
fewer than 32 bits: one that fills unused MSBs with zeros, and another
that sign-extends the MSB into the unused bits (see the previous
section, “Data Type”).

10.5 CLOCK SIGNAL OPTIONS
Each serial port has a transmit clock signal (TCLKx) and a receive clock
signal (RCLKx). The clock signals are configured by the ICLK and
CKRE bits of the STCTLx and SRCTLx control registers. Serial clock
frequency is configured in the TDIVx and RDIVx registers.

The receive clock pin may be tied to the transmit clock if a single clock
is desired for both input and output.

10.5.1 Internal vs. External Clocks
Both transmit and receive clocks can be independently generated
internally or input from an external source. The ICLK bit of the
STCTLx and SRCTLx control registers determines the clock source.

When ICLK=1, the clock signal is generated internally by the
ADSP-2106x and the TCLKx or RCLKx pins will be an output. The
clock frequency is determined by the value of the serial clock divisor
(TCLKDIV or RCLKDIV) in the TDIVx or RDIVx registers.

When ICLK=0, the clock signal is accepted as an input on the TCLKx
or RCLKx pins, and the serial clock divisors in the TDIVx/RDIVx
registers are ignored. The externally generated serial clock need not be
synchronous with the ADSP-2106x system clock.
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10.6 FRAME SYNC OPTIONS
Framing signals indicate the beginning of each serial word transfer.
The framing signals for each serial port are TFS (transmit frame
synchronization) and RFS (receive frame synchronization). A variety of
framing options are available; these options are configured in the serial
port control registers. The TFS and RFS signals of a serial port are
independent and are separately configured in the control registers.

10.6.1 Framed vs. Unframed
The use of frame sync signals is optional in serial port
communications. The TFSR (transmit frame sync required) and RFSR
(receive frame sync required) control bits determine whether frame
sync signals are required. These bits are located in the the STCTLx and
SRCTLx control registers.

When TFSR=1 or RFSR=1, a frame sync signal is required for every
data word. To allow continuous transmitting from the ADSP-2106x,
each new data word must be loaded into the TX buffer before the
previous word is shifted out and transmitted. (See “Data-Independent
Frame Syncs” in this chapter.)

When TFSR=0 or RFSR=0, the corresponding frame sync signal is not
required. A single frame sync is needed to initiate communications but
is ignored after the first bit is transferred. Data words are then
transferred continuously, unframed. (Caution: When DMA is enabled
in this mode, with frame syncs not required, DMA requests may be
held off by chaining or may not be serviced frequently enough to
guarantee continuous unframed data flow.)

Figure 10.6 illustrates framed serial transfers, which have the following
characteristics:

• TFSR and RFSR bits in STCTLx, SRCTLx control registers
determine framed or unframed mode.

• Framed mode requires a framing signal for every word. Unframed
mode ignores framing signal after first word.

• Unframed mode is appropriate for continuous reception.
• Active-low or active-high frame syncs selected with LTFS and LRFS

bits of STCTLx, SRCTLx control registers.
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Figure 10.6  Framed vs. Unframed Data

10.6.2 Internal vs. External Frame Syncs
Both transmit and receive frame syncs can be independently generated
internally or input from an external source. The ITFS and IRFS bits of
the STCTLx and SRCTLx control registers determine the frame sync
source.

When ITFS=1 or IRFS=1, the corresponding frame sync signal is
generated internally by the ADSP-2106x and the TFSx pin or RFSx pin
will be an output. The frequency of the frame sync signal is
determined by the value of the frame sync divisor (TFSDIV or
RFSDIV) in the TDIVx or RDIVx registers.

When ITFS=0 or IRFS=0, the corresponding frame sync signal is
accepted as an input on the TFSx pin or RFSx pins, and the frame sync
divisors in the TDIVx/RDIVx registers are ignored.

All of the various frame sync options are available whether the signal
is generated internally or externally.
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10.6.3 Active Low vs. Active High Frame Syncs
Frame sync signals may be either active high or active low (i.e.
inverted). The LTFS and LRFS bits of the STCTLx and SRCTLx control
registers determine the frame syncs’ logic level.

When LTFS=0 or LRFS=0, the corresponding frame sync signal will be
active high.

When LTFS=1 or LRFS=1, the corresponding frame sync signal will be
active low.

Active high frame syncs are the default; the LTFS and LRFS bits are
initialized to 0 after a processor reset.

10.6.4 Sampling Edge For Data & Frame Syncs
Data and frame syncs can be sampled on either the rising or falling
edges of the serial port clock signals. The CKRE bit of the STCTLx and
SRCTLx control registers selects the sampling edge.

For transmit data and frame syncs, setting CKRE=1 in STCTLx selects
the rising edge of TCLKx. CKRE=0 selects the falling edge. Note that
data and frame sync signals will change state on the clock edge that is
not selected.

For receive data and frame syncs, setting CKRE=1 in SRCTLx selects
the rising edge of RCLKx. CKRE=0 selects the falling edge.

The transmit and receive functions of two serial ports connected
together, for example, should always select the same value for CKRE
so that any internally generated signals are driven on one edge and
any received signals are sampled on the opposite edge.
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10.6.5 Early vs. Late Frame Syncs
Frame sync signals can occur during the first bit of each data word
(“late”) or during the serial clock cycle immediately preceding the first
bit (“early”). The LAFS bit of the STCTLx and SRCTLx control registers
configures this option.

When LAFS=0, early frame syncs are configured; this is the normal
mode of operation. In this mode, the first bit of the transmit data word
is available (and the first bit of the receive data word is latched) in the
serial clock cycle after the frame sync is asserted, and the frame sync is
not checked again until the entire word has been transmitted (or
received). (In multichannel operation, this is the case when frame
delay is 1.)

If data transmission is continuous in early framing mode (i.e. the last
bit of each word is immediately followed by the first bit of the next
word), then the frame sync signal occurs during the last bit of each
word. Internally generated frame syncs are asserted for one clock cycle
in early framing mode.

When LAFS=1, late frame syncs are configured; this is the alternate
mode of operation. In this mode, the first bit of the transmit data word
is available (and the first bit of the receive data word is latched) in the
same serial clock cycle that the frame sync is asserted. (In multichannel
operation, this is the case when frame delay is zero.) Receive data bits
are latched by serial clock edges, but the frame sync signal is only
checked during the first bit of each word. Internally generated frame
syncs remain asserted for the entire length of the data word in late
framing mode. Externally generated frame syncs are only checked
during the first bit.
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Figure 10.7  Normal vs. Alternate Framing

Figure 10.7 illustrates the two modes of frame signal timing:

• LAFS bits of STCTLx, SRCTLx control registers. LAFS=0 for early
frame syncs, LAFS=1 for late frame syncs.

• Early framing: frame sync precedes data by one cycle. Late framing:
frame sync checked on first bit only.

• Data transmitted MSB-first (SENDN=0) or LSB-first (SENDN=1).
• Frame sync and clock generated internally or externally.

10.6.6 Data-Independent Transmit Frame Sync
Normally the internally generated transmit frame sync signal (TFS) is
output only when the TX buffer has data ready to transmit. The DITFS
mode (data-independent transmit frame sync) allows the continuous
generation of the TFS signal, with or without new data. The DITFS bit
of the STCTLx control register configures this option.

When DITFS=0, the internally generated TFS is only output when a
new data word has been loaded into the TX buffer. Once data is loaded
into TX, it is not transmitted until the next TFS is generated. This mode
of operation allows data to be transmitted only at specific times.
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When DITFS=1, the internally generated TFS is output at its
programmed interval regardless of whether new data is available in
the TX buffer. Whatever data is present in TX will be retransmitted
with each assertion of TFS. The TUVF transmit underflow status bit
(in the STCTLx control register) will be set when this occurs (i.e. when
old data is retransmitted). The TUVF status bit is also set if the TX
buffer does not have new data when an externally generated TFS
occurs. Note that in this mode of operation, the first internally
generated TFS will be delayed until data has been loaded into the TX
buffer.

If the internally generated TFS is used, a single write to the TX data
register is required to start the transfer.

10.7 MULTICHANNEL OPERATION
The ADSP-2106x serial ports offer a multichannel mode of operation
which allows the SPORT to communicate in a time-division-
multiplexed (TDM) serial system. In multichannel communications,
each data word of the serial bit stream occupies a separate channel—
each word belongs to the next consecutive channel so that, for
example, a 24-word block of data contains one word for each of 24
channels.

The serial port can automatically select words for particular channels
while ignoring the others. Up to 32 channels are available for
transmitting or receiving—each SPORT can receive and transmit data
selectively from any of the 32 channels. In other words, the SPORT can
do any of the following on each channel:

1. transmit data,
2. receive data,
3. transmit and receive data, or
4. do nothing

Data companding and DMA transfers can also be used in multichannel
mode.

The DT pin is always driven, i.e. not tristated, if the serial port is
enabled (SPEN=1 in the STCTLx control register), unless it is in
multichannel mode and an inactive time slot occurs.

Note that (in multichannel mode) the TCLKx pin is always an input
and must be connected to its corresponding RCLKx pin.
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Figure 10.8 shows example timing for a multichannel transfer, which
have the following characteristics:

• Uses TDM method where serial data is sent or received on different
channels sharing the same serial bus.

• The number of channels is selected with the NCH bits of SRCTLx:
NCH=(# of channels) – 1.

• Can independently select transmit and receive channels.
• RFS signal start of frame.
• TFS is used as “Transmit Data Valid” for external logic; active only

during transmit channels.
• Example: Receive on channels 0 and 2.

Transmit on channels 1 and 2.

SCLK

B3 B2 B1 B2DR

RFS

B0 IGNORED B3

DT B2B3 B0 B3 B2B1

WORD 0 WORD 1 WORD 2

TFS

Figure 10.8  Multichannel Operation

10.7.1 Frame Syncs In Multichannel Mode
All receiving and transmitting devices in a multichannel system must
have the same timing reference. The RFS signal is used for this
reference, indicating the start of a block (or frame) of multichannel
data words.

When multichannel mode is enabled on a SPORT, both the transmitter
and receiver use RFS as a frame sync. This is true whether RFS is
generated internally or externally. The RFS signal is used to
synchronize the channels and restart each multichannel sequence. RFS
assertion occurs the beginning of the channel 0 data word.

TFS is used as a transmit data valid signal which is active during
transmission of an enabled word. Since the serial port’s DTx pin is
tristated when the time slot is not active, the TFS signal specifies
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whether or not DTx is being driven by the ADSP-2106x. The ADSP-
2106x drives TFS in multichannel mode whether or not ITFS is cleared.
After the TX transmit buffer is loaded, transmission begins and the TFS
signal is generated. When serial port DMA is being used, this may
happen several cycles after the multichannel transmission is enabled. If
a deterministic start time is required, the TX buffer should be
preloaded.

Note: TFS is normally left unconnected in multichannel mode, and the
RFS pins of the serial port(s) are usually connected together.

10.7.2 Multichannel Control Bits In STCTL, SRCTL
The STCTLx and SRCTLx control registers contain several bits used to
enable and configure multichannel operations.

10.7.2.1 Multichannel Enable
Multichannel mode is enabled by setting the MCE bit in the SRCTLx
control register.

When MCE=1, multichannel operation is enabled.

When MCE=0, all multichannel operations are disabled.

Multichannel operation is activated three cycles after MCE is set.
Internally generated frame sync signals activate four cycles after MCE
is set.

Setting the MCE bit enables multichannel operation for both receive
and transmit sides of the SPORT. A transmitting SPORT must therefore
be in multichannel mode if the receiving SPORT is in multichannel
mode.

10.7.2.2 Number Of Channels
The number of channels used in multichannel operation is selected by
the 5-bit NCH field in the SRCTLx control register. NCH should be set
to the actual number of channels minus one:

NCH = Number of Channels – 1

10.7.2.3 Current Channel Indicator
The 5-bit CHNL field in the STCTLx control register indicates which
channel is currently selected during multichannel operation. This field
is a read-only status indicator. CHNL(4:0) increments modulo
NCH(4:0) as each channel is serviced.
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10.7.2.4 Multichannel Frame Delay
The 4-bit MFD field in the STCTLx control register specifies a delay between
the frame sync pulse and the first data bit in multichannel mode. The value
of MFD is the number of serial clock cycles of the delay. Multichannel frame
delay allows the processor to work with different types of T1 interface
devices.

A value of zero for MFD causes the frame sync to be concurrent with the
first data bit. The maximum value allowed for MFD is 15. A new frame sync
may occur before data from the last frame has been received, because blocks
of data occur back to back.

A multichannel frame delay of at least one should be used when the
ADSP-2106x is generating frame syncs for the multichannel system and the
serial clock of the system is equal to CLKIN (the processor clock). If MFD is
not set to at least one, the master ADSP-2106x in a multiprocessing system
will not recognize the first frame sync after multichannel operation is
enabled. All succeeding frame syncs will be recognized normally, however.

10.7.3 Channel Selection Registers
Specific channels can be individually enabled or disabled to select which
words are received and transmitted during multichannel communications.
Data words from the enabled channels are received or transmitted, while
disabled channel words are ignored. Up to 32 channels are available for
transmitting and up to 32 channels for receiving.

The multichannel selection registers are used to enable and disable
individual channels. The registers for each serial port are as follows:

Register
Name Function
MTCSx Multichannel Transmit Select—specifies the active transmit channels
MRCSx Multichannel Receive Select—specifies the active receive channels
MTCCSx Multichannel Transmit Compand Select—specifies which active

transmit channels are companded
MRCCSx Multichannel Receive Compand Select—specifies which active receive

channels are companded

Each register has 32 bits, corresponding the 32 channels. Setting a bit
enables that channel so that the serial port will select its word from the
multiple-word block of data (for either receive or transmit). For example,
setting bit 0 selects word 0, setting bit 12 selects word 12, and so on.
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Setting a particular bit to 1 in the MTCSx register causes the serial port to
transmit the word in that channel’s position of the data stream. Clearing
the bit to 0 in the MTCSx register causes the serial port’s DT (data
transmit) pin to tristate during the time slot of that channel.

Setting a particular bit to 1 in the MRCSx register causes the serial port to
receive the word in that channel’s position of the data stream; the received
word is loaded into the RX buffer. Clearing the bit to 0 in the MRCSx
register causes the serial port to ignore the data.

Companding may be selected on a per-channel basis. The MTCCSx and
MRCCSx registers are used to specify companding for any active
channels. Setting a bit to 1 in these registers causes the data to be
companded. A-law or µ-law companding is selected with the DTYPE bit 1
in the STCTLx and SRCTLx control registers.

10.7.4 SPORT Receive Comparison Registers
On the ADSP-21061, two sets of registers aid multiprocessor
communications when using multichannel mode (MCE=1) through the
serial ports. These 32-bit registers are the Receive Comparison (KEYWDx)
registers and the Receive Comparison Mask (KEYMASKx) registers.

The KEYWD0 or KEYWD1 register stores the pattern to be matched with
the incoming data. The corresponding KEYMASK0 or KEYMASK1
register specifies which of the bits in the received data should be
compared. Setting a KEYMASKx bit (=1) masks the corresponding bit in
the KEYWDx register, disabling its comparison.

The processor receiving the data compares it with the data in the
KEYWDx register. Depending on the comparison results, the received
data is accepted or ignored. If accepted, the receiver requests—based on
the setting to the SRCTL register—a DMA transfer to internal memory or
generates an interrupt.

In addition to the MCE setting, the following bits in the SRCTL register
control the operation of Receive Comparison:

IMODE IMAT
(Bit 15) (Bit 20) Operation

0 x Receive comparison disabled
1 0 Accept receive data if the KEYWD comparison is false
1 1 Accept receive data if the KEYWD comparison is true
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When receive comparison is enabled, companding is disabled on the
transmitter and receiver. The MTCCSx register, which selects
multichannel companding when receive comparison is disabled,
determines whether the DSP performs a KEYWD comparison for the
enabled received channels. If the MTCCSx bit for a particlular channel
is '0,' the processor does not perform a comparison and always accepts
the receive data on that channel. If the MTCCSx bit for a particular
channel is '1,' the processor performs the comparison and accepts (or
rejects) the receive data, depending on the result of the comparison
and IMAT setting in the SRCTLx register.

The receive comparison feature lets the ADSP-21061's SPORTS
generate a DMA request or an interrupt when the received data
matches a specified condition on a specified channel in multichannel
mode. Without this feature, the SPORT would interrupt the processor
every time data was received and the processor would be required to
check if the data was meant for it or not. It is possible that most of the
time the data being sent is not meant for the processor. With the
receive comparison feature, the SPORT on a particular processor can
be programmed to interrupt only on messages meant for that
processor.

As a receive comparison example, consider four ADSP-21061s (A, B, C,
and D) which use SPORT0 (in multichannel mode) for interprocessor
communication. Channels 0, 1, 2, and 3 are used respectively by A, B,
C, and D to transmit control information between the processors.
Channels 4 through 10, 11 through 17, 18 through 24, and 25 through
31 are used respectively by A, B, C, and D to transmit data.

Because channels 0 through 3 are used to send control information
between the processors, the comparisons for incoming data is enabled
only for these channels. Initially, channels 4 through 31 may have
receive disabled. For this example, consider communication between
processors A and B only. The key word for comparison is
programmable; in this example, processor B can check for the key
word "START TRANSMIT TO B",
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Processor B can check for this key word as follows:

1. Set the KEYWD register to "START TRANSMIT TO B"

2. Clear bits 31:16 of the KEYMASK register to 0 and set the other
bits to 1
This step enables comparison only for bits 31:16. So, assume that
the code for "START TRANSMIT TO B" only uses bits 31:16 and
bits 15:0 indicate the source of the transmission and the data
channels.

3.  Set bits 15 and 20 of the SRCTL register to 1
This step enables the SPORT to generate an interrupt or DMA
request only if the incoming data matches the KEYWD.

4. Set bits 0 through 3 of the Transmit Compand Channel Selector
register to 1 and clear the remaining bits to 0
This step enables comparison only on channels 0 through 3.

Until it receives the "START TRANSMIT TO B" keyword, processor B
ignores all transmissions that it receives. When processor A wants to
send data to B, it sends the "START TRANSMIT TO B" keyword on
channel 0. When receive comparison on processor B recognizes the
"START TRANSMIT TO B" keyword, the SPORT interrupts processor
B. Then, processor B analyzes the remaining 16-bits, determining that
the source is processor A and the data is on channels 4 through 10.
Because processor A is using channels 4 through 10 to transmit data,
processor B enables receive channels 4 through 10 and sends a
"READY TO RECEIVE DATA" message to processor A, using channel
1. After processor A receives this message, it sends the data on
channels 4 through 10. If the transfer protocol uses a fixed number of
bytes in each message, processor B could send back a checksum
message to processor A after receiving A's message, confirming that
the data transferred accurately.

10.8 TRANSFERRING DATA BETWEEN SPORTS AND MEMORY
Transmit and receive data can be transferred between the ADSP-2106x
serial ports and on-chip memory in one of two ways, with single-word
transfers or with DMA block transfers. Both methods are interrupt-
driven, using the same internally generated interrupts.
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When serial port DMA is not enabled in the STCTLx or SRCTLx control
registers, the SPORT generates an interrupt every time it has received a
data word or has started to transmit a data word. SPORT DMA
provides a mechanism for receiving or transmitting an entire block of
serial data before the interrupt is generated. The ADSP-2106x’s on-chip
DMA controller handles the DMA transfer, allowing the processor core
to continue running until the entire block of data is transmitted or
received. Service routines can then operate on the block of data rather
than on single words, significantly reducing overhead.

10.8.1 DMA Block Transfers
The ADSP-2106x’s on-chip DMA controller allows automatic DMA
transfers between internal memory and the two serial ports. There are
four DMA channels for serial port operations—each SPORT has one
channel for receiving data and one for transmitting data. The serial
port DMA channels are numbered as follows:

DMA Channel 0 –  SPORT0 Receive
DMA Channel 1 –  SPORT1 Receive (or Link Buffer 0)
DMA Channel 2 –  SPORT0 Transmit
DMA Channel 3 –  SPORT1 Transmit (or Link Buffer 1)

Note that channels 1 and 3 are shared between SPORT1 and link
buffers 0 and 1. The SPORT DMA channels are assigned higher
priority than all other DMA channels (i.e. for link ports and the
external port) because of their relatively low service rate and their
inability to hold off incoming data. Having higher priority causes the
SPORT DMA transfers to be performed first when multiple DMA
requests occur in the same cycle.

Although the DMA transfers are always performed with 32-bit words,
the serial ports can handle word sizes from 3 to 32 bits. If the serial
words are 16 bits or smaller, they can be packed into 32-bit words for
each DMA transfer; this is configured by the PACK bit of the the
STCTLx and SRCTLx control registers. When serial port data packing
is enabled (PACK=1), the transmit and receive interrupts are generated
for the 32-bit packed words, not for each 16-bit word.

The following sections present an overview of serial port DMA
operations; some additional details are covered in the DMA chapter of
this manual.
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10.8.1.1 SPORT DMA Channel Setup
Each SPORT DMA channel has an enable bit (SDEN) in the STCTLx
and SRCTLx control registers of the two serial ports. When DMA is not
enabled for a particular channel, the SPORT generates an interrupt
every time it has received a data word or has started to transmit a data
word (see “Single-Word Transfers” later in this chapter). Each channel
also has a DMA chaining enable bit (SCHEN) in the control registers
(see “SPORT DMA Chaining” later in this chapter).

A serial port DMA channel is set up by writing a set of memory buffer
parameters to the SPORT DMA parameter registers. The II, IM, and C
registers must be loaded with a starting address for the buffer, an
address modifier, and a word count, respectively. The programming of
these registers can be done from the ADSP-2106x core processor or
from an external processor.

Once serial port DMA is set up and enabled, data words received in
the RX buffer are automatically transferred to the buffer in internal
memory. Likewise, when the serial port is ready to transmit data, a
word is automatically transferred from memory to the TX buffer.
These transfers continue until the entire data buffer is received or
transmitted (i.e. when the count register reaches zero).

When the count register of an active DMA channel reaches zero, the
corresponding interrupt is generated.

10.8.1.2 SPORT DMA Parameter Registers
A DMA channel consists of a set of parameter registers that implement
a data buffer in internal memory, plus hardware used by the serial
port to request DMA service. The parameter registers for each SPORT
DMA channel are shown in Tables 10.8 and 10.9. These registers are
part of the memory-mapped IOP register set of the ADSP-2106x.

The DMA channels operate in a similar fashion as the ADSP-2106x’s
Data Address Generators (DAGs). Each channel has an index register
(II) and a modify register (IM) which are used to set up a data buffer in
internal memory. The index register must be initialized with a starting
address for the data buffer. After each serial I/O word is transferred to
or from the SPORT, the DMA controller adds the modify value to the
index register to generate the address for the next DMA transfer. The
modify value in the IM register is a signed integer, which allows both
incrementing and decrementing.
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Each DMA channel has a count register (C) which must be initialized
with a word count to be transferred. The count register is decremented
after each DMA transfer on that channel; when the count reaches zero,
the interrupt for that channel is generated and the channel is
automatically disabled.

Each SPORT DMA channel also has a chain pointer register (CP), a
general-purpose register (GP), and two registers used for two-
dimensional array addressing in mesh multiprocessing applications
(DA, DB). The CP register is used in chained DMA operations, as
described below in “SPORT DMA Chaining”, and the GP register can
be used for any purpose. The DA and DB registers may be used as
general-purpose registers in standard, non-mesh-multiprocessing
DMA operations.

# of
Register Bits Function
IIx 17 Index (starting address for data buffer)
IMx 16 Index Modifier (address increment)
Cx 16 Count (number of words to transfer)
CPx 18* Chain Pointer (address of next set of buffer parameters)
GPx 17 General-Purpose or 2D DMA
DBx 16 General-Purpose or 2D DMA
DAx 16 General-Purpose or 2D DMA

Table 10.8  Parameter Registers For Each SPORT DMA Channel
* Lower 17 bits contains memory address of the next set of parameters for chained
DMA operations. Most significant bit (bit 17) is the PCI bit (Program-Controlled
Interrupts), which determines whether the DMA interrupts occur at the completion
of each DMA sequence.
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Memory
Address Register Channel Number & Function
0x0060 II0 DMA Channel 0 – SPORT0 Receive
0x0061 IM0 DMA Channel 0 – SPORT0 Receive
0x0062 C0 DMA Channel 0 – SPORT0 Receive
0x0063 CP0 DMA Channel 0 – SPORT0 Receive
0x0064 GP0 DMA Channel 0 – SPORT0 Receive
0x0065 DB0 DMA Channel 0 – SPORT0 Receive
0x0066 DA0 DMA Channel 0 – SPORT0 Receive
0x0067 reserved
0x0068 II1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x0069 IM1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006A C1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006B CP1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006C GP1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006D DB1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006E DA1 DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
0x006F reserved
0x0070 II2 DMA Channel 2 – SPORT0 Transmit
0x0071 IM2 DMA Channel 2 – SPORT0 Transmit
0x0072 C2 DMA Channel 2 – SPORT0 Transmit
0x0073 CP2 DMA Channel 2 – SPORT0 Transmit
0x0074 GP2 DMA Channel 2 – SPORT0 Transmit
0x0075 DB2 DMA Channel 2 – SPORT0 Transmit
0x0076 DA2 DMA Channel 2 – SPORT0 Transmit
0x0077 reserved
0x0078 II3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x0079 IM3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007A C3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007B CP3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007C GP3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007D DB3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007E DA3 DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
0x007F reserved

Table 10.9 SPORT DMA Parameter Registers

10.8.1.3 SPORT DMA Chaining
In chained DMA operations, the ADSP-2106x automatically sets up
another DMA transfer when the contents of the current buffer have
been transmitted (or received). The chain pointer register (CP) is used
to point to the next set of buffer parameters stored in memory. The
ADSP-2106x’s DMA controller automatically downloads these buffer
parameters to set up the next DMA sequence. Refer to the DMA
chapter of this manual for details on how to set up chaining
parameters in memory.
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DMA chaining occurs independently for the transmit and receive
channels of each serial port. Each SPORT DMA channel has a chaining
enable bit (SCHEN) in the STCTLx and SRCTLx control registers. This
bit must be set to 1 to enable chaining. Writing all zeros to the address
field of the chain pointer register (CP) also disables chaining.

10.8.2 Single-Word Transfers
Individual data words may also be transmitted and received by the
serial ports, with interrupts occurring as each 32-bit word is
transmitted or received. When a serial port is enabled and DMA is
disabled (in the STCTLx or SRCTLx control registers), the SPORT
DMA interrupts will be generated in this way—whenever a complete
32-bit word has been received in the RX buffer, or whenever the TX
buffer is not full. Single-word interrupts can be used to implement
interrupt-driven I/O on the serial ports.

Whenever the ADSP-2106x core’s program reads a word from a serial
port’s RX buffer or writes a word to its TX buffer, the buffer’s
full/empty status should first be checked in order to avoid hanging the
ADSP-2106x core. (This can also happen to an external device, for
example a host processor, when it is reading or writing a serial port
buffer.) The full/empty status can be read in the RXS bits of the SRCTLx
register or the TXS bits of the STCTLx register. Reading from an empty
RX buffer or writing to a full TX buffer causes the ADSP-2106x (or
external device) to hang, waiting for the status to change. To prevent
this hang condition from occurring, the BHD (Buffer Hang Disable) bit
should be set in the SYSCON register.

Multiple interrupts can occur if both SPORTs transmit or receive data
in the same cycle. Any interrupt can be masked out in the IMASK
register; if the interrupt is later enabled in IMASK, the corresponding
interrupt latch bit in IRPTL must be cleared in case the interrupt has
occurred in the meantime.

When serial port data packing is enabled (PACK=1 in the STCTLx or
SRCTLx control registers), the transmit and receive interrupts are
generated for the 32-bit packed words, not for each 16-bit word.

10.9 SPORT LOOPBACK
When the SPL bit (SPORT loopback) is set in the SRCTLx receive
control register, the serial port is configured in an internal loopback
connection. The loopback configuration allows the serial ports to be
tested internally.
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When loopback is configured, the DRx, RCLKx, and RFSx signals of
the receive section of the SPORT are internally connected to the DTx,
TCLKx, and TFSx signals of the transmit section. The DTx, TCLKx, and
TFSx signals are active and are available at their respective pins, while
the DRx, RCLKx, and RFSx pins are ignored by the ADSP-2106x.

Only transmit clock and transmit frame sync options may be used in
loopback mode—you must ensure that the serial port is set up
correctly in the STCTLx and SRCTLx control registers. Multichannel
mode is not allowed.

10.10 SPORT PIN DRIVER CONCERNS
The ADSP-2106x has very fast drivers on all output pins including the
serial ports. If connections on the data, clock, or frame sync lines are
longer than six inches, you should consider using a series termination
for strip lines on point-to-point connections. This may be necessary
even when using low-speed serial clocks, because of the edge rates.

10.11 SPORT PROGRAMMING EXAMPLES
There are three ways to control serial port communications and
memory-to-SPORT data transfers: single-word transfers under core
processor control with no interrupts, single-word transfers under core
processor control with interrupts, and DMA transfers with interrupts.
The three examples presented below illustrate each of these methods.
In each example, the SPORT0 is used to transmit eight 32-bit words
from a data buffer in internal memory.

Any of the three control schemes may be used in multichannel mode
and with any of the serial clock and frame sync options.

10.11.1 Single-Word Transfers Without Interrupts
The ADSP-2106x processor core will stall (i.e. hang) when it attempts
to write data to a full TX buffer or read data from an empty RX buffer.
This provides a very simple method of controlling the SPORT—
placing the instruction that writes data to TX or reads data from RX in
a loop. Program execution will stall at this instruction, until the SPORT
is ready to transmit new data or has received new data.

Listing 10.1 shows the code for this example, which sets up a loop to
transmit data out of SPORT0. Although this technique provides a very
simple programming solution, it prevents the ADSP-2106x processor
core from handling any other tasks while waiting for the serial port.
The interrupt-driven technique described in the following section
alleviates this.
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/*_________________________________________________________________

  SPORT Transmit Example: Uses the feature that the ADSP-2106x core
  will stall when attempting to write to a full TX register. This
  example sets up a loop to transmit the data in the memory buffer
  “source”.
  ________________________________________________________________*/

#define N 8
#include “def21060.h”   /* Use symbolic register names */

.segment/dm dm32_b1;    /* Data segment name described in arch file.*/

.var source[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
0x55555555, 0x66666666, 0x77777777, 0x88888888;

.endseg;

.segment/pm rst_svc;    /* Reset vector from arch file. */
   nop;                 /* First location is used for booting.*/
   jump start;
.endseg;

/*______________________Main routine______________________*/

.segment/pm pm48_1b0;    /* Main code segment from arch file.*/

start: r0=0x00270007;   /* TDIV0 Register: TCLKDIV=7,TFSDIV=39 */
dm(TDIV0)=r0;    /* sclock=CLKIN/8, framerate=sclock/20 */

r0=0x000064f1;   /* STCTL0 Register:      */
dm(STCTL0)=r0;   /* SPEN=1,(SPORT enabled)*/

          /* SLEN=15 (16-bit word)*/
          /* ICLK=1, (internal tx clock)*/
          /* TFSR=1, (require TFS)*/
          /* ITFS=1, (internal TFS)*/
          /* DITFS=0,(data dependent FS)*/
          /*   all other bits = 0 */

b0=source;      /* Pointer to source; i0=b0 automatically.*/
l0=@source;

lcntr=N, do tx_loop until lce;
  r0=dm(i0,1);               /* Get data from source buffer.*/

tx_loop:   dm(TX0)=r0;               /* Write transmit register,    */
                    /* core will wait until SPORT */
                    /* output buffer is not full.*/

idle;
.endseg;

Listing 10.1   Non-Interrupt-Driven SPORT Control (Single-Word Transfers)
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/*_____________________________________________________________

  ADSP-2106x Interrupt-Driven SPORT Transmit Example:

  This example uses interrupts to notify the core when new data
  is required for serial port 0 transmit. The buffer “source”
  is transmitted.
  _____________________________________________________________*/

#define N 8
#include “def21060.h”   /* Use symbolic register names */

.segment/dm dm32_b1;    /* Data segment name described in arch file.*/

.var source[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
0x55555555, 0x66666666, 0x77777777, 0x88888888;

.endseg;

.segment/pm rst_svc;    /* Reset vector from arch file.*/
   nop;         /* First location is used for booting.*/
   jump start;
.endseg;

.segment/pm spt0_svc;   /* Sport0 TX interrupt vector.*/
   jump s0tx;
.endseg;

(listing continues on next page)

10.11.2 Single-Word Transfers With Interrupts
While the non-interrupt-driven solution of the previous example
provides a very simple control scheme, it prevents the ADSP-2106x
processor core from handling any additional tasks while it is stalled. In
most real-time applications, the DSP must process data while new data
is being received. It may also need to perform background tasks
between data transfers.

In most systems, therefore, the DSP processor must be able to continue
executing its program at all times. Using the serial port receive and
transmit interrupts allows this to happen, by interrupting the core
processor only when a new data word has been received or when a
new data word can be transmitted. The interrupt service routine then
performs the data transfer between internal memory and the serial
port’s TX or RX buffer.

Listing 10.2 below shows the code for this example. Note that the
interrupt used is the SPORT0 Transmit DMA Channel interrupt
(SPT0I)—when serial port DMA is disabled, this interrupt becomes a
single-word transmit interrupt.
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/*_________________________Main routine_________________________*/

.segment/pm pm48_1b0;   /* Main code segment from arch file.*/

start: r0=0x00270007;  /* TDIV0 Register: TCLKDIV=7,TFSDIV=39 */
dm(TDIV0)=r0;   /* sclock=CLKIN/8, framerate=sclock/20 */

r0=0x000064f1;  /* STCTL0 Register:        */
dm(STCTL0)=r0;    /* SPEN=1,(SPORT enabled)*/

          /* SLEN=15 (16-bit word)*/
          /* ICLK=1, (internal tx clock)*/
          /* TFSR=1, (require TFS)*/
          /* ITFS=1, (internal TFS)*/
          /* DITFS=0,(data dependent FS)*/
          /*  all other bits = 0  */

b0=source;      /* Pointer to source; i0=b0 automatically.*/
l0=@source;

bit set imask SPT0I;    /* Enable Sport0 TX interrupt.*/
bit set mode1 IRPTEN;   /* Global interrupt enable.*/

r0=dm(i0,1);    /* Write first value into TX0 to kick off sport.*/
dm(TX0)=r0;

wait: idle;           /* Wait for SPORT0 TX interrupts.*/
jump wait;

/*_____________SPORT0 Transmit Interrupt Routine_______________*/

s0tx: rti (db);
r0=dm(i0,1);    /* Get data from source buffer */
dm(TX0)=r0;     /* Write transmit register */

.endseg;

Listing 10.2   Interrupt-Driven SPORT Control (Single-Word Transfers)
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/*_____________________________________________________________
   ADSP-2106x DMA-Driven SPORT Loopback Example:

This example sets up a SPORT DMA transfer and receive for serial
port 1 in the loopback mode. The buffer "source" is DMAed out of
the sport. The loopback mode internally attaches DT1, TFS1, and
TCLK1 to DR1, RFS1, and RCLK1. The receive DMA places the data
in the buffer "destination".

  _____________________________________________________________*/

#define N 8
#include "def21060.h"   /* Use symbolic register names */

.segment/dm dm32_b1;    /* Data segment name described in arch. file.*/

.var source[N]= 0x11111111, 0x22222222, 0x33333333, 0x44444444,
                0x55555555, 0x66666666, 0x77777777, 0x88888888;
.var destination[N];
.endseg;

.segment/pm rst_svc;    /* Reset vector from arch. file.*/
   nop;                 /* First location is used for booting.*/
   jump start;
.endseg;

.segment/pm spr1_svc;   /* SPORT1 rx interrupt vector.*/
   jump s1rx;
.endseg;

(listing continues on next page)

10.11.3 DMA Transfers With Interrupts
This example shows how to use the ADSP-2106x’s on-chip DMA
controller to handle serial port I/O. The DMA controller performs the
data transfers between internal memory and the SPORTs, providing the
most efficient way to handle input and output of multiple-word blocks of
data. Once it has been set up, the DMA controller operates independently
from the ADSP-2106x processor core. It interrupts core execution only
when an entire block of data has been received (or transmitted). This frees
the core to continue with other tasks.

Listing 10.3 shows the code for this example, which uses the serial port’s
loopback mode. The program first sets up the SPORT1 DMA channels by
loading values into the DMA parameter registers, then writes to the
SRCTL1 and STCTL1 registers and waits to be interrupted.
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/*________________________main routine________________________*/

.segment/pm pm48_1b0; /* Main code segment from arch. file*/

start: r0=source;
dm(II3)=r0; /* Set DMA tx index to start of source buffer*/
r0=destination;
dm(II1)=r0; /* Set DMA rx index to start of destination buffer*/
r0=1;
dm(IM3)=r0; /* Set DMA modify (stride) to 1.*/
dm(IM1)=r0;
r0=@source;
dm(C3)=r0; /* Set DMA count to length of data buffer*/
dm(C1)=r0;

r0=0x004421f1; /* SRCTL1 Register:          */
dm(SRCTL1)=r0; /*   SPEN=1, (SPORT1 enabled)*/

/*   SLEN=31,(32-bit word)*/
/*   RFSR=1, (require RFS)*/
/*   SDEN=1, (rx DMA enable)*/
/*   SPL=1,  (loop back DT to DR & TFS to RFS)*/

r0=0x00270007; /* TDIV0 Register: TCLKDIV=7, TFSDIV=39*/
dm(TDIV1)=r0; /*   sclock=CLKIN/8, framerate=sclock/2 0 */

r0=0x000465f1; /* STCTL1 Register:          */
dm(STCTL1)=r0; /*   SPEN=1, (SPORT1 enabled)*/

/*   SLEN=31,(32-bit word)*/
/*   ICLK=1, (internal tx clock)*/
/*   TFSR=1, (require TFS)*/
/*   ITFS=1, (internal TFS)*/
/*   DITFS=0,(data dependent FS), all other bits=0*/
/*   SDEN=1, (tx dma enablea), this kicks it off*/

bit set imask SPR1I;   /* Enable SPORT1 rx interrupt*/
bit set mode1 IRPTEN;  /* Global interrupt enable*/

wait: idle; /* Wait for SPORT1 rx interrupt*/
jump wait; /* Will end up here after entire DMA complete*/

/*_________________SPORT1 Receive Interrupt Routine___________________*/

s1rx: rti; /* This interrupt will occur only once*/

.endseg;

Listing 10.3  SPORT DMA Example
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System Design

11.1 OVERVIEW
This chapter provides hardware, software, and system design
information.

11.2 ADSP-2106X PINS
This section describes the pins of the ADSP-2106x and shows how
these signals can be used in your system. Figure 11.1 illustrates how
the pins are used in a single-processor system. Figure 7.1 in the
Multiprocessing chapter shows a system diagram illustrating pin
connections in an ADSP-2106x multiprocessor cluster.

Figure 11.1  Basic ADSP-2106x System
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11.2.1 Pin Definitions
ADSP-2106x pin definitions are listed below. All pins are identical on
the ADSP-21060 and ADSP-21062. Inputs identified as synchronous (S)
must meet timing requirements with respect to CLKIN (or with respect
to TCK for TMS, TDI). Inputs identified as asynchronous (A) can be
asserted asynchronously to CLKIN (or to TCK for TRST).

Unused inputs should be tied or pulled to VDD or GND, except for
ADDR31-0, DATA47-0, FLAG3-0, SW, and inputs that have internal
pullup or pulldown resistors (CPA, ACK, DTx, DRx, TCLKx, RCLKx,
LxDAT3-0, LxCLK, LxACK, TMS, and TDI)—these pins should be left
floating. These pins have a logic-level hold circuit that prevents the
input from floating internally.

I=Input S=Synchronous P=Power Supply (o/d)=Open Drain
O=Output A=Asynchronous G=Ground (a/d)=Active Drive

T=Three-State (when SBTS is asserted, or when the ADSP-2106x is a bus slave)

Pin Type Function
ADDR31-0 I/O/T External Bus Address. The ADSP-2106x outputs addresses for

external memory and peripherals on these pins. In a
multiprocessor system, the bus master outputs addresses for
read/writes of the internal memory or IOP registers of other
ADSP-2106xs. The ADSP-2106x inputs addresses when a host
processor or multiprocessing bus master is reading or writing
its internal memory or IOP registers.

DATA47-0 I/O/T External Bus Data. The ADSP-2106x inputs and outputs data
and instructions on these pins. 32-bit single-precision floating-
point data and 32-bit fixed-point data is transferred over bits
47-16 of the bus. 40-bit extended-precision floating-point data is
transferred over bits 47-8 of the bus. 16-bit short word data is
transferred over bits 31-16 of the bus. In PROM boot mode,
8-bit data is transferred over bits 23-16. Pull-up resistors on
unused DATA pins are not necessary.

MS3-0 O/T Memory Select Lines. These lines are asserted (low) as chip
selects for the corresponding banks of external memory.
Memory bank size must be defined in the ADSP-2106x’s system
control register (SYSCON). The MS3-0 lines are decoded
memory address lines that change at the same time as the other
address lines. When no external memory access is occurring the
MS3-0 lines are inactive; they are active, however, when a
conditional memory access instruction is executed, whether or
not the condition is true. MS0 can be used with the PAGE signal
to implement a bank of DRAM memory (Bank 0). In a
multiprocessing system, the MS3-0 lines are output by the bus
master.
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Pin Type Function
RD I/O/T Memory Read Strobe. This pin is asserted (low) when the

ADSP-2106x reads from external memory devices or from
the internal memory of other ADSP-2106xs. External
devices (including other ADSP-2106xs) must assert RD to
read from the ADSP-2106x’s internal memory. In a
multiprocessing system, RD is output by the bus master
and is input by all other ADSP-2106xs.

WR I/O/T Memory Write Strobe. This pin is asserted (low) when the
ADSP-2106x writes to external memory devices or to the
internal memory of other ADSP-2106xs. External devices
must assert WR to write to the ADSP-2106x’s internal
memory. In a multiprocessing system, WR is output by the
bus master and is input by all other ADSP-2106xs.

PAGE O/T DRAM Page Boundary. The ADSP-2106x asserts this pin
to signal that an external DRAM page boundary has been
crossed. DRAM page size must be defined in the
ADSP-2106x’s memory control register (WAIT). DRAM
can only be implemented in external memory Bank 0; the
PAGE signal can only be activated for Bank 0 accesses. In a
multiprocessing system, PAGE is output by the bus
master.

ADRCLK O/T Clock Output Reference. In a multiprocessing system,
ADRCLK is output by the bus master.

SW I/O/T Synchronous Write Select. This signal is used to interface
the ADSP-2106x to synchronous memory devices
(including other ADSP-2106xs). The ADSP-2106x asserts
SW (low) to provide an early indication of an impending
write cycle, which can be aborted if WR is not later
asserted (e.g. in a conditional write instruction). In a
multiprocessing system, SW is output by the bus master
and is input by all other ADSP-2106xs to determine if the
multiprocessor memory access is a read or write. SW is
asserted at the same time as the address output. A host
processor using synchronous writes must assert this pin
when writing to the ADSP-2106x(s).
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Pin Type Function
ACK I/O/S Memory Acknowledge. External devices can deassert ACK

(low) to add wait states to an external memory access. ACK is
used by  I/O devices, memory controllers, or other
peripherals to hold off completion of an external memory
access. The ADSP-2106x deasserts ACK as an output to add
wait states to a synchronous access of its internal memory. In
a multiprocessing system, a slave ADSP-2106x deasserts the
bus master’s ACK input to add wait state(s) to an access of its
internal memory. The bus master has a keeper latch on its
ACK pin that maintains the input at the level it was last
driven to.

SBTS I/S Suspend Bus Tristate. External devices can assert SBTS (low)
to place the external bus address, data, selects, and strobes in
a high-impedance state for the following cycle.  If the
ADSP-2106x attempts to access external memory while SBTS
is asserted, the processor will halt and the memory access will
not be completed until SBTS is deasserted. SBTS should only
be used to recover from host processor/ADSP-2106x
deadlock or used with a DRAM controller. The SBTS signal
causes the masters to tristate during reset.

IRQ2-0 I/A Interrupt Request Lines. May be either edge-triggered or
level-sensitive.

FLAG3-0 I/O/A Flag Pins. Each is configured via control bits as either an
input or output. As an input, it can be tested as a condition.
As an output, it can be used to signal external peripherals.

TIMEXP O Timer Expired. Asserted for four cycles when the timer is
enabled and TCOUNT decrements to zero.

HBR I/A Host Bus Request. Must be asserted by a host processor to
request control of the ADSP-2106x’s external bus. When HBR
is asserted in a multiprocessing system, the ADSP-2106x that
is bus master will relinquish the bus and assert HBG. To
relinquish the bus, the ADSP-2106x places the address, data,
select, and strobe lines in a high-impedance state. HBR has
priority over all ADSP-2106x bus requests (BR6-1) in a
multiprocessing system.

HBG I/O Host Bus Grant. Acknowledges an HBR bus request,
indicating that the host processor may take control of the
external bus. HBG is asserted (held low) by the ADSP-2106x
until HBR is released. In a multiprocessing system, HBG is
output by the ADSP-2106x bus master and is monitored
by all others.
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Pin Type Function
CS I/A Chip Select. Asserted by host processor to select the

ADSP-2106x.

REDY (o/d) O Host Bus Acknowledge. The ADSP-2106x deasserts REDY
(low) to add wait states to an asynchronous access of its
internal memory or IOP registers by a host. Open drain
output (o/d) by default; can be programmed in ADREDY
bit of SYSCON register to be active drive (a/d). REDY will
only be output if the CS and HBR inputs are asserted.

DMAR1 I/A DMA Request 1 (ADSP-21060/61/62 — DMA Channel 7)

DMAR2 I/A DMA Request 2 (ADSP-21060/62 — DMA Channel 8)
(ADSP-21061 — DMA Channel 6)

DMAG1 O/T DMA Grant 1 (ADSP-21060/61/62 — DMA Channel 7)

DMAG2 O/T DMA Grant 2 (ADSP-21060/62 — DMA Channel 8)
(ADSP-21061 — DMA Channel 6)

BR6-1 I/O/S Multiprocessing Bus Requests. Used by multiprocessing
ADSP-2106xs to arbitrate for bus mastership. An
ADSP-2106x only drives its own BRx line (corresponding
to the value of its ID2-0 inputs) and monitors all others. In a
multiprocessor system with less than six ADSP-2106xs, the
unused BRx pins should be pulled high; the processor’s
own BRx line must not be pulled high or low because it is
an output.

ID2-0 I Multiprocessing ID. Determines which multiprocessing
bus request (BR1 – BR6) is used by ADSP-2106x.
ID=001 corresponds to BR1, ID=010 corresponds to BR2,
etc. ID=000 in single-processor systems. These lines are a
system configuration selection which should be hardwired
or only changed at reset.

RPBA I/S Rotating Priority Bus Arbitration Select. When RPBA is
high, rotating priority for multiprocessor bus arbitration is
selected. When RPBA is low, fixed priority is selected. This
signal is a system configuration selection which must be
set to the same value on every ADSP-2106x. If the value of
RPBA is changed during system operation, it must be
changed in the same CLKIN cycle on every ADSP-2106x.
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Pin Type Function
CPA (o/d) I/O Core Priority Access. Asserting its CPA pin allows the core

processor of an ADSP-2106x bus slave to interrupt background
DMA transfers and gain access to the external bus. CPA is an
open drain output that is connected to all ADSP-2106xs in the
system. The CPA pin has an internal 5 Kohm pullup resistor. If
core access priority is not required in a system, the CPA pin
should be left unconnected.

DTx O Data Transmit (Serial Ports 0, 1). Each DT pin has a 50 kΩ
internal pullup resistor.

DRx I Data Receive (Serial Ports 0, 1). Each DR pin has a 50 kΩ
internal pullup resistor.

TCLKx I/O Transmit Clock (Serial Ports 0, 1). Each TCLK pin has a 50 kΩ
internal pullup resistor.

RCLKx I/O Receive Clock (Serial Ports 0, 1). Each RCLK pin has a 50 kΩ
internal pullup resistor.

TFSx I/O Transmit Frame Sync (Serial Ports 0, 1).

RFSx I/O Receive Frame Sync (Serial Ports 0, 1).

LxDAT3-0 I/O Link Port Data (Link Ports 0-5). Each LxDAT pin has a 50 kΩ
internal pulldown resistor which is enabled or disabled by the
LPDRD bit of the LCOM register. (NC on ADSP-21061)

LxCLK I/O Link Port Clock (Link Ports 0-5). Each LxCLK pin has a 50 kΩ
internal pulldown resistor which is enabled or disabled by the
LPDRD bit of the LCOM register. (NC on ADSP-21061)

LxACK I/O Link Port Acknowledge (Link Ports 0-5). Each LxACK pin has
a 50 kΩ internal pulldown resistor which is enabled or
disabled by the LPDRD bit of the LCOM register. (NC on
ADSP-21061)

EBOOT I EPROM Boot Select. When EBOOT is high, the ADSP-2106x is
configured for booting from an 8-bit EPROM. When EBOOT is
low, the LBOOT and BMS inputs determine booting mode. See
table below. This signal is a system configuration selection
which should be hardwired.

LBOOT I Link Boot – Host Boot Select. When LBOOT is high, the
ADSP-2106x is configured for link port booting. When LBOOT
is low, the ADSP-2106x is configured for host processor
booting or no booting. See the table with the BMS pin. This
signal is a system configuration selection which should be
hardwired. (Tied to GND on ADSP-21061)
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Pin Type Function
BMS I/O/T* Boot Memory Select. Output: Used as chip select for boot

EPROM devices (when EBOOT=1, LBOOT=0). In a
multiprocessor system, BMS is output by the bus master. Input:
When low, indicates that no booting will occur and that ADSP-
2106x will begin executing instructions from external memory.
See table below. This input is a system configuration selection
which should be hardwired.

* Three-statable only in EPROM boot mode (when BMS is an output).

EBOOT LBOOT BMS Booting Mode
1 0 output EPROM (connect BMS to EPROM chip select)
0 0 1 (input) Host processor
0 1 1 (input) Link port
0 0 0 (input) No booting. Processor executes from ext. memory.
0 1 0 (input) reserved
1 1 x (input) reserved

CLKIN I Clock In. External clock input to the ADSP-2106x. The
instruction cycle rate is equal to CLKIN. CLKIN may not
be halted, changed, or operated below the minimum
specified frequency.

RESET I/A Processor Reset. Resets the ADSP-2106x to a known state
and begins execution at the program memory location
specified by the hardware reset vector address. This input
must be asserted (low) at power-up.

TCK I Test Clock (JTAG). Provides an asynchronous clock for
JTAG boundary scan.

TMS I/S Test Mode Select (JTAG). Used to control the test state
machine. TMS has a 20 kΩ internal pullup resistor.

TDI I/S Test Data Input (JTAG). Provides serial data for the
boundary scan logic. TDI has a 20 kΩ internal pullup
resistor.

TDO O Test Data Output (JTAG). Serial scan output of the
boundary scan path.

TRST I/A Test Reset (JTAG). Resets the test state machine. TRST
must be asserted (pulsed low) after power-up or held low
for proper operation of the ADSP-2106x. TRST has a 20 kΩ
internal pullup resistor.
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Pin Type Function
EMU O Emulation Status. Must be connected to the ADSP-2106x EZ-ICE

target board connector only.

ICSA O Reserved, leave unconnected.

VDD P Power Supply; nominally +5.0V dc for 5V devices or +3.3V  dc for
3.3V devcies. (30 pins)

GND G Power Supply Return. (30 pins)

NC Do Not Connect. Reserved pins which must be left open and
unconnected. Note that the LxDAT, LxCLK, and LxACK pins on
the ADSP-21060 and ADSP-21062 are NC on the ADSP-21061.

➠ THE TRST INPUT OF THE JTAG INTERFACE MUST BE ASSERTED
(I.E. PULSED LOW) OR HELD LOW AFTER POWER-UP FOR PROPER
OPERATION OF THE ADSP-2106X. DO NOT LEAVE THIS PIN UNCONNECTED!!

Additional Notes:

• In single-processor systems, the ADSP-2106x owns the external bus during
reset and does not perform bus arbitration to gain control of the bus.

•  Operation of the RD and WR signals changes when CS is asserted by a host
processor. See “Asynchronous Transfers” and “Synchronous Transfers” in
the Host Interface chapter for details.

• Except during a Host Transition Cycle (HTC), the RD and WR strobes
should not be deasserted (low-to-high transition) while ACK or REDY are
deasserted (low )—the ADSP-2106x will hang if this happens.

• In multiprocessor systems, the ACK signal is an input to the ADSP-2106x
bus master and will not float when it is not being driven (because the bus
master maintains a weak keeper latch on the pin). During reset, the ACK pin
is pulled high internally with a 2 kΩ equivalent resistor by the ADSP-2106x
bus master and is held high with the internal keeper latch. It is not necessary
to use an external pullup resistor on the ACK line during booting or at any
other time.

• For multiprocessor systems, PAGE is guaranteed to be asserted for the first
true access after acquiring bus mastership. PAGE will not be updated or
asserted for multiprocessor memory space accesses or external memory space
accesses to any bank other than Bank 0.

• The HBR input is disabled during any access in which the PAGE signal is
asserted. This prevents the possibility of the ADSP-2106x becoming a bus
slave while a DRAM controller is servicing a page change.
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Figure 11.a shows how different data word sizes are transferred over the
external port.

081624324047

DATA47-0

EPROM
Boot

16-Bit Packed

32-Bit Float or Fixed,
D31 - D0,

32-Bit Packed

40-Bit Extended Float

Instruction Fetch

Figure 11.a  External Port Data Alignment

11.2.2 Pin States At Reset
Table 11.1 shows the ADSP-2106x pin states during and immediately after reset.

Pin Type State During & After RESET

Driven Only By ADSP-2106x Bus Master, Otherwise Tristated:
ADDR31-0 I/O/T Driven
MS3-0 O/T Driven High
RD I/O/T Driven High
WR I/O/T Driven High
PAGE O/T Driven Low
ADRCLK O/T Driven by Clock (removes skew between each master)
SW I/O/T Driven High
ACK I/O/S Pulled High by Bus Master (with 2 kΩ internal pullup resistor)
HBG I/O/ST Driven High
DMAG1 O/T Driven High
DMAG2 O/T Driven High
BR6-1 I/O BR1 Driven Low if Bus Master, Otherwise Driven High

Bus-Master-Independent:
DATA47-0 I/O/T Tristate
SBTS I/S Input; causes the master to tristate during reset
IRQ2-0 I/A Inputs
FLAG3-0 I/O/A Inputs
TIMEXP O Driven Low
HBR I/A Input
CS I Input

Table 11.1  ADSP-2106x Pin States At RESET RESET  (cont. on next page)
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Pin Type State During & After RESET
Bus-Master-Independent:
REDY (o/d) O Tristate
DMAR1 I Input
DMAR2 I Input
ID2-0 I Inputs
RPBA I/S Input
CPA (o/d) I/O Tristate
EBOOT I Input
LBOOT I Input (must be tied to GND on the ADSP-21061)
BMS I/O/T Input
CLKIN I Input
RESET I/A Input

Serial Ports & Link Ports:
DTx O Tristate (for multichannel)
DRx I Input
TCLKx I/O Tristate
RCLKx I/O Tristate
TFSx I/O Tristate
RFSx I/O Tristate
LxDAT3-0 I/O Tristate (NC on the ADSP-21061)
LxCLK I/O Tristate(NC on the ADSP-21061)
LxACK I/O Tristate(NC on the ADSP-21061)

JTAG Interface:
TCK I Input
TMS I/S Input
TDI I/S Input
TDO O Tristate
TRST I/A Input
EMU O Tristate

Table 11.1  ADSP-2106x Pin States At RESETRESET  (cont.)

11.2.3 RESETRESET & CLKIN
The ADSP-2106x receives its clock input on the CLKIN pin. The
processor uses an on-chip phase-locked loop to generate its internal
clock. Because the phase-locked loop requires some time to achieve
phase lock, CLKIN must be valid for a minimum time period during
reset before the RESET signal can be deasserted; this time period is
specified in the ADSP-2106x Data Sheet.

RESET must be asserted (low) at system powerup.
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11.2.3.1 Input Synchronization Delay
The ADSP-2106x has several asynchronous inputs: RESET, TRST, HBR,
CS, DMAR1, DMAR2, IRQ2-0, and FLAG3-0 (when configured as
inputs). These inputs can be asserted in arbitrary phase to the
processor clock, CLKIN. The ADSP-2106x synchronizes the inputs
prior to recognizing them. The delay associated with recognition is
called the synchronization delay.

Any asynchronous input must be valid prior to the recognition point
to be recognized in a particular cycle. If an input does not meet the
setup time on a given cycle, it may be recognized in the current cycle
or during the next cycle.

Therefore, to ensure recognition of an asynchronous input, it must be
asserted for at least one full processor cycle plus setup and hold time
(except for RESET, which must be asserted for at least four processor
cycles). The minimum time prior to recognition (i.e. the setup and hold
time) is specified in the ADSP-2106x Data Sheet.

11.2.4 Interrupt & Timer Pins
The ADSP-2106x’s external interrupt pins, flag pins, and timer pin can
be used to send and receive control signals to and from other devices
in the system.

Hardware interrupt signals are received on the IRQ2-0 pins. Interrupts
can come from devices that require the ADSP-2106x to perform some
task on demand. A memory-mapped peripheral, for example, can use
an interrupt to alert the processor that it has data available. Interrupts
are described in detail in the Program Sequencing chapter.

The TIMEXP output is generated by the on-chip timer. It indicates to
other devices that the programmed time period has expired. The timer
is also described in detail in the Program Sequencing chapter.

11.2.5 Flag Pins
The FLAG3-0 pins allow single-bit signalling between the ADSP-2106x
and other devices. For example, the ADSP-2106x can raise an output
flag to interrupt a host processor. Each flag pin can be programmed to
be either an input or output. In addition, many ADSP-2106x
instructions can be conditioned on a flag’s input value, enabling
efficient communication and synchronization between multiple
processors or other interfaces.
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The flags are bidirectional pins, each with the same functionality. To
program the direction of each flag pin, the following control bits in the
MODE2 register are used:

MODE2
Bit Name Definition
15 FLG0O FLAG0 direction (1=output, 0=input)
16 FLG1O FLAG1 direction (1=output, 0=input)
17 FLG2O FLAG2 direction (1=output, 0=input)
18 FLG3O FLAG3 direction (1=output, 0=input)

At reset, the MODE2 register is cleared, configuring all the flags as
inputs.

11.2.5.1 Flag Inputs
When a flag pin is programmed as an input, its value is stored in a bit
in the ASTAT register. The bit is updated in each cycle with the input
value from the pin. Flag inputs can be asynchronous to the
ADSP-2106x clock, so there is a one-cycle delay before a change on the
pin appears in ASTAT (if the rising edge of the input misses the setup
requirement for that cycle).

ASTAT
Bit Name Definition
19 FLG0 FLAG0 value
20 FLG1 FLAG1 value
21 FLG2 FLAG2 value
22 FLG3 FLAG3 value

An ASTAT flag bit is read-only if the flag is configured as an input.
Otherwise, the bit is readable and writeable. The ASTAT flag bit states
are conditions you can specify in conditional instructions.

Note that when an interrupt service routine causes ASTAT to be
pushed onto the status stack, the flag bits in ASTAT are not affected;
the values of these bits carry over from the main program to the
service routine and from the service routine back to the main program
(i.e. status stack pop).

(See “Status Stack Save & Restore” in the “Interrupts” section of the
Program Sequencing chapter for further details.)
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11.2.5.2 Flag Outputs
When a flag is configured as an output, the value on the pin follows
the value of the corresponding bit in the ASTAT register. Your
program can set or clear the ASTAT flag bit to provide a signal to
another processor or peripheral. The timing of a flag output is shown
in Figure 11.2.

The ASTAT flag bits are not changed when the ASTAT register is
pushed onto or popped off of the status stack.

Set Flag to 
Output in MODE2

Set Flag to Input 
in MODE2

Output Enabled Output Valid Output Valid Output Disabled, 
Input Sampled

Set Flag Bit in 
ASTAT

Clear Flag Bit in 
ASTAT

CLKIN

FLAGx Flag High Flag Low

Instruction 
Conditioned on 
Flag Input

Instruction
Executing

Figure 11.2  Flag Output Timing

11.2.6 JTAG Interface Pins
The JTAG test access port consists of the TCK, TMS, TDI, TDO, and
TRST pins. The JTAG port can be connected to a controller that
performs a boundary scan for testing purposes. This port is also used
by the ADSP-2106x EZ-ICE Emulator to access on-chip emulation
features. To allow the use of the emulator, a connector for its in-circuit
probe must be included in your target system. See the “EZ-ICE
Emulator” section of this chapter for details.

If TRST is not asserted (or held low) at power-up, the JTAG port will
be in an undefined state which may cause the ADSP-2106x to drive out
on I/O pins that would normally be tristated at reset. TRST can be held
low with a jumper to ground on the EZ-ICE target board connector.
(See Figure 11.3 in “EZ-ICE Emulator”.)

THE TRST INPUT OF THE JTAG INTERFACE MUST BE ASSERTED
(I.E. PULSED LOW) OR HELD LOW AFTER POWER-UP FOR PROPER
OPERATION OF THE ADSP-2106X. DO NOT LEAVE THIS PIN UNCONNECTED!!

➠
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11.3 EZ-ICE EMULATOR
The ADSP-2106x EZ-ICE Emulator is a development tool for
debugging programs running in real time on your ADSP-2106x target
system hardware. The EZ-ICE provides a controlled environment for
observing, debugging, and testing activities in a target system by
connecting directly to the target processor through its JTAG interface.
The emulator can monitor system behavior while running at full
speed. It lets you examine and alter memory locations as well as
processor registers and stacks.

Because the EZ-ICE controls the target system’s ADSP-2106x through
the processor’s IEEE 1149.1 JTAG Test Access Port, non-intrusive
in-circuit emulation is assured. The emulator does not impact target
loading or timing. The emulator’s in-circuit probe connects to an IBM
PC host computer with an ISA bus plug-in board.

Target systems must have a 14-pin connector to accept the
EZ-ICE’s in-circuit probe, a 14-pin plug.

11.3.1 Target Board Connector For EZ-ICE Probe
The ADSP-2106x EZ-ICE Emulator uses the IEEE 1149.1 JTAG test
access port of the ADSP-2106x to monitor and control the target board
processor during emulation. The EZ-ICE probe requires the
ADSP-2106x’s CLKIN, TMS, TCK, TRST, TDI, TDO, EMU, and GND
signals be made accessible on the target system via a 14-pin connector
(a pin strip header) such as that shown in Figure 11.3. The EZ-ICE
probe plugs directly onto this connector for chip-on-board emulation.
You must add this connector to your target board design if you intend
to use the ADSP-2106x EZ-ICE. Be sure to allow enough room in your
system to fit the EZ-ICE probe onto the 14-pin connector. The length of
the traces between the connector and the ADSP-2106x’s JTAG pins
should be as short as possible.

The 14-pin, 2-row pin strip header is keyed at the pin 3 location—you
must remove pin 3 from the header. The pins must be 0.025 inch
square and at least 0.20 inch in length. Pin spacing should be 0.1 x 0.1
inches. The tip of the pins must be at least 0.10 inch higher than the
tallest component under the emulator’s probe to allow clearance for
the bottom of the probe. Pin strip headers are available from vendors
such as 3M, McKenzie, and Samtec.
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CLKIN (optional)
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TDI
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Figure 11.3 Target Board Connector For ADSP-2106x EZ-ICE Emulator
(Jumpers In Place)

The BTMS, BTCK, BTRST, and BTDI signals are provided so that the test
access port can also be used for board-level testing. When the connector is
not being used for emulation, place jumpers between the BXXX pins and the
XXX pins as shown in Figure 11.3. If you are not going to use the test access
port for board testing, tie BTRST to GND and tie or pullup BTCK to VDD.
The TRST pin must be asserted after power-up (through BTRST on the
connector) or held low for proper operation of the ADSP-2106x. None of the
BXXX pins (pins 5, 7, 9, 11) are connected on the EZ-ICE probe.

The JTAG signals are terminated on the EZ-ICE probe as follows:

Signal Termination
TMS Driven through 82Ω resistor (16 mA / -3.2 mA driver)
TCK Driven through 82Ω resistor (16 mA / -3.2 mA driver)
TRST Driven through 82Ω resistor (16 mA / -3.2 mA driver*)

and pulled up by on-chip 20 kΩ resistor
TDI Driven through 82Ω resistor (16 mA / -3.2 mA driver)
TDO One TTL load, 92Ω Thevenin termination (160Ω / 220Ω)
CLKIN One TTL load, 92Ω Thevenin termination (160Ω / 220Ω)
EMU 4.7 kΩ pullup resistor, one TTL load (open-drain output from ADSP-2106xs)

* TRST is driven low if target board power is off, and continues to be driven low
until the EZ-ICE probe is turned on by the EZ-ICE software (after the invocation
command).
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Figure 11.4 shows JTAG scan path connections for systems that contain
multiple ADSP-2106x processors.

Connecting CLKIN to pin 4 of the EZ-ICE header is optional. The emulator
only uses CLKIN when performing synchronous multiprocessor operations
such as starting, stopping, and single-stepping multiple ADSP-2106xs. If you
do not need these operations to occur synchronously on the multiple
processors, simply tie pin 4 of the EZ-ICE header to ground.

If synchronous multiprocessor operations are needed and CLKIN is
connected, however, clock skew between the multiple ADSP-2106x processors
and the CLKIN pin on the EZ-ICE header must be minimal. If the skew is too
large, synchronous operations may be off by one cycle between processors.

TCK, TMS, CLKIN (optional), and EMU should be treated as critical signals
in terms of skew, and should be laid out as short as possible on your board. If
TCK, TMS, and CLKIN are driving a large number of ADSP-2106xs (more
than eight) in your system, then treat them as a “clock tree” using multiple
drivers. (See “Clock Distribution” in the “High Frequency Design
Considerations” section of this chapter.) If synchronous multiprocessor
operations are not needed and CLKIN is not connected, just use appropriate
parallel termination on TCK and TMS. TDI, TDO, and TRST are not critical
signals in terms of skew.

ADSP-2106x

#1 JTAG
Device
(optional)

ADSP-2106x

#n
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Controller
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Figure 11.4   JTAG Scan Path Connections For Multiprocessor ADSP-2106x Systems
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11.4 INPUT SIGNAL CONDITIONING
The ADSP-2106x SHARC processor is a CMOS device. It has input
conditioning circuits which simplify system design by filtering or
latching input signals to reduce susceptibility to glitches or reflections.
The following sections describe why these circuits are needed and their
effect on input signals.

A typical CMOS input consists of an inverter with specific N and P
device sizes that cause a switching point of approximately 1.4V. This
level is selected to be the midpoint of the standard TTL interface
specification of VIL=0.8V and VIH=2.0V. This input inverter,
unfortunately, has a fast response to input signals and external glitches
wider than about 1 ns. Glitch rejection circuits, filter circuits, and
hysteresis are therefore added after the input inverter on some
ADSP-2106x inputs, as described below.

11.4.1 Glitch Rejection Circuits
The SHARC processors have on-chip glitch rejection circuits that latch
certain input signals for a fixed time period after a transition has been
detected. The purpose of these circuits is to make the input less
sensitive to reflections and ringing once the first edge has been
received. Thus, the circuits will not provide any reduced immunity to
glitches that are randomly placed. The glitch rejection circuits are only
used on some signals that are used as strobes. These signals are:

read and write strobes RD, WR
DMA request inputs DMAR1, DMAR2
serial port clock inputs RCLK0, RCLK1, TCLK0, RCLK1

The glitch rejection circuit will cause the input signal to be latched for
approximately 4 to 5 ns after a transition has been detected. Glitch
rejection circuits are not implemented on the SHARC’s data, address,
or control lines that settle out normally before they are used. A glitch
rejection circuit is used on the processor’s clock input (CLKIN).

11.4.2 Link Port Input Filter Circuits
The SHARC’s link port input signals have on-chip filter circuits rather
than glitch rejection circuits. Filtering is not used on most signals since
it delays the incoming signal and therefore the timing specifications.
Filtering is implemented only on the link port data and clock inputs.
This is possible because the link ports are self-synchronized, i.e. the
clock and data are sent together. It is not the absolute delay but rather
the relative delay between clock and data that determines performance
margin.
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By filtering both LxCLK and LxDAT3-0 with identical circuits, response
to LxCLK glitches and reflections are reduced but relative delay is
unaffected. The filter has the effect of ignoring a full strength pulse (a
glitch) narrower than approximately 2 ns. Glitches that are not full
strength can be somewhat wider. The link ports do not use glitch
rejection circuits because they can be used with longer, series-
terminated transmission lines where the reflections do not occur near
the signal transitions.

11.4.3 RESETRESET Input Hysteresis
Hysteresis is used only on the RESET input signal. Hysteresis causes
the switching point of the input inverter to be slightly above 1.4V for a
rising edge and slightly below 1.4V for a falling edge. The value of the
hysteresis is approximately ± 0.1V. The hysteresis is intended to
prevent multiple triggering of signals which are allowed to rise slowly,
as might be expected on a reset line with a delay implemented by an
RC input circuit. Hysteresis is not used to reduce the effect of ringing
on SHARC input signals with fast edges, because the amount of
hysteresis that can be used on a CMOS chip is too small to make much
difference. The small amount of hysteresis allowable is due to the
restrictions on the tolerance of the VIL and VIH TTL input levels under
worst case conditions. Refer to the ADSP-2106x SHARC Data Sheet for
exact specifications.

11.5 HIGH FREQUENCY DESIGN CONSIDERATIONS
Because the ADSP-2106x processor can operate at very fast clock
frequencies, signal integrity and noise problems must be considered
for circuit board design and layout. The following sections discuss
these topics and suggest various techniques to use when designing and
debugging ADSP-2106x systems.

Initial versions of the ADSP-2106x are specified for operation at
40 MHz and 33 MHz clocks; the following information is based on
these CLKIN frequencies. Refer to the most up-to-date
ADSP-2106x Data Sheet for current clock speed specifications.
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11.5.1 Clock Specifications & Jitter
The clock signal must be free of ringing and jitter. Clock jitter can
easily be introduced in a system where more than one clock frequency
exists. High frequency jitter on the clock to the ADSP-2106x may result
in abbreviated internal cycles. The jitter should be kept to less than
0.25 ns for a 40 MHz clock and less than 0.5 ns for a 33 MHz (or
slower) clock.

NEVER SHARE A CLOCK BUFFER IC WITH A SIGNAL OF A DIFFERENT
CLOCK FREQUENCY. THIS WILL INTRODUCE EXCESSIVE JITTER.

frequency 1

frequency 2

clock

➠

Keep the portions of the system that operate at different frequencies as
physically separate as possible.

The clock supplied to the ADSP-2106x must have a rise time of 3 ns or
less and must meet or exceed a high and low voltage of 3V and 0.4V,
respectively.

11.5.2 Clock Distribution
There must be low clock skew between ADSP-2106xs in a
multiprocessor cluster when communicating synchronously on the
external bus. The clock must be routed in a controlled-impedance
transmission line that is properly terminated at either (1) the end of the
line, or (2) the source. End-of-line termination (1) is illustrated in
Figure 11.5. Source termination (2) is illustrated in Figure 11.6.

End-of-line termination (1) is not usually recommended unless the
distance between the processors is very small, because devices that are
at a different wire distance from each other will receive a skewed
clock. This is due to the propagation delay of a PCB transmission line,
which is typically 5 to 6 inches/ns.
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Clock

ADSP-2106x ADSP-2106x ADSP-2106x

1.4 V

70 Ω

180 Ω

+5 V

50 Ω Transmission Line

Figure 11.5  Not Recommended Clock Distribution Method (End-Of-Line Termination)

For source termination (2), Figure 11.6 shows an example of
series-terminated transmission lines for clock distribution. This allows
delays in each path to be identical. Each device must be at the end of
the transmission line because only there does the signal have a single
transition. The traces must be routed so that the delay through each is
matched to the others. Line impedance higher than 50Ω may be used,
but clock signal traces should be in the PCB layer closest to the ground
plane to keep delays stable and crosstalk low. More than one device
may be at the end of the line, but the wire length between them must
be short and the impedance (capacitance) of these must be kept high.
The matched inverters must be in the same IC and must be specified
for a low skew (< 1 ns) with respect to each other. This skew should be
as small as possible since it subtracts from the margin on most
specifications.
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Clock

ADSP-2106x

ADSP-2106x

ADSP-2106x

ACTQ240 Octal Inverter
(National Semiconductor)

or
IDT49FCT805/A

or
CY7C992

Buffer Drive Impedance = 10 Ω

A separate buffer and transmission line is needed for each group 
of processors that are further than 4 inches from each other.

50 Ω Transmission Line40 Ω

50 Ω Transmission Line40 Ω

50 Ω Transmission Line40 Ω

Figure 11.6  Recommended Clock Distribution Method (Source Termination)

11.5.3 Point-To-Point Connections
A series termination resistor may be added near the pin for point-to-
point connections. This is typically used for link port applications
when distances are greater than 6 inches. See Figure 11.7. For more
specific guidence on related issues, see the reference source in the
Recommended Reading section for suggestions on transmission line
termination and see the ADSP-2106x Data Sheet for output drivers' rise
and fall time data .

For link port operation at a 2X clock rate it is important to maintain
low skew between the data (LxDAT3-0) and clock (LxCLK). For 2X
operation at CLKIN=40 MHz, a skew of less than 1.25 ns is required.

Although the ADSP-2106x’s serial ports may be operated at a slow
rate, the output drivers still have fast edge rates and may require
source termination for longer distances.
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50 Ω Transmission Line     (Length > 6")33 Ω

Link Port
Transmitter

On

Driver Impedance = 17 Ω

Reflected wave is absorbed at the source.

Link Port 
Receiver

Off

Open Circuit

33 Ω

ADSP-2106x ADSP-2106x

Figure 11.7  Source Termination For Long-Distance Point-To-Point Connections

11.5.4 Signal Integrity
The capacitive loading on high-speed signals should be reduced as
much as possible. Loading of buses can be reduced by using a buffer
for devices that operate with wait states, for example DRAMs. This
reduces the capacitance on signals tied to the zero-wait-state devices,
allowing these signals to switch faster and reducing noise-producing
current spikes.

Signal run length (inductance) should also be minimized to reduce
ringing. Extra care should be taken with certain signals such as the
read and write strobes (RD, WR) and acknowledge (ACK). In a
multiprocessor cluster, each ADSP-2106x can drive the read or write
strobes. In this case, some damping resistance should be put in the
signal path if the line length is greater than 6 inches; this will be at the
expense of additional signal delay, however. The time budget for these
signals should be carefully analyzed.

Two possible damping arrangements between four ADSP-2106xs are
shown in Figures 11.8 and 11.9. In Figure 11.8, a star connection of
resistors is used. Each ADSP-2106x can drive the signal (e.g. RD or WR
strobe). Trace lengths should be minimized. Experiment with the
optimal resistance value and placement, e.g. near the processor or near
the common connection. This will add signal delay, however.

In the example of Figure 11.9, where processors 1 & 2 and 3 & 4 are
close to each other, a single damping resistor between the processor
pairs will help damp out reflections. Experiment with the resistor
value. The two processor groups will have a skew with respect to each
other.

Another solution to multiple drivers where longer distances are
involved is to have a single transmission line that is terminated at both
ends. This arrangement is shown in Figure 11.10. The stubs to the
processors must be kept as short as possible. Each device driver sees
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ADSP-2106x

ADSP-2106x

ADSP-2106x

ADSP-2106x

 10 Ω each

Figure 11.8  Star Connection Damping Resistors

ADSP-2106x
#3

ADSP-2106x
#4

ADSP-2106x
#1

ADSP-2106x
#2

 20 Ω

Figure 11.9  Single Damping Resistor Between Processor Groups
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an impedance of 25Ω, but this resistor is biased at 1.4V so the drive
from the ADSP-2106xs will be sufficient for TTL levels. To reduce
power dissipation in the system and in each ADSP-2106x, this should
only be used, if necessary, for signals such as the RD or WR strobe.
The signals will be skewed but well behaved.

Figure 11.10  Single Transmission Line Terminated At Both Ends

11.5.5 Other Recommendations & Suggestions
• The use of more than one ground plane on the PCB will reduce crosstalk.

Be sure to use lots of vias between the ground planes. One VDD plane is
sufficient. These planes should be in the center of the PCB.

• Keep critical signals such as clocks, strobes, and bus requests on a signal
layer next to a ground plane and away from (or layout perpendicular to)
other non-critical signals to reduce crosstalk. For example, data outputs
switch at the same time that BR inputs are sampled; if your layout permits
crosstalk between them, your system could have problems with bus
arbitration.

• If possible, position the processors on both sides of the board to reduce
area and distances.

• Lower transmission line impedances will reduce crosstalk and allow better
control of impedance and delay.

ADSP-2106x ADSP-2106x ADSP-2106x

1.4 V

70 Ω

180 Ω

+5 V

50 Ω Transmission Line

(Length > 10")
1.4 V

70 Ω

180 Ω

+5 V
ADSP-2106x ADSP-2106x ADSP-2106x
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• The use of 3.3V components and power supplies will help transmission
line problems significantly because the receiver switching voltage of
1.5V is close to the middle of the voltage swing. In addition, ground
bounce and noise coupling will be less. The ADSP-2106x is available in
a 3.3V version.

• Experiment with the board and isolate crosstalk and noise issues from
reflection issues. This can be done by driving a signal wire from a pulse
generator and studying the reflections while other components and
signals are passive.

11.5.6 Decoupling Capacitors & Ground Planes
Ground planes must be used for the ground and power supplies. A
minimum of eight bypass capacitors (0.02 µF ceramic) should be used,
placed very close to the VDD pins of the package. See Figure 11.11.
Use short and fat traces for this. The ground end of the capacitors
should be tied directly to the ground plane outside the package
footprint of the ADSP-2106x, not within the footprint (i.e. underneath
it, on the bottom of the board). A surface-mount capacitor is
recommended because of its lower series inductance. Connect the power
plane to the power supply pins directly with minimum trace length. The
ground planes must not be densely perforated with vias or traces as
their effectiveness will be reduced. In addition, there should be several
large tantalum capacitors on the board.

Figure 11.11  Bypass Capacitor Placement

ADSP-2106x ADSP-2106x

Do not put the bypass capacitors within the package footprint 
(on the underside of the board) if signal feedthroughs 
perforate the ground plane. Return current must flow to the 
outside ground plane, which may be poorly connected to the 
inside ground plane if this is perforated by feedthroughs.

Place bypass capacitors outside of the package.

11.5.7 Oscilloscope Probes
When making high-speed measurements, be sure to use a “bayonet”
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type or similarly short (< 0.5 inch) ground clip, attached to the tip of
the oscilloscope probe. The probe should be a low-capacitance active
probe with 3 pF or less of loading. The use of a standard ground clip
with 4 inches of ground lead will cause ringing to be seen on the
displayed trace and will make the signal appear to have excessive
overshoot and undershoot. A 1 GHz or better sampling oscilloscope is
needed to see the signals accurately.

11.5.8 Recommended Reading
High-Speed Digital Design: A Handbook of Black Magic is recommended
for further reading. This book is a technical reference that covers the
problems encountered in state-of-the-art, high-frequency digital circuit
design, and is an excellent source of information and practical ideas.
Topics covered in the book include:

• High-Speed Properties of Logic Gates
• Measurement Techniques
• Transmission Lines
• Ground Planes & Layer Stacking
• Terminations
• Vias
• Power Systems
• Connectors
• Ribbon Cables
• Clock Distribution
• Clock Oscillators

High-Speed Digital Design: A Handbook of Black Magic
Johnson & Graham
Prentice Hall, Inc.
ISBN 0-13-395724-1

11.6 BOOTING
Programs can be automatically downloaded to the internal memory of
an ADSP-2106x after power-up or after a software reset. This process is
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called booting.

The ADSP-2106x supports three booting modes: EPROM, host, and
link port. “No boot” mode may also be configured. Each booting mode
packs boot data into 48-bit instructions and uses Channel 6 of the
ADSP-2106x’s on-chip DMA controller to transfer the instructions to
internal memory. For EPROM booting via the external port, the
ADSP-2106x reads data from an 8-bit external EPROM. For host port
booting, the ADSP-2106x accepts data from a 16-bit host
microprocessor (or other external device). For link port booting, the
ADSP-2106x receives 4-bit wide data in link buffer 4. If no boot mode is
selected, the ADSP-2106x starts executing instructions from address
0x0040 0004 in external memory.

The primary configuration of DMA Channel 6, used with external port
buffer EPB0, is used for EPROM and host booting. The alternate
configuration of DMA Channel 6, for link buffer 4, is used for link port
booting. The DMAC6 control register is specially initialized for booting
in each case.

After the boot process loads 256 words into memory locations 0x20000
through 0x200FF (using any boot method), the processor begins
executing instructions. Because most applications require more than
256 words of instructions and initialization data, the 256 words
typically serve as a loading routine for the application. Analog Devices
supplies a loading routine (Loader Kernel) that can load an entire
program. This routine comes with the development tools. For more
information on the Loader Kernel, see the development tools
documentation.

The following sections discuss the different booting modes in detail
and describe additional functionality related to booting.

11.6.1 Selecting The Booting Mode
The booting mode is selected using the LBOOT, EBOOT, and BMS
pins, as shown in Table 11.2.

EPROM booting is selected when the EBOOT input is high. This causes
BMS to become an output, to be used as the boot EPROM chip select.
When EBOOT is low, BMS becomes an input used to select between
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Pin Type Description
EBOOT I EPROM Boot Select. When EBOOT is high, the ADSP-2106x

is configured for booting from an 8-bit EPROM. When
EBOOT is low, the LBOOT and BMS inputs determine
booting mode. See table below. This signal is a system
configuration selection which should be hardwired.

LBOOT I Link Boot – Host Boot Select. When LBOOT is high, the
ADSP-2106x is configured for link port booting. When
LBOOT is low, the ADSP-2106x is configured for host
processor booting or no booting. See table below. This
signal is a system configuration selection which should be
hardwired.

BMS I/O/T* Boot Memory Select. Output: Used as chip select for boot
EPROM devices (when EBOOT=1, LBOOT=0). In a
multiprocessor system, BMS is output by the bus master.
Input: When low, indicates that no booting will occur and
that ADSP-2106x will begin executing instructions from
external memory. See table below. This input is a system
configuration selection which should be hardwired.

* Tristatable only in EPROM boot mode (when BMS is an output).

Table 11.2  Boot Mode Selection Pins

EBOOT LBOOT BMS Booting Mode
1 0 output EPROM (connect BMS to EPROM chip select)
0 0 1 (input) Host processor
0 1 1 (input) Link port
0 0 0 (input) No booting. Processor executes from external memory.
0 1 0 (input) reserved
1 1 x (input) reserved
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host boot mode or no boot mode. In EPROM boot mode, BMS is
deasserted when the ADSP-2106x is not the bus master.

Note that when using any of the power-up booting modes, address
0x0002 0004 should not contain a valid instruction since it is not
executed during the booting sequence. A NOP or IDLE instruction
should be placed at this location.

11.6.2 EPROM Booting
EPROM booting through the external port is selected when the EBOOT
input is high. The byte-wide boot EPROM must be connected to data
bus pins 23-16 (DATA23-16). The lowest address pins of the
ADSP-2106x should be connected to the EPROM’s address lines. The
EPROM’s chip select should be connected to BMS and its output
enable should be connected to RD.

In a multiprocessor system, the BMS output is only driven by the
ADSP-2106x bus master. This allows wire-ORing of multiple BMS
signals for a single common boot EPROM.

➠ You can boot any number of ADSP-2106x's from a single EPROM,
using the same code for each processor or differing code for each.

During reset, the ADSP-2106x’s ACK line is internally pulled high with
a 2 kΩ equivalent resistor and is held high with an internal keeper
latch. It is not necessary to use an external pullup resistor on the ACK
line during booting or at any other time.

11.6.2.1 Bootstrapping (256 Instructions)
When EPROM boot mode is configured, the External Port DMA
Channel 6 (DMAC6) becomes active following reset; it is initialized to
0x02A1, which allows external port DMA enable and selects DTYPE
for instruction words. The packing mode bits (PMODE) are ignored,
and 8-to-48 bit packing is forced with least-significant-word first.

The UBWS and UBWM fields of the WAIT register are initialized to
generate six wait states (seven cycles total) for the EPROM access in
unbanked external memory space. (Note that wait states defined for
unbanked memory are applied to BMS-asserted accesses.)

The UBWM field's initial value selects internal wait and external
acknowledge. Initially, the SHARC asserts acknowledge (high), but (if
another device drives acknowledge low during EPROM boot) the
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SHARC could latch  acknoledge low. The SHARC responds to the
deasserted (low) acknowledge as a hold off from the EPROM, inserting
wait states continually and preventing completion of the EPROM boot.
To avoid this type of boot holdoff, change the value in the WAIT
register, setting the UBWM value to internal wait mode (01) early in the
256 word boot process.

Table 11.3 shows how the DMA Channel 6 parameter registers are
initialized at reset for EPROM booting. The count register (C6) is
initialized to 0x0100 for transferring 256 words to internal memory. The
external count register (EC6), which is used when external addresses are
generated by the DMA controller, is initialized to 0x0600 (i.e. 0x0100
words with six bytes per word).

Parameter Initialization
Register Value
II6 0x0002 0000
IM6 uninitialized (increment by 1 is automatic)
C6 0x0100 (256 instruction words)
CP6 uninitialized
GP6 uninitialized
EI6 0x0040 0000
EM6 uninitialized (increment by 1 is automatic)
EC6 0x0600  (256 words × 6 bytes/word)

Table 11.3  DMA Channel 6 Parameter Register Initialization For EPROM Booting

At system start-up, when the ADSP-2106x’s RESET input goes inactive,
the following sequence occurs:

1. The ADSP-2106x goes into an idle state, identical to that caused by the
IDLE instruction. The program counter (PC) is set to address
0x0002 0004.

2. The DMA parameter registers for channel 6 are initialized (as shown
in Table 11.3 above).

3. BMS becomes the boot EPROM chip select.
4. 8-bit Master Mode DMA transfers from EPROM to internal memory

begin, on the external port data bus lines 23-16.
5. The external address lines (ADDR31-0) start at 0x0040 0000 and

increment after each access.
6. The RD strobe asserts as in a normal memory access, with six wait

states (seven cycles).

The ADSP-2106x’s DMA controller reads the 8-bit EPROM words, packs
them into 48-bit instruction words, and transfers them to internal
memory until 256 words have been loaded. The EPROM is automatically
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selected by the BMS pin; other memory select pins are disabled. The DMA
external count register (EC6) decrements after each EPROM transfer.
When EC6 reaches zero, the following wake-up sequence occurs:

1. The DMA transfers stop.
2. The External Port DMA Channel 6 interrupt (EP0I) is activated.
3. BMS is deactivated and normal external memory selects are activated.
4. The ADSP-2106x vectors to the EP0I interrupt vector at 0x0002 0040.

At this point the ADSP-2106x has completed its booting mode and is
executing instructions normally. The first instruction at the EP0I interrupt
vector location, address 0x0002 0040, should be an RTI (Return From
Interrupt). This will return execution to the reset routine at location
0x0002 0005 where normal program execution can resume. After this has
occurred, your program can write a different service routine at the EP0I
vector location 0x0002 0040.

Remember that when using any of the power-up booting modes, location
0x0002 0004 should not contain a valid instruction since it is not executed
during the booting sequence. A NOP or IDLE instruction should be placed
at this location.

11.6.2.2 Loading The Remaining EPROM Data
The EPROM boot mode only loads 256 instructions during bootstrapping.
If your entire application must be loaded into internal memory from the
EPROM, the ADSP-2106x must gain access to the boot EPROM after
bootstrapping has completed. The BSO bit in the SYSCON register
provides this capability.

The BSO bit, when set, overrides the external memory selects and causes
the BMS pin to assert (low) for an external port DMA transfer. Your
bootstrap program should first set the BSO bit in SYSCON and then set up
an external port DMA channel to read the rest of the EPROM’s contents.
Any of the four external port DMA channels may be used:

Control Data
Channel# Register Buffer
DMA Channel 6 DMAC6 EPB0 (Ext. Port DMA Buffer 0)
DMA Channel 7 DMAC7 EPB1 (Ext. Port DMA Buffer 1)
DMA Channel 8 DMAC8 EPB2 (Ext. Port DMA Buffer 2)
DMA Channel 9 DMAC9 EPB3 (Ext. Port DMA Buffer 3)

When BSO=1, the PMODE packing mode bits in the DMAC6 control
register are ignored and 8-to-48 bit packing is forced for reads. (Note that
8-bit packing is only available during EPROM booting or on DMA reads
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when BSO is set.) While one of the external port DMA channels is being
used in conjunction with the BSO bit, none of the other three channels may
be used.

When BSO=1, BMS is not asserted by a core processor access, only by a
DMA transfer. This allows your bootstrap program (running on the ADSP-
2106x core) to perform other external accesses to non-boot memory.

11.6.2.3 Writing to BMS Memory Space
You can also write to ADSP-2106x (SHARC) BMS space using the boot select
override (BSO mode). The BSO (Boot Select Override) mode bit in the
SYSCON register allows the BMS pin to be asserted under software control.
In many systems, the boot data may need to be updated or modified. In
these cases, the PROM may be substituted by a write-able EEPROM or
FLASH memory.

To write to memory with the BMS asserted, use DMA channels 7, 8 or 9, but
not DMA channel 6. With BSO set, DMA channel 6 should only be used for
reads. This limitation of accesses appears because DMA channel 6 is
hardwired for a special 8-bit boot read mode. When BSO is set, a write with
DMA channel 6 with BSO set results in illegal chip operation.

When BSO is set, DMA channels 7-9 can be used with any of the modes
available in the DMACx register (for read or write), any packing mode, and
any data or instruction.

On DMA writes with BSO=1, 16- to 48-bit packing is forced and the PMODE
bits are ignored. Because BMS space is 8-bits wide and no 8-bit packing
mode is available for these writes, one must use the shifter to place data in
the correct location for each write.

11.6.3 Host Booting
Booting the ADSP-2106x from a 16-bit host processor is performed via the
data and address buses of the external port. The ADSP-2106x’s LBOOT pin
selects between link port booting and host port booting: LBOOT must be
low for host booting, with EBOOT low and BMS high. When host booting is
configured, the ADSP-2106x will enter slave mode after reset and wait for
the host to download the boot program.

After reset the ADSP-2106x goes into an idle state, identical to that caused
by the IDLE instruction, with the program counter (PC) set to address
0x0002 0004. The parameter registers for External Port DMA Channel 6 are
initialized as shown below in Table 11.4, but no DMA transfers are started.

The DMA Channel 6 Control Register (DMAC6) is initialized to 0x00A1,
which allows external port DMA enable and selects DTYPE for instruction
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words, PMODE for 16-to-48 bit word packing, and least-significant-
word first. Because the host processor is accessing the EPB0 external
port buffer, the HPM host packing mode bits of the SYSCON register
must be set to correspond to the external bus width specified by the
PMODE bits of the DMAC6 control register. If a different packing
mode is desired, the host must write to DMAC6 and SYSCON to
change the PMODE and HPM settings.

Parameter Initialization
Register Value
II6 0x0002 0000
IM6 uninitialized (increment by 1 is automatic)
C6 0x0100  (256 instruction words)
CP6 uninitialized
GP6 uninitialized
EI6 uninitialized
EM6 uninitialized
EC6 uninitialized

Table 11.4  Ext. Port DMA Channel 6 Parameter Register Initialization For Host
Booting

The host initiates the booting operation by asserting the ADSP-2106x’s
Host Bus Request input, HBR. This tells the ADSP-2106x that the
default 16-bit bus width will be used. The host may also optionally
assert the CS chip select input to allow asynchronous transfers (as
described in the Host Interface chapter).

After the host receives the HBG (Host Bus Grant) signal back from the
ADSP-2106x, it can start downloading instructions by writing directly
to EPB0, the external port DMA buffer 0 (which corresponds to DMA
channel 6), or it can change the reset initialization conditions of the
ADSP-2106x by writing to any of the IOP control registers. The host
must use data bus pins 31-16 (DATA31-16).

When 256 instructions have been downloaded, the following wake-up
sequence occurs:

1. The DMA transfers stop.
2. The External Port DMA Channel 6 interrupt (EP0I) is activated.
3. The ADSP-2106x vectors to the EP0I interrupt vector at 0x0002 0040.

The first instruction at the EP0I interrupt vector location, address
0x0002 0040, should be an RTI (Return From Interrupt). This RTI will
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return execution to the reset routine at location 0x0002 0005 where
normal program execution can resume. After this 256 word load and
RTI have occurred, your program can write a different service routine
at the EP0I vector location 0x0002 0040. These 256 instructions must
serve as a loader that loads the rest of your program.

Note that External Port DMA Channel 6 must be used for the initial
instruction download because only this channel has its IMASK bit set
to enable a DMA done interrupt. VIRPT vector interrupts are disabled
at reset, and must be enabled by your ADSP-2106x program (in the
IMASK register).

Note that a master ADSP-2106x may boot a slave ADSP-2106x by
writing to its DMAC6 control register and setting the packing mode
(PMODE) to 00. This allows instructions to be downloaded directly
without packing. The wait state setting of 6 on the slave ADSP-2106x
does not affect the speed of the download since wait states only affect
bus master operation.

11.6.4 Link Port Booting
The ADSP-2106x can also be booted through Link Buffer 4 using DMA
Channel 6. A four-bit-wide external device must be used to download
instructions after system powerup. The output of an eight-bit-wide
EPROM can be converted to nibble data by using a 2-to-1 multiplexer
on the output, with the address LSB selecting the high- or low-order
nibble.

The external device must provide a clock signal to the link port
assigned to link buffer 4. The clock can be any frequency, up to a
maximum of the ADSP-2106x clock frequency. The clock’s falling
edges strobe the data into the link port. The most significant 4-bit
nibble of the 48-bit instruction must be downloaded first.

The link port booting operation is similar to the host booting
operation; the II6 and C6 parameter registers for DMA Channel 6 are
initialized to the same values. The DMA Channel 6 Control Register
(DMAC6) is initialized to 0x00A0, which disables external port DMA
and selects DTYPE for instruction words. The LCTL and LCOM link
port control registers are overridden during link port booting to allow
link buffer 4 to receive 48-bit data. Form more information on the
booting process, see the Host Booting section.
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11.6.5 Multiprocessor Booting
Multiprocessor systems can be booted from a host processor, from
external EPROM, through a link port, or from external memory.

11.6.5.1 Multiprocessor Host Booting
To boot multiple ADSP-2106x processors from a host, each
ADSP-2106x must have its EBOOT, LBOOT, and BMS pins configured
for host booting: EBOOT=0, LBOOT=0, and BMS=1. After system
powerup, each ADSP-2106x will be in the idle state and the BRx bus
request lines will be deasserted. The host must assert the HBR input
and boot each ADSP-2106x by asserting its CS pin and downloading
instructions as described in “Host Booting” above.

11.6.5.2 Multiprocessor EPROM Booting
There are two methods of booting a multiprocessor system from an
EPROM. Processors perform the following steps in these methods:

• Arbitrate for the bus
• DMA the 256 word boot stream, after becoming bus master
• Release the bus
• Execute the loaded instructions

All ADSP-2106xs boot in turn from a single EPROM.
The BMS signals from each ADSP-2106x may be wire-ORed together to
drive the chip select pin of the EPROM. Each ADSP-2106x can boot in
turn, according to its priority. When the last one has finished booting,
it must inform the others (which may be in the idle state) that program
execution can begin (if all SHARCs are to begin executing instructions
simultaneously). An example system that uses this processors-take-
turns technique appears in Figure 11.12. When multiple SHARCs boot
from  one EPROM, the SHARCs can boot either identical code or
different code from the EPROM. If the processors load differing code, a
jump table (based on processor ID) can be used to select the code for
each processor.
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Figure 11.12  Multiple SHARCs Booting From One EPROM, Processors-Take-Turns

Figure 11.13  Multiple SHARCs Booting From One EPROM, One-Boots-Others
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One ADSP-2106x is booted, which then boots the others.
The EBOOT pin of the ADSP-2106x with ID=1 must be set high for
EPROM booting. All other ADSP-2106xs should be configured for host
booting (EBOOT=0, LBOOT=0, and BMS=1), which leaves them in the
idle state at startup and allows the ADSP-2106x with ID=1 to become
bus master and boot itself. Only the BMS pin of ADSP-2106x #1 is
connected to the chip select of the EPROM. When ADSP-2106x #1 has
finished booting, it can boot the remaining ADSP-2106xs by writing to
their external port DMA buffer 0 (EPB0) via multiprocessor memory
space. An example system that uses this one-boots-others technique
appears in Figure 11.13.

11.6.5.3 Multiprocessor Link Port Booting
In systems where multiple ADSP-2106xs are not connected by the
parallel external bus, booting can be accomplished from a single source
through the link ports. To simultaneously boot all of the ADSP-2106xs,
a parallel common connection should be made to Link Buffer 4 on each
of the processors. If only a daisy chain connection exists between the
processors’ link ports, then each ADSP-2106x can boot the next one in
turn. Link Buffer 4 must always be used for booting.

11.6.5.4 Multiprocessor Booting From External Memory
If external memory contains a program after reset, then the
ADSP-2106x with ID=1 should be set up for no boot mode; it will begin
executing from address 0x0040 0004 in external memory. When
booting has completed, the other ADSP-2106xs may be booted by
ADSP-2106x #1 if they are set up for host booting, or they can begin
executing out of external memory if they are set up for no boot mode.
Multiprocessor bus arbitration will allow this booting to occur in an
orderly manner. The bus arbitration sequence after reset is described in
the Multiprocessing chapter of this manual.

11.6.6 “No Boot” Mode
The no boot mode of the ADSP-2106x causes the processor to start
fetching and executing instructions at address 0x0040 0004 in external
memory space. In this mode, all DMA control and parameter registers
are set equal to their default initialization values.

11.6.7 Interrupt Vector Table Location
If the ADSP-2106x is booted from an external source (i.e. EPROM, host,
or link port booting), the interrupt vector table will be located in
internal memory. If, however, the ADSP-2106x is not booted, and will
execute from external memory, the vector table must be located in the
external memory.
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The IIVT bit in the SYSCON control register can be used to override
the booting mode in determining where the interrupt vector table is
located. If the ADSP-2106x is not booted (no boot mode), setting IIVT to
1 selects an internal vector table while IIVT=0 selects an external vector
table. If the ADSP-2106x is booted from an external source (any mode
other than no boot mode), then IIVT has no effect. The default
initialization value of IIVT is zero.

11.7 IMPORTANT PROGRAMMING REMINDERS
This section summarizes information that you should keep in mind
when writing programs.

11.7.1 Extra Cycle Conditions
All instructions can execute in a single cycle but may take longer in
some cases as described below.

11.7.1.1 Nondelayed Branches
A nondelayed branch instruction (JUMP, CALL, RTS or RTI) fetches
but does not execute the two instructions that follow it. Instead, these
operations are aborted and the processor executes two NOPs.

This two-cycle delay can be avoided by using delayed branches, which
execute the two instructions following the branch instruction. The
tradeoff is that the actual program flow does not match the apparent
order of operations in the program; you must remember that the two
extra instructions are executed before the branch is taken.

11.7.1.2 Program Memory Data Access With Cache Miss
The ADSP-2106x checks the instruction cache on every program
memory data access. If the instruction needed is in the cache, the
instruction fetch from the cache happens in parallel with the PM bus
data access and the instruction executes in a single cycle. However, if
the instruction is not in the cache, the ADSP-2106x must wait for the
PM bus data access to complete before it can fetch the next instruction.
This results in a minimum one-cycle delay, more if the PM bus data
access uses external memory with wait states.

This delay will occur even if the PM bus data access is conditional and
the condition is false.

See “Dual Data Accesses” later in this section for additional
information.
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11.7.1.3 Program Memory Data Access In Loops
The ADSP-2106x caches an instruction that it needs to fetch during the
execution of a PM bus data access. Because of the execution pipeline,
this instruction is usually two memory locations after the PM bus data
access. If the PM bus data access is in a loop, there will usually be a
cache miss on the first iteration of the loop and cache hits on
subsequent iterations, for a total of one extra cycle during the loop
execution.

However, there are certain cases in which different instructions are
needed from the cache at different iterations. In these cases the number
of cache misses, and therefore extra cycles, increases. These situations
are summarized below. Note that this table is based on the worst-case
scenario; the actual performance of the cache for a given program may
be better.

Cache Loop Length Address of
Misses (# instructions) PM Bus Data Access

1 > 2 Not at e or (e – 1)
2 ≥ 2 At e or (e – 1)
3 1 At the single loop location

e = loop end address

Two Misses: If the program memory data access occurs in the last two
instructions of a loop, there will usually be cache misses on the first
and the last loop iteration, for a total of two extra cycles. On the first
iteration, the ADSP-2106x needs to fetch from the top of the loop (the
first or second instruction). On the last iteration, the ADSP-2106x needs
to fetch one of the two instructions following the loop. At each of these
points there will  be a cache miss the first time the code containing the
loop is executed.

Three Misses: If a loop contains only one instruction, and that
instruction requires a PM bus data access, there are potentially three
cache misses. On the first iteration, the processor needs to fetch the
loop instruction again (if the loop iterates three times or more). On the
next-to-last iteration, the processor needs to fetch the instruction
following the loop. On the last instruction, the processor needs to fetch
the second instruction following the loop. In each case, there will be a
cache miss the first time the code containing the loop is executed.
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11.7.1.4 One- & Two-Instruction Loops
Counter-based loops that have only one or two instructions can cause
delays if not executed a minimum number of times. The ADSP-2106x
checks the termination condition two cycles before it exits the loop. In
these short loops, the ADSP-2106x has already looped back when the
termination condition is tested. Thus, if the termination condition tests
true, the two instructions in the pipeline must be aborted and NOPs
executed instead.

Specifically, a loop of length one executed one or two times or a loop of
length two executed only once incurs two cycles of overhead because
there are two aborted instructions after the last iteration. Note that
these overhead cycles are in addition to any extra cycles caused by a
PM bus data access inside the loop (see previous section). To avoid
overhead, use straight-line code instead of loops in these cases.

11.7.1.5 DAG Register Writes
When an instruction that writes to a DAG register is followed by an
instruction that uses any register in the same DAG for data addressing,
modify instructions, or indirect jumps, the ADSP-2106x inserts an extra
(NOP) cycle between the two instructions. This happens because the
same bus is needed by both operations in the same cycle, therefore the
second operation must be delayed. An example is:

L2=8;
DM(I0,M1)=R1;

Because L2 is in the same DAG as I0 (and M1), an extra cycle is
inserted after the write to L2.

11.7.1.6 Wait States
An external memory access can be programmed to include a specific
number of wait states and bus idle cycles, and (or) to wait for an
external acknowledge signal (ACK) before completing. If only
internally programmed wait states and bus idle cycles are used, the
delay is exactly the number of wait states and bus idle cycles
(1 waitstate = 1 cycle). If the external acknowledge signal is used,
either alone or in combination with programmed wait states, the delay
depends on the external system and can vary.

11.7.2 Delayed Branch Restrictions
A delayed branch instruction and the two instructions that follow it
must be executed sequentially. Any interrupt that occurs between a
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delayed branch instruction and either of the two instructions that
follow is not processed until the branch is complete.

Delayed branching can be used with the JUMP, CALL, RTS, and RTI
instructions. For delayed JUMPs, the following instructions may not be
used in the two locations immediately after the jump:

• Other JUMP, CALL, RTS, or RTI instructions
• DO UNTIL instruction

For a delayed CALL, RTS, or RTI, the following instructions may not
be used in the next two locations:

• Other JUMP, CALL, RTS, or RTI instructions
• DO UNTIL instruction
• Pushes or Pops of the PC stack
• Writes to the PC stack or PC stack pointer

11.7.3 Circular Buffer Initialization
You set up a circular buffer by initializing an L register with a positive,
nonzero value and loading the corresponding (same-numbered)
B register with the base address of the buffer. (The base address, or
starting address, is the lowest address of the buffer.) The
corresponding I register is automatically loaded with this same
starting address.

11.7.4 Disallowed DAG Register Transfers
The following instructions execute on the ADSP-2106x, but cause
incorrect results. These instructions are disallowed by the assembler:

• An instruction that stores a DAG register in memory using indirect
addressing from the same DAG, with or without update of the index
register (I). The instruction writes the wrong data to memory or
updates the wrong index register.

DM(M2,I1)=I0; or DM(I1,M2)=I0;

• An instruction that loads a DAG register from memory using indirect
addressing from the same DAG, with update of the index register.
The instruction will either load the DAG register or update the index
register, but not both.

L2=DM(I1,M0);
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11.7.5 Two Writes To Register File
If two writes to the same register file location take place in the same
cycle, only the write with higher precedence actually occurs.
Precedence is determined by the source of the data being written;
from highest to lowest, the precedence is:

• Data memory (DM bus) or universal register
• Program memory (PM bus)
• ALU
• Multiplier
• Shifter

11.7.6 Computation Units
In fixed-point to floating-point conversion, the rounding boundary is
always 40 bits even if the RND32 bit is set.

The ALU Zero flag (AZ) signifies floating-point underflow as well as a
zero result.

Transfers between MR registers and the register file are considered
multiplier operations, and are listed with the multiplier operations in
Appendix B, Compute Operation Reference.

11.7.7 Memory Space Access Restrictions
The ADSP-2106x’s three internal buses, PM, DM, and I/O, can be used
to access the processor’s memory map according to the following rules:

• The DM bus can access all memory spaces.
• The PM bus can access only Internal Memory Space and the lowest

12 megawords of External Memory Space.
• The I/O bus can access all memory spaces except for the

memory-mapped IOP registers (in Internal Memory Space).

Note that in silicon revision 1.0 and earlier, pre-modify addressing
operations must not change the memory space of the address; for
example, pre-modification of an address in Internal Memory Space should
not generate an address in External Memory Space. The one exception to
this rule is: an indirect JUMP or CALL instruction with pre-modify
addressing can jump from internal memory to external memory. Silicon
revisions 2.x and later do not have this pre-modify limitation.
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11.7.8 Mixing 32-Bit & 48-Bit Words In A Memory Block
32-bit data words and 48-bit instruction words can be stored in the
same memory block, with the restriction that all instructions must reside
at addresses lower than the data. No instruction may be stored at an
address higher than the lowest address of any data word. This
restriction is necessary to prevent addresses for 32-bit words and 48-bit
words from overlapping. Instruction storage must start at the lowest
address in the block.

11.7.9 16-Bit Short Words
16-bit short words read into ADSP-2106x registers are automatically
extended into 32-bit integers. The upper 16 bits can be zero-filled or
sign-extended, as determined by the value of the SSE bit in the MODE1
register. If SSE=0, the upper 16 bits are zero-filled. If SSE=1, the upper
16 bits are sign-extended (except when reading a short word into the
PX register, which is always zero-filled).

11.7.10 Dual Data Accesses
The ADSP-2106x’s PM and DM buses allow the processor core to
simultaneously access instructions and data from both memory blocks.
Instructions are fetched over the PM bus or from the instruction cache.
Data can be accessed over both the DM bus (using DAG1) and the
PM bus (using DAG2).

The ADSP-2106x’s two memory blocks can be configured to store
different combinations of 48-bit instruction words and 32-bit data
words. Maximum efficiency (i.e. single-cycle execution of dual-data-
access instructions), though, is achieved when one block contains a mix
of instructions and PM bus data while the other block contains DM bus
data only. This means that for an instruction requiring two data
accesses, the PM bus (and DAG2) is used to access data from the mixed
block, the DM bus (and DAG1) is used to access data from the
data-only block, and the instruction must be available from the cache.
Another way to partition the data is to store one operand in external
memory and the other in either block of internal memory.

In typical DSP applications such as digital filters and FFTs, two data
operands must be accessed for some instructions. In a digital filter, for
example, the filter coefficients can be stored in 32-bit words in the
same memory block that contains the 48-bit instructions, while 32-bit
data samples are stored in the other block. This provides single-cycle
execution of dual-data-access instructions, with the filter coefficients
being accessed by DAG2 over the PM bus and the instruction available
from the cache.
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To assure single-cycle, parallel accesses of two on-chip memory
locations, the following conditions must be met:

• The two addresses must be located in different memory blocks
(i.e. one in Block 0, one in Block 1).

• One address must be generated by DAG1 and the other by DAG2.
• The DAG1 address must not point to the same memory block that

instructions are being fetched from.
• The instruction should be of the form:
compute, Rx=DM(I0-I7,M0-M7), Ry=PM(I8-I15,M8-M15);

(Note that reads and writes may be intermixed.)

11.8 DATA DELAYS, LATENCIES, & THROUGHPUT
Tables 11.5 and 11.6 specify data delays, latencies, and throughput for
the ADSP-2106x. Data delay and latency are defined as the number of
cycles (after the first cycle) required to complete the operation. Thus a
zero-wait-state memory has a data delay of zero, and a single-wait-
state memory has a data delay of one. Throughput is the maximum rate
at which the operation is performed.

Data delay and throughput are the same whether the access is from a
host processor or from another ADSP-2106x.

11.9 EXECUTION STALLS
The following events can cause execution stalls in the ADSP-2106x
core.

Program Sequencer Stalls
• 1 cycle on a program memory data access with instruction cache miss
• 2 cycles on non-delayed branches
• 2 cycles on normal interrupts
• 5 cycles on vector interrupt (VIRPT)
• 1-2 cycles on short loops w/small iterations
• n cycles on IDLE instruction

DAG Stalls
• 1 cycle hold on register conflict



11System Design

11 – 45

Memory Stalls
• 1 cycle on PM and DM bus accesses to the same block of internal

memory
• n cycles if conflicting accesses to external memory (PM and DM bus

accesses must complete)
• n cycles if access to external memory (until I/O buffers are cleared out)
• n cycles if external access and ADSP-2106x does not own external bus
• n cycles until external access is complete (i.e. waitstates, idle cycles, etc.)

IOP Register Stalls
• n cycles if PM and DM bus access to IOP registers (both must complete)
• n cycles if conflict with slave access

DMA Stalls
• 1 cycle if an access to a DMA parameter register conflicts with the DMA

address generation (i.e. writing to the register while a register update is
taking place or reading while a DMA register read is taking place)

• 1 cycle if an access to a DMA parameter register conflicts with DMA
chaining

• n cycles if writing (reading) to a DMA buffer and the buffer is full
(empty)

Link Port & Serial Port Stalls
• 1 cycle if two link buffer reads back-to-back
• n cycles if write to a full buffer or read from an empty buffer
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Minimum Maximum
Data Delay Throughput

Operation (cycles) (cycles/transfer)

Core Processor Access to External Memory 0 1

Synchronous Access of Slave’s IOP Registers* –Read (Transfer Out) 0 2**
–Write (Transfer In) 2** 1

Delay is between data in the IOP register and at the
External Port (e.g. an IOP register would be written in
the 2nd cycle after the write was completed at the External Port).

Synchronous Direct Access of Slave’s Int. Memory* –Read (Transfer Out) 2 4**
(Direct Read/Write) –Write (Transfer In) 3** 1

Delay is between data in the IOP register and at the External Port .

Slave Mode DMA –Read (Transfer Out) – 2 †
–Write (Transfer In) – 1

Master Mode DMA –Transfer Out – 1
–Transfer In – 1

Handshake Mode DMA –Transfer (In & Out) 3 1
Delay is between DMA data and DMARx.

External Handshake Mode DMA –Transfer (In & Out) 3 1
Delay is between DMARx and the external transfer.

Table 11.5  Data Delays & Throughputs

*  If MMSWS (Multiprocessor Memory Space Wait States) is enabled, add 1 cycle to the throughput
of synchronous writes to MMS.
** For asynchronous accesses, add 1 cycle.
†  These transfers are speed-limited by the read of the slave’s DMA FIFO buffer.
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Minimum Maximum
Latency Throughput

Operation (cycles) (cycles/transfer)

Interrupts (IRQ2-0) 3 –
Multiprocessor Bus Requests (BR1-6) 1 –
Host Bus Request (HBR) 2 –
SYSCON Effect Latency 1 –
Host Packing Status Update (in SYSTAT register) 0 –
DMA Packing Status Update (in DMACx register) 1 –
DMA Chain Initialization 7-11 –
Vector Interrupt (VIRPT register) 6 –
Serial Ports * 35 32
Link Ports * –1x speed 11 8

–2x speed 7 4

Table 11.6  Latencies & Throughputs

* 32-bit words, ADSP-2106x core to ADSP-2106x core.

Note: The link port control registers LCOM, LCTL, LAR, and the serial port control
registers STCTLx and SRCTLx all share the same internal bus for both reads and
writes. Because of this, when a read of one of these registers is followed immediately
by a write, the write will take two processor cycles to complete.
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A.1 OVERVIEW
This appendix and the next one describe the ADSP-2106x instruction set in
detail. This appendix explains each instruction type, including the
assembly language syntax and the opcode that the instruction assembles
to. Many instruction types contain a field for specifying a compute
operation (an operation that uses the ALU, multiplier or shifter). Because
there are a large number of options available for this field, they are
described separately in Appendix B. (Note that data moves between the
MR registers and the register file are considered multiplier operations.)

Each instruction is specified in this section. The specification shows the
syntax of the instruction, describes its function, gives one or two
assembly-language examples, and specifies and describes the various
fields of its opcode. The instructions are grouped into four categories:

I. Compute and Move or Modify instructions, which specify a compute
operation in parallel with one or two data moves or an index register
modify.

II. Program Flow Control instructions, which specify various types of
branches, calls, returns and loops. Some of these instructions may also
specify a compute operation and/or a data move.

III. Immediate Data Move instructions, which use immediate instruction
fields as operands, or use immediate instruction fields for addressing.

IV. Miscellaneous instructions, such as bit modify and test, no operation
and idle.

The instructions are numbered from 1 to 23. Some instructions have more
than one syntactical form; for example, Instruction Type 4 has four distinct
forms. The instruction number has no bearing on programming, but
corresponds to the opcode recognized by the ADSP-2106x device.

Many instructions can be conditional. These instructions are prefaced by
an “IF” plus a condition mnemonic. In a conditional instruction, the
execution of the entire instruction is based on the specified condition.
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A.2 INSTRUCTION SET SUMMARY
The next few pages summarize the ADSP-2106x instruction set. The
compute operations used within each instruction are specified in
Appendix B.

(pg. A-16)

(pg. A-17)

(pg. A-18)

(pg. A-20)

(pg. A-22)

(pg. A-24)

(pg. A-26)

Compute & Move or Modify Instructions
1. compute, DM(Ia,Mb) = dreg1   , PM(Ic,Md) = dreg2    ;

dreg1 = DM(Ia,Mb) dreg2 = PM(Ic,Md)

2. IF condition compute;

3a. IF condition compute, DM(Ia,Mb)   =  ureg ;
PM(Ic,Md)

3b. IF condition compute, DM(Mb,Ia)   =  ureg ;
PM(Md,Ic)

3c. IF condition compute, ureg  = DM(Ia,Mb)    ;
PM(Ic,Md)

3d. IF condition compute, ureg  = DM(Mb,Ia)    ;
PM(Md,Ic)

4a. IF condition compute, DM(Ia,<data6>)   =  dreg ;
PM(Ic,<data6>)

4b. IF condition compute, DM(<data6>,Ia)   =  dreg ;
PM(<data6>,Ic)

4c. IF condition compute, dreg  = DM(Ia,<data6>)    ;
PM(Ic,<data6>)

4d. IF condition compute, dreg  = DM(<data6>,Ia)    ;
PM(<data6>,Ic)

5. IF condition compute, ureg1 = ureg2 ;

6a. IF condition shiftimm, DM(Ia,Mb)      = dreg  ;
PM(Ic,Md)

6b. IF condition shiftimm, dreg   = DM(Ia,Mb)     ;
PM(Ic,Md)

7. IF condition compute, MODIFY (Ia,Mb)    ;
(Ic,Md)

➠ Items in italics are an optional part of the instruction.
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Program Flow Control Instructions
8. IF condition JUMP <addr24> (DB)        ;

(PC, <reladdr24>) (LA)
(CI)
(DB,LA)
(DB,CI)

IF condition CALL <addr24> (DB) ;
(PC, <reladdr24>)

9. IF condition JUMP (Md,Ic) (DB)            , compute                 ;
(PC, <reladdr6>) (LA) ELSE   compute

(CI)
(DB,LA)
(DB,CI)

IF condition CALL (Md,Ic) (DB)            , compute                 ;
(PC, <reladdr6>) ELSE   compute

10. IF condition JUMP (Md,Ic)                    , ELSE compute  , DM(Ia,Mb) = dreg   ;
(PC, <reladdr6>) compute  , dreg = DM(Ia,Mb)

11. IF condition RTS (DB)             , compute ;
(LR) ELSE   compute
(DB,LR)

IF condition RTI (DB)         , compute ;
ELSE   compute

12. LCNTR  = <data16>   , DO <addr24> UNTIL LCE  ;
   ureg (PC, <reladdr24>)

13. DO <addr24> UNTIL termination  ;
(PC, <reladdr24>)

(pg. A-28)

(pg. A-30)

(pg. A-32)

(pg. A-34)

(pg. A-36)

(pg. A-38)

➠ Items in italics are an optional part of the instruction.
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(pg. A-46)

(pg. A-48)

(pg. A-50)

(pg. A-51)

(pg. A-52)

(pg. A-53)

(pg. A-54)

Immediate Move Instructions
14a. DM(<addr32>) =  ureg ;

PM(<addr24>)

14b. ureg  = DM(<addr32>)     ;
PM(<addr24>)

15a. DM(<data32>, Ia) =  ureg ;
PM(<data24>, Ic)

15b. ureg  = DM(<data32>, Ia)    ;
PM(<data24>, Ic)

16. DM(Ia,Mb)  = <data32> ;
PM(Ic,Md)

17. ureg = <data32> ;

(pg. A-40)

(pg. A-41)

(pg. A-42)

(pg. A-43)

Miscellaneous Instructions
18. BIT SET   sreg    <data32> ;

CLR
TGL
TST
XOR

19a. MODIFY (Ia, <data32>)   ;
(Ic, <data24>)

19b. BITREV (Ia, <data32>)   ;
(Ic, <data24>)

20. PUSH LOOP  , PUSH STS  , PUSH PCSTK  , FLUSH CACHE  ;
POP POP POP

21. NOP;

22. IDLE ;

23. IDLE16 ;

24. CJUMP function                     (DB) ;
(PC, <reladdr24>)

RFRAME ;

Items in italics are an optional part of the instruction.➠
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Instruction Set Notation

Notation Meaning
UPPERCASE Explicit syntax—assembler keyword (notation only; assembler is case-insensitive

and lowercase is the preferred programming convention)
; Semicolon (instruction terminator)
, Comma (separates parallel operations in an instruction)
italics Optional part of instruction
 option1 List of options between vertical bars (choose one)
 option2
compute ALU, multiplier, shifter or multifunction operation (see Appendix B)
shiftimm Shifter immediate operation (see Appendix B)
condition Status condition (see condition codes below)
termination Loop termination condition (see condition codes below)
ureg Universal register
sreg System register
dreg Data register (register file): R15-R0 or F15-F0
Ia I7-I0  (DAG1 index register)
Mb M7-M0  (DAG1 modify register)
Ic I15-I8  (DAG2 index register)
Md M15-M8  (DAG2 modify register)
<datan> n-bit immediate data value
<addrn> n-bit immediate address value
<reladdrn> n-bit immediate PC-relative address value
(DB) Delayed branch
(LA) Loop abort (pop loop and PC stacks on branch)
(CI) Clear interrupt

Condition & Termination Codes (IF & DO UNTIL)
In a conditional instruction, execution of the entire instruction depends on the specified condition.

Condition Description
EQ ALU equal zero
LT ALU less than zero
LE ALU less than or equal zero
AC ALU carry
AV ALU overflow
MV Multiplier overflow
MS Multiplier sign
SV Shifter overflow
SZ Shifter zero
FLAG0_IN Flag 0 input
FLAG1_IN Flag 1 input
FLAG2_IN Flag 2 input
FLAG3_IN Flag 3 input
TF Bit test flag
BM Bus master
LCE Loop counter expired (DO UNTIL)
NOT LCE Loop counter not expired (IF)

Condition Description
NE ALU not equal to zero
GE ALU greater than or equal zero
GT ALU greater than zero
NOT AC Not ALU carry
NOT AV Not ALU overflow
NOT MV Not multiplier overflow
NOT MS Not multiplier sign
NOT SV Not shifter overflow
NOT SZ Not shifter zero
NOT FLAG0_IN Not Flag 0 input
NOT FLAG1_IN Not Flag 1 input
NOT FLAG2_IN Not Flag 2 input
NOT FLAG3_IN Not Flag 3 input
NOT TF Not bit test flag
NBM Not bus master
FOREVER Always false (DO UNTIL)
TRUE Always true (IF)
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Universal Registers
Register Function
Data Register File
R15 - R0 Register file locations, fixed-point
F15 - F0 Register file locations, floating-point

Program Sequencer
PC Program counter (read-only)
PCSTK Top of PC stack
PCSTKP PC stack pointer
FADDR Fetch address (read-only)
DADDR Decode address (read-only)
LADDR Loop termination address, code; top of loop address stack
CURLCNTR Current loop counter; top of loop count stack
LCNTR Loop count for next nested counter-controlled loop

Data Address Generators
I7 - I0 DAG1 index registers
M7 - M0 DAG1 modify registers
L7 - L0 DAG1 length registers
B7 - B0 DAG1 base registers
I15 - I8 DAG2 index registers
M15 - M8 DAG2 modify registers
L15 - L8 DAG2 length registers
B15 - B8 DAG2 base registers

Bus Exchange
PX1 PMD-DMD bus exchange 1 (16 bits)
PX2 PMD-DMD bus exchange 2 (32 bits)
PX 48-bit combination of PX1 and PX2

Timer
TPERIOD Timer period
TCOUNT Timer counter

System Registers
MODE1 Mode control & status
MODE2 Mode control & status
IRPTL Interrupt latch
IMASK Interrupt mask
IMASKP Interrupt mask pointer (for nesting)
ASTAT Arithmetic status flags, bit test flag, etc.
STKY Sticky arithmetic status flags, stack status flags, etc.
USTAT1 User status register 1
USTAT2 User status register 2
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Memory Addressing in Instructions

Direct:

Absolute
Instruction Types 8, 12, 13, 14
Examples: dm(0x000015F0) = astat;

if ne jump label2;        {'label2' is an address label}

PC-relative
Instruction Types 8, 9, 10, 12, 13
Examples: call(pc,10), r0=r6+r3;

do(pc,length) until sz;   {'length' is a variable}

Register Indirect (using DAG registers):

Post-modify with M register, update I register
Instruction Types 1, 3, 6, 16
Examples: f5=pm(i9,m12);

dm(i0,m3)=r3, r1=pm(i15,m10);

Pre-modify with M register, no update
Instruction Types 3, 9, 10
Examples: r1=pm(m10,i15);

jump(m13,i11);

Post-modify with immediate value, update I register
Instruction Type 4
Examples: f15=dm(i0,6);

if av r1=pm(i15,0x11);

Pre-modify with immediate value, no update
Instruction Types 4, 15
Examples: if av r1=pm(0x11,i15);

dm(127,i5)=laddr;
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A.3 OPCODE  NOTATION
In ADSP-2106x opcodes, some bits are explicitly defined to be zeros or
ones. The values of other bits or fields set various parameters for the
instruction. The terms in this section define these opcode bits and fields.
Bits which are unspecified are ignored when the processor decodes the
instruction, but are reserved for future use.

A Loop abort code

1 Pop loop, PC stacks on branch
0 Do not pop loop, PC stacks on branch

ADDR Immediate address field

AI Computation unit register

0000 MR0F
0001 MR1F
0010 MR2F

0100 MR0B
0101 MR1B
0110 MR2B

B Branch type

0 Jump
1 Call

BOP Bit Operation select codes

000 Set
001 Clear
010 Toggle
100 Test
101 XOR

COMPUTE Compute operation field (see Appendix B)

COND Status Condition codes

0 - 31

CI Clear interrupt code

1 Clear current interrupt
0 Do not clear current interrupt
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CU Computation unit select codes

00 ALU
01 Multiplier
10 Shifter

DATA Immediate data field

DEC Counter decrement code

0 No counter decrement
1 Counter decrement

DMD Memory access direction

0 Read
1 Write

DMI Index (I) register numbers, DAG1

0 - 7

DMM Modify (M) register numbers, DAG1

0 - 7

DREG Register file locations

0 - 15

E ELSE clause code

0 No ELSE clause
1 ELSE clause

FC Flush cache code

0 No cache flush
1 Cache flush

G DAG/Memory select

0 DAG1 or Data Memory
1 DAG2 or Program Memory

INC Counter increment code

0 No counter increment
1 Counter increment
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J Jump Type

0 Non-delayed
1 Delayed

LPO Loop stack pop code

0 No stack pop
1 Stack pop

LPU Loop stack push code

0 No stack push
1 Stack push

LR Loop reentry code

0 No loop reentry
1 Loop reentry

NUM Interrupt vector

0 - 7

OPCODE Computation unit opcodes (see Appendix B)

PMD Memory access direction

0 Read
1 Write

PMI Index (I) register numbers, DAG2

8 - 15

PMM Modify (M) register numbers, DAG2

8 - 15

PPO PC stack pop code

0 No stack pop
1 Stack pop

PPU PC stack push code

0 No stack push
1 Stack push
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RELADDR PC-relative address field

SPO Status stack pop code

0 No stack pop
1 Stack pop

SPU Status stack push code

0 No stack push
1 Stack push

SREG System Register code

0 - 15  (see “Universal Register Codes” on the next page)

TERM Termination Condition codes

0 - 31

U Update, index (I) register

0 Pre-modify, no update
1 Post-modify with update

UREG Universal Register code

0 - 256  (see “Universal Register Codes” on the next page)

RA, RM, RN, Register file locations for compute operands and results
RS, RX, RY

0 - 15

RXA ALU x-operand register file location for multifunction operations

8 - 11

RXM Multiplier x-operand register file location for multifunction operations

0 - 3

RYA ALU y-operand register file location for multifunction operations

12 - 15

RYM Multiplier y-operand register file location for multifunction operations

4 - 7
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A.4 UNIVERSAL REGISTER CODES

Map 1 Registers:
PC program counter
PCSTK top of PC stack
PCSTKP PC stack pointer
FADDR fetch address
DADDR decode address
LADDR loop termination address
CURLCNTR current loop counter
LCNTR loop counter
R15 - R0 register file locations
I15 - I0 DAG1 and DAG2 index registers
M15 - M0 DAG1 and DAG2 modify registers
L15 - L0 DAG1 and DAG2 length registers
B15 - B0 DAG1 and DAG2 base registers

System Registers:
MODE1 mode control 1
MODE2 mode control 2
IRPTL interrupt latch
IMASK interrupt mask
IMASKP interrupt mask pointer
ASTAT arithmetic status
STKY sticky status
USTAT1 user status reg  1
USTAT2 user status reg 2

Figure A.1  Map 1 Universal Register Codes
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Map 2 Registers:
PX 48-bit PX1 and PX2 combination
PX1 bus exchange 1 (16 bits)
PX2 bus exchange 2 (32 bits)
TPERIOD timer period
TCOUNT timer counter

Figure A.2  Map 2 Universal Register Codes
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Group I.
Compute and Move Instructions
1. Parallel data memory and program memory transfers with register file, optional

compute operation ....................................................................................................A-16

2. Compute operation, optional condition .....................................................................A-17

3. Transfer between data or program memory and universal register, optional
condition, optional compute operation ......................................................................A-18

4. PC-relative transfer between data or program memory and register file,
optional condition, optional compute operation ........................................................A-20

5. Transfer between two universal registers, optional condition, optional compute
operation...................................................................................................................A-22

6. Immediate shift operation, optional condition, optional transfer between data or
program memory and register file .............................................................................A-24

7. Index register modify, optional condition, optional compute operation .....................A-26
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Compute and Move

compute / dreg↔DM / dreg↔PM

Syntax:

compute, DM(Ia, Mb) = dreg1    ,   PM(Ic, Md) = dreg2     ;
dreg1 = DM(Ia, Mb)    dreg2 = PM(Ic, Md)

Function:
Parallel accesses to data memory and program memory from the register
file. The specified I registers address data memory and program memory.
The I values are post-modified and updated by the specified M registers.
Pre-modify offset addressing is not supported.

Note: See Section 4.4.1, “DAG Register Transfer Restrictions”, in
Chapter 4, Data Addressing.

Examples:

R7=BSET R6 BY R0, DM(I0,M3)=R5, PM(I11,M15)=R4;

R8=DM(I4,M1), PM(I12 M12)=R0;

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

D P     DM   PM
   0 0 1 M  DMI     DMM M     DREG     PMI      PMM        DREG

D D

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

COMPUTE

DMD and PMD select the access types (read or write). DMDREG and
PMDREG specify register file locations. DMI and PMI specify I registers
for data and program memory. DMM and PMM specify M registers used
to update the I registers. The COMPUTE field defines a compute
operation to be performed in parallel with the data accesses; this is a
NOP if no compute operation is specified in the instruction.
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Syntax:

IF condition compute ;

Function:
Conditional compute instruction. The instruction is executed if the
specified condition tests true.

Examples:

IF MS MRF=0;

F6=(F2+F3)/2;

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

0 0 0       0 0 0 0 1    COND

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

   COMPUTE

The operation specified in the COMPUTE field is executed if the condition
specified by COND is true. If no condition is specified in the instruction,
COND is the TRUE condition, and the compute operation is always
executed.

Compute and Move
compute
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Syntax:

a. IF condition compute, DM(Ia, Mb) =  ureg ;
PM(Ic, Md)

b. IF condition compute, DM(Mb, Ia)      =  ureg ;
PM(Md, Ic)

c. IF condition compute, ureg = DM(Ia, Mb)    ;
PM(Ic, Md)

d. IF condition compute, ureg = DM(Mb, Ia)    ;
PM(Md, Ic)

Function:
Access between data memory or program memory and a universal
register. The specified I register addresses data memory or program
memory. The I value is either pre-modified (M, I order) or post-modified
(I, M order) by the specified M register. If it is post-modified, the I register
is updated with the modified value. If a compute operation is specified, it
is performed in parallel with the data access. If a condition is specified, it
affects entire instruction.

Notes:

1. ureg may not be from the same DAG (i.e. DAG1 or DAG2) as Ia/Mb or Ic/Md.
2. See Section 4.4.1, “DAG Register Transfer Restrictions”, in Chapter 4,
Data Addressing.

Examples:

R6=R3-R11, DM(I0,M1)=ASTAT;

IF NOT SV F8=CLIP F2 BY F14, PX=PM(I12,M12);

Compute and Move

compute / ureg↔DM|PM , register modify
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Compute and Move

compute / ureg↔DM|PM , register modify

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

  0 1 0  U   I   M   COND   G   D     UREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

D selects the access type (read or write). G selects data memory or
program memory. UREG specifies the universal register. I specifies the
I register, and M specifies the M register. U selects either pre-modify
without update or post-modify with update. The COMPUTE field defines
a compute operation to be performed in parallel with the data access; this
is a no-operation if no compute operation is specified in the instruction.
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Compute and Move

compute / dreg↔DM|PM , immediate modify

Syntax:

a. IF condition compute, DM(Ia, <data6>)     = dreg ;
PM(Ic, <data6>)

b. IF condition compute, DM(<data6>, Ia)     = dreg ;
PM(<data6>, Ic)

c. IF condition compute, dreg  = DM(Ia, <data6>)    ;
PM(Ic, <data6>)

d. IF condition compute, dreg  = DM(<data6>, Ia)    ;
PM(<data6>, Ic)

Function:
Access between data memory or program memory and the register file.
The specified I register addresses data memory or program memory. The I
value is either pre-modified (data order, I) or post-modified (I, data order)
by the specified immediate data. If it is post-modified, the I register is
updated with the modified value. If a compute operation is specified, it is
performed in parallel with the data access. If a condition is specified, it
affects entire instruction.

Note: See Section 4.4.1, “DAG Register Transfer Restrictions”, in
Chapter 4, Data Addressing.

Examples:

IF FLAG0_IN F1=F5*F12, F11=PM(I10,40);

R12=R3 AND R1, DM(6,I1)=R6;



AInstruction Set Reference

A – 21

Compute and Move

compute / dreg↔DM|PM , immediate modify

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

   0 1 1  0 I G D   U    COND      DATA      DREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

D selects the access type (read or write). G selects data memory or
program memory. DREG specifies the register file location. I specifies the
I register. DATA specifies a 6-bit, twos-complement modify value. U
selects either pre-modify without update or post-modify with update. The
COMPUTE field defines a compute operation to be performed in parallel
with the data access; this is a no-operation if no compute operation is
specified in the instruction.
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Compute and Move

compute / ureg↔ureg

Syntax:

IF condition compute, ureg1 = ureg2 ;

Function:
Transfer from one universal register to another. If a compute operation is
specified, it is performed in parallel with the data access. If a condition is
specified, it affects entire instruction.

Examples:

IF TF MRF=R2*R6(SSFR), M4=R0;

LCNTR=L7;
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Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

Source Dest
   0 1 1  1 UREG     COND UREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

           COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

Source UREG identifies the universal register source. Dest UREG
identifies the universal register destination. The COMPUTE field defines a
compute operation to be performed in parallel with the data transfer; this
is a no-operation if no compute operation is specified in the instruction.

Compute and Move

compute / ureg↔ureg
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Compute and Move

immediate shift / dreg↔DM|PM

Syntax:

a. IF condition shiftimm , DM(Ia, Mb)    = dreg   ;
PM(Ic, Md)

b. IF condition shiftimm ,         dreg  = DM(Ia, Mb)     ;
PM(Ic, Md)

Function:
An immediate shift operation is a shifter operation that takes immediate
data as its Y-operand. The immediate data is one 8-bit value or two 6-bit
values, depending on the operation. The x-operand and the result are
register file locations.

If an access to data or program memory from the register file is specified,
it is performed in parallel with the shifter operation. The I register
addresses data or program memory. The I value is post-modified by the
specified M register and updated with the modified value. If a condition is
specified, it affects entire instruction.

Note: See Section 4.4.1, “DAG Register Transfer Restrictions”, in
Chapter 4, Data Addressing.

Examples:

IF GT R2=R6 LSHIFT BY 30, DM(I4,M4)=R0;

IF NOT SZ R3=FEXT R1 BY 8:4;
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Opcode: (with data access)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

   1 0 0  0   I    M    COND G D     DATAEX  DREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

0 SHIFTOP DATA        RN RX

Opcode: (without data access)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

   0 0 0   0 0 0 1 0    COND        DATAEX

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

0 SHIFTOP DATA        RN RX

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

SHIFTOP specifies the shifter operation. The DATA field specifies an 8-bit
immediate shift value. For shifter operations requiring two 6-bit values
(a shift value and a length value), the DATAEX field adds 4 MSBs to the
DATA field, creating a 12-bit immediate value. The six LSBs are the shift
value, and the six MSBs are the length value.

If a memory access is specified, D selects the access type (read or write).
G selects data memory or program memory. DREG specifies the register
file location. I specifies the I register, which is post-modified and updated
by the M register identified by M.

The COMPUTE field defines a compute operation to be performed in
parallel with the data access; this is a no-operation if no compute
operation is specified in the instruction.

Compute and Move

immediate shift / dreg↔DM|PM
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Syntax:

IF condition compute, MODIFY (Ia, Mb)    ;
(Ic, Md)

Function:
Update of the specified I register by the specified M register. If a compute
operation is specified, it is performed in parallel with the data access. If a
condition is specified, it affects entire instruction.

Note: See Section 4.4.1, “DAG Register Transfer Restrictions”, in
Chapter 4, Data Addressing.

Examples:

IF NOT FLAG2_IN R4=R6*R12(SUF), MODIFY(I10,M8);

IF NOT LCE MODIFY(I3,M1);

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

0 0 0        0 0 1 0 0    G       COND      I               M

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

           COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

G selects DAG1 or DAG2. I specifies the I register, and M specifies the
M register. The COMPUTE field defines a compute operation to be
performed in parallel with the data access; this is a no-operation if no
compute operation is specified in the instruction.

Compute and Move
compute / modify



AInstruction Set Reference

A – 27

Group II.
Program Flow Control
8. Direct (or PC-relative) jump/call, optional condition ........................................................A-28

9. Indirect (or PC-relative) jump/call, optional condition, optional compute operation ........A-30

10. Indirect (or PC-relative) jump or optional compute operation with transfer between
data memory and register file..........................................................................................A-32

11. Return from subroutine or interrupt, optional condition, optional compute operation .....A-34

12. Load loop counter, do loop until loop counter expired ....................................................A-36

13. Do until termination .........................................................................................................A-38
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Program Flow Control
direct jump|call

Syntax:

IF condition JUMP <addr24> ( DB )  ;
(PC, <reladdr24>) LA

CI
DB, LA
DB, CI

IF condition CALL <addr24> ( DB )  ;
(PC, <reladdr24>)

Function:
A jump or call to the specified address or PC-relative address. The PC-
relative address is a 24-bit, twos-complement value. If the delayed branch
(DB) modifier is specified, the branch is delayed; otherwise, it is non-
delayed. If the loop abort (LA) modifier is specified for a jump, the loop
stacks and PC stack are popped when the jump is executed. You should
use the (LA) modifier if the jump will transfer program execution outside
of a loop. If there is no loop, or if the jump address is within the loop, you
should not use the (LA) modifier.

The clear interrupt (CI) modifier allows the reuse of an interrupt while
it is being serviced. Normally the ADSP-2106x ignores and does not
latch an interrupt that reoccurs while its service routine is already
executing. The JUMP (CI) instruction should be located within the
interrupt service routine. JUMP (CI) clears the status of the current
interrupt without leaving the interrupt service routine, reducing the
interrupt routine to a normal subroutine—this allows the interrupt to
occur again, as a result of a different event or task in the ADSP-2106x
system. See “Clearing The Current Interrupt For Reuse” in the Program
Sequencing chapter for further details.

The JUMP (CI) instruction reduces an interrupt service routine to a
normal subroutine by clearing the appropriate bit in the interrupt latch
register (IRPTL) and interrupt mask pointer (IMASKP). The ADSP-
2106x then allows the interrupt to occur again.

When returning from a subroutine which has been reduced from an
interrupt service routine with a JUMP (CI) instruction, the (LR)
modifier of the RTS instruction must be used (in case the interrupt
occurred during the last two instructions of a loop). (See instruction
type 11, return from subroutine).
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Examples:

IF AV JUMP(PC,0x00A4)(LA);

CALL init (DB); {init is a program label}

JUMP (PC,2) (DB,CI); {clear current int. for reuse}

Opcode: (with direct branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

0 0 0     0 0 1 1 0   B   A       COND   J CI

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  ADDR

Opcode: (with PC-relative branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

0 0 0     0 0 1 1 1   B   A       COND   J CI

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

RELADDR

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the TRUE condition, and the instruction is always
executed.

B selects the branch type, jump or call. J determines whether the branch is
delayed or non-delayed. The ADDR field specifies a 24-bit program
memory address. RELADDR is a 24-bit, twos-complement value that is
added to the current PC value to generate the branch address. The A bit
activates loop abort. CI activates clear interrupt. (For calls, A and CI are
ignored.)

Program Flow Control
direct jump|call
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Program Flow Control
indirect jump|call / compute

Syntax:

IF condition JUMP (Md, Ic) ( DB ) , compute ;
(PC, <reladdr6>) LA ELSE   compute

CI
DB, LA
DB, CI

IF condition CALL (Md, Ic) ( DB ) , compute ;
(PC, <reladdr6>) ELSE   compute

Function:
A jump or call to the specified PC-relative address or pre-modified I register
value. The PC-relative address is a 6-bit, twos-complement value. If an I register
is specified, it is modified by the specified M register to generate the branch
address. The I register is not affected by the modify operation.

The jump or call is executed if a condition is specified and is true. If a compute
operation is specified without the ELSE, it is performed in parallel with the jump
or call. If a compute operation is specified with the ELSE, it is performed only if
the the condition specified is false. Note that a condition must be specified if an
ELSE compute clause is specified.

If the delayed branch (DB) modifier is specified, the jump or call is delayed;
otherwise, it is non-delayed. If the loop abort (LA) modifier is specified for a
jump, the loop stacks and PC stack are popped when the jump is executed. You
should use the (LA) modifier if the jump will transfer program execution outside
of a loop. If there is no loop, or if the jump address is within the loop, you should
not use the (LA) modifier.

The clear interrupt (CI) modifier allows the reuse of an interrupt while it is
being serviced. Normally the ADSP-2106x ignores and does not latch an
interrupt that reoccurs while its service routine is already executing. The
JUMP (CI) instruction should be located within the interrupt service routine.
JUMP (CI) clears the status of the current interrupt without leaving the
interrupt service routine, reducing the interrupt routine to a normal
subroutine—this allows the interrupt to occur again, as a result of a different
event. See “Clearing The Current Interrupt For Reuse” in the Program
Sequencing chapter for further details.

The JUMP (CI) instruction reduces an interrupt service routine to a normal
subroutine by clearing the appropriate bit in the interrupt latch register
(IRPTL) and interrupt mask pointer (IMASKP). The ADSP-2106x then allows
the interrupt to occur again.

When returning from a subroutine which has been reduced from an interrupt
service routine with a JUMP (CI) instruction, the (LR) modifier of the RTS
instruction must be used (in case the interrupt occurred during the last two
instructions of a loop). (See instruction type 11, return from subroutine).
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Note: For indirect branches, see Section 4.4.1, “DAG Register Transfer
Restrictions”, in Chapter 4, Data Addressing.

Examples:
JUMP(M8,I12), R6=R6-1;

IF EQ CALL(PC,17)(DB) , ELSE R6=R6-1;

Opcode: (with indirect branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24 23

0 0 0     0 1 0 0 0   B   A COND PMI PMM J E CI

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  COMPUTE

Opcode:  (with PC-relative branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24 23

0 0 0     0 1 0 0 1   B   A COND RELADDR J E CI

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the true condition, and the instruction is always executed.
E specifies whether or not an ELSE clause is used.

B selects the branch type, jump or call. J determines whether the branch is
delayed or non-delayed. The A bit activates loop abort. CI activates clear
interrupt. (For calls, A and CI are ignored.)

RELADDR is a 6-bit, twos-complement value that is added to the current PC
value to generate the branch address. PMI specifies the I register for indirect
branches. The I register is pre-modified but not updated by the M register
specified by PMM.

The COMPUTE field defines a compute operation to be performed in parallel
with the data access; this is a NOP if no compute operation is specified in the
instruction.

Program Flow Control
indirect jump|call / compute
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Program Flow Control

indirect jump or compute / dreg↔DM

Syntax:

IF condition JUMP (Md, Ic) , ELSE compute , DM(Ia, Mb) = dreg ;
(PC, <reladdr6>) compute , dreg = DM(Ia, Mb)

Function:
Conditional jump to the specified PC-relative address or pre-modified I
register value, or optional compute operation in parallel with a transfer
between data memory and the register file. In this instruction, the IF
condition and ELSE keyword are not optional and must be used. If the
specified condition is true, the jump is executed. If the specified condition
is false, the compute operation and data memory transfer are performed
in parallel. Only the compute operation is optional in this instruction.

The PC-relative address for the jump is a 6-bit, twos-complement value. If
an I register is specified (Ic), it is modified by the specified M register (Md)
to generate the branch address. The I register is not affected by the modify
operation. Note that the delayed branch (DB), loop abort (LA), and clear
interrupt (CI) modifiers are not available for this jump instruction.

For the data memory access, the I register (Ia) provides the address. The I
register value is post-modified by the specified M register and is updated
with the modified value. Pre-modify addressing is not available for this
data memory access.

Note: For indirect branches, see Section 4.4.1, “DAG Register Transfer
Restrictions”, in Chapter 4, Data Addressing.

Examples:

IF TF JUMP(M8,I8), ELSE R6=DM(I6,M1);

IF NE JUMP(PC,0x20), ELSE F12=FLOAT R10 BY R3, R6=DM(I5,M0);
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Opcode: (with indirect jump)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

   1 1 0 D      DMI        DMM          COND               PMI         PMM DREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

COMPUTE

Opcode:(with  PC-relative jump)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

1 1 1  D  DMI    DMM    COND      RELADDR         DREG

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

 COMPUTE

COND specifies the condition to test.

PMI specifies the I register for indirect branches. The I register is pre-
modified but not updated by the M register specified by PMM. RELADDR
is a 6-bit, twos-complement value that is added to the current PC value to
generate the branch address.

D selects the data memory access type (read or write). DREG specifies the
register file location. DMI specifies the I register, which is post-modified
and updated by the M register identified by DMM.

The COMPUTE field defines a compute operation to be performed in
parallel with the data access; this is a NOP if no compute operation is
specified in the instruction.

Program Flow Control

indirect jump / compute / dreg↔DM
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Program Flow Control
return from subroutine|interrupt / compute

Syntax:

IF condition RTS ( DB ) , compute ;
LR ELSE   compute
DB, LR

IF condition RTI ( DB ) , compute ;
ELSE   compute

Function:
A return from a subroutine (RTS) or return from an interrupt service
routine (RTI). If the delayed branch (DB) modifier is specified, the return
is delayed; otherwise, it is non-delayed.

A return causes the processor to branch to the address stored at the top of
the PC stack. The difference between RTS and RTI is that the RTI
instruction not only pops the return address off the PC stack, but also 1)
pops the status stack if the ASTAT and MODE1 status registers have been
pushed (if the interrupt was IRQ2-0, the timer interrupt, or the VIRPT
vector interrupt), and 2) clears the appropriate bit in the interrupt latch
register (IRPTL) and the interrupt mask pointer (IMASKP).

The return is executed if a condition is specified and is true. If a compute
operation is specified without the ELSE, it is performed in parallel with
the return. If a compute operation is specified with the ELSE, it is
performed only if the condition is false. Note that a condition must be
specified if an ELSE compute clause is specified.

If a non-delayed call is used as one of the last three instructions of a loop,
the loop reentry (LR) modifier must be used with the RTS instruction that
returns from the subroutine. The (LR) modifier assures proper reentry into
the loop. In counter-based loops, for example, the termination condition is
checked by decrementing the current loop counter (CURLCNTR) during
execution of the instruction two locations before the end of the loop. The
RTS (LR) instruction prevents the loop counter from being decremented
again (i.e. twice for the same loop iteration).

The (LR) modifier of RTS must also be used when returning from a
subroutine which has been reduced from an interrupt service routine with
a JUMP (CI) instruction (in case the interrupt occurred during the last two
instructions of a loop). (For a description of JUMP (CI), refer to instruction
Type 8, Direct Jump/Call or Type 9, Indirect Jump/Call.)

IF condition RTS ( DB ) , compute ;
LR ELSE   compute
DB, LR

IF condition RTI ( DB     ) , compute ;
ELSE   compute
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Examples:

RTI, R6=R5 XOR R1;

IF NOT GT RTS(DB);

IF SZ RTS, ELSE R0=LSHIFT R1 BY R15;

Opcode: (return from subroutine)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

0 0 0 0 1 0 1 0 COND J E L
R

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

   COMPUTE

Opcode: (return from interrupt)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24  23

0 0 0 0 1 0 1 1 COND J E

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  COMPUTE

COND specifies the condition to test. If no condition is specified in the
instruction, COND is the true condition, and the return is always
executed. J determines whether the return is delayed or non-delayed.
E specifies whether or not an ELSE clause is used.

The COMPUTE field defines the compute operation to be performed; this
is a NOP if no compute operation is specified in the instruction.

LR specifies whether or not the loop reentry modifier is specified.

Program Flow Control
return from subroutine|interrupt / compute
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Program Flow Control
do until counter expired

Syntax:

LCNTR = <data16> ,  DO <addr24>  UNTIL LCE ;
ureg (<PC, reladdr24>)

Function:
Sets up a counter-based program loop. The loop counter LCNTR is loaded
with 16-bit immediate data or from a universal register. The loop start
address is pushed on the PC stack. The loop end address and the LCE
termination condition are pushed on the loop address stack. The end
address can be either a label for an absolute 24-bit program memory
address, or a PC-relative 24-bit twos-complement address. The LCNTR is
pushed on the loop counter stack and becomes the CURLCNTR value.
The loop executes until the CURLCNTR reaches zero.

Examples:

LCNTR=100, DO fmax UNTIL LCE; {fmax is a program label}

LCNTR=R12, DO (PC,16) UNTIL LCE;

Opcode: (with immediate loop counter load)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

0 0 0      0 1 1 0 0 DATA

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

          RELADDR
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Opcode: (with loop counter load from a universal register)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

0 0 0         0 1 1 0 1   UREG

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

          RELADDR

RELADDR specifies the end-of-loop address relative to the DO LOOP
instruction address. (The Assembler accepts an absolute address as well;
it converts the absolute address to the equivalent relative address for
coding.) The loop counter (LCNTR) is loaded with the 16-bit DATA value
or with the contents of the register specified by UREG.

Program Flow Control
do until counter expired
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Program Flow Control
do until

Syntax:

DO <addr24> UNTIL termination ;
(PC, <reladdr24>)

Function:
Sets up a condition-based program loop. The loop start address is pushed
on the PC stack. The loop end address and the termination condition are
pushed on the loop stack. The end address can be either a label for an
absolute 24-bit program memory address or a PC-relative, 24-bit twos-
complement address. The loop executes until the termination condition
tests true.

Examples:

DO end UNTIL FLAG1_IN; {end is a program label}

DO (PC,7) UNTIL AC;

Opcode: (relative addressing)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

0 0 0      0 1 1 1 0     TERM

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

          RELADDR

RELADDR specifies the end-of-loop address relative to the DO LOOP
instruction address. (The Assembler accepts an absolute address as well; it
converts the absolute address to the equivalent relative address for
coding.) TERM specifies the termination condition.
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Group III.
Immediate Move
14. Transfer between data or program memory and universal register, direct

addressing, immediate address................................................................................A-40

15. Transfer between data or program memory and universal register, indirect
addressing, immediate modifier ................................................................................A-41

16. Immediate data write to data or program memory ....................................................A-42

17. Immediate data write to universal register ................................................................A-43
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Immediate Move

ureg↔DM|PM  (direct addressing)

Syntax:

a. DM(<addr32>) =  ureg ;
PM(<addr24>)

b. ureg  = DM(<addr32>)     ;
PM(<addr24>)

Function:
Access between data memory or program memory and a universal
register, with direct addressing. The entire data memory or program
memory address is specified in the instruction. Data memory addresses
are 32 bits wide (0 to 232–1). Program memory addresses are 24 bits wide
(0 to 224–1).

Examples:

DM(temp)=MODE1; {temp is a program label}

DMWAIT=PM(0x489060);

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0   1 0 0   G D UREG

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

   ADDR

D selects the access type (read or write). G selects the memory type (data
or program). UREG specifies the number of a universal register. ADDR
contains the immediate address value.
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Syntax:

a. DM(<data32>, Ia)      =  ureg ;
PM(<data24>, Ic)

b. ureg  = DM(<data32>, Ia)    ;
PM(<data24>, Ic)

Function:
Access between data memory or program memory and a universal
register, with indirect addressing using I registers. The I register is
pre-modified with an immediate value specified in the instruction. The
I register is not updated. Data memory address modifiers are 32 bits
wide (0 to 232–1). Program memory address modifiers are 24 bits wide
(0 to 224–1).

Notes:

1. ureg may not be from the same DAG (i.e. DAG1 or DAG2) as Ia/Mb or Ic/Md.
2. See Section 4.4.1, “DAG Register Transfer Restrictions”, in Chapter 4,
Data Addressing.

Examples:

DM(24,I5)=TCOUNT;

USTAT1=PM(offs,I13); {"offs" is a defined constant}

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

1 0 1 G    I D   UREG

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

    DATA

Immediate Move

ureg↔DM|PM  (indirect addressing)

D selects the access type (read or write). G selects the memory type
(data or program). UREG specifies the number of a universal register.
ADDR contains the immediate address value. The I field specifies the
I register. The DATA field specifies the immediate modify value for the
I register.
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Immediate Move

immediate data → DM|PM

Syntax:

DM(Ia, Mb)     = <data32> ;
PM(Ic, Md)

Function:
A write of 32-bit immediate data to data or program memory, with
indirect addressing. The data is placed in the most significant 32 bits of
the 40-bit memory word. The least significant 8 bits are loaded with 0s.
The I register is post-modified and updated by the specified M register.

Notes:

1. ureg may not be from the same DAG (i.e. DAG1 or DAG2) as Ia/Mb or Ic/Md.
2. See Section 4.4.1, “DAG Register Transfer Restrictions”, in Chapter 4,
Data Addressing.

Examples:

DM(I4,M0)=19304;

PM(I14,M11)=count; {count is user-defined constant}

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

1 0 0   1   I    M    G

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  DATA

I selects the I register, and M selects the M register. G selects the memory
(data or program). DATA specifies the 32-bit immediate data.
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Syntax:

ureg = <data32> ;

Function:
A write of 32-bit immediate data to a universal register. If the register is 40
bits wide, the data is placed in the most significant 32 bits, and the least
significant 8 bits are loaded with 0s.

Examples:

IMASK=0xFFFC0060;

M15=mod1; {mod1 is user-defined constant}

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0     0 1 1 1 1    UREG

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

DATA

UREG specifies the number of a universal register. The DATA field
specifies the immediate data value.

Immediate Move

immediate data → ureg
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Group IV.
Miscellaneous
18. System register bit manipulation ..............................................................................A-46

19. Immediate I register modify, with or without bit-reverse ...........................................A-48

20. Push or Pop of loop and/or status stacks .................................................................A-50

21. No Operation (NOP) .................................................................................................A-51

22. Idle ............................................................................................................................A-52

23. Idle16 ........................................................................................................................A-53

24. CJUMP/RFRAME (Compiler-generated instruction) ................................................A-54
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Miscellaneous
system register bit manipulation

Syntax:

BIT SET     sreg <data32> ;
CLR
TGL
TST
XOR

Function:
A bit manipulation operation on a system register. This instruction can set,
clear, toggle or test specified bits, or compare (XOR) the system register
with a specified data value. In the first four operations, the immediate
data value is a mask. The set operation sets all the bits in the specified
system register that are also set in the specified data value. The clear
operation clears all the bits that are set in the data value. The toggle
operation toggles all the bits that are set in the data value. The test
operation sets the bit test flag (BTF in ASTAT) if all the bits that are set in
the data value are also set in the system register. The XOR operation sets
the bit test flag (BTF in ASTAT) if the system register value is the same as
the data value.

See shifter instructions for bit manipulation of data in the register file. See
Appendix E for more information on system registers.

Examples:

BIT SET MODE2 0x00000070;
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0 0 0    1 0 1 0 0    BOP      SREG

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

BIT TST ASTAT 0x00002000;

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

     DATA

BOP selects one of the five bit operations. SREG specifies the system
register. DATA specifies the data value.

Miscellaneous
system register bit manipulation
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Miscellaneous
I register modify / bit-reverse

Syntax:

a. MODIFY (Ia, <data32>)    ;
(Ic, <data24>)

b. BITREV (Ia, <data32>)    ;
(Ic, <data24>)

Function:
Modifies and updates the specified I register by an immediate 32-bit
(DAG1) or 24-bit (DAG2) data value. If the address is to be bit-reversed,
you must specify a DAG1 register (I0-I7) or DAG2 register (I8-I15), and the
modified value is bit-reversed before being written back to the I register.
No address is output in either case.

Note: See Section 4.4.1, “DAG Register Transfer Restrictions”, in
Chapter 4, Data Addressing.

Examples:

MODIFY (I4,304);

BITREV (I7,space); {space is a defined constant}

Opcode: (without bit-reverse)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0    1 0 1 1 0    G I

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

DATA
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Opcode: (with bit-reverse)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0    1 0 1 1 0    1   G I

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

DATA

Miscellaneous
I register modify / bit-reverse

G selects the data address generator:

G=0 for DAG1
G=1 for DAG2

I selects the I register:

I=0-7 for I0-I7 (for DAG1)
I=0-7 for I8-I15 (for DAG2)

DATA specifies the immediate modifier.
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Miscellaneous
push|pop stacks / flush cache

Syntax:

PUSH LOOP , PUSH STS , PUSH PCSTK , FLUSH CACHE  ;
POP POP POP

Function:
Pushes or pops the loop address and loop counter stacks, the status stack,
and/or the PC stack, and/or clear the instruction cache. Any of these
options may be combined in a single instruction.

Flushing the instruction cache invalidates all entries in the cache, with no
latency—the cache is cleared at the end of the cycle.

Examples:

PUSH LOOP, PUSH STS;

POP PCSTK, FLUSH CACHE;

Opcode:

47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

L L S S P P F
  0 0 0 1 0 1 1 1 P P P P P P C

U O U O U O

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

LPU pushes the loop stacks. LPO pops the loop stacks. SPU pushes the
status stack. SPO pops the status stack. PPU pushes the PC stack. PPO
pops the PC stack. FC causes a cache flush.
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Syntax:

NOP;

Function:
A null operation; only increments the fetch address.

Opcode:

47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0      0 0 0 0 0     0

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

Miscellaneous
nop
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Miscellaneous
idle

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0     0 0 0 0 0    1

Syntax:

IDLE ;

Function:
Executes a NOP and puts the processor in a low power state. The
processor remains in the low power state until an interrupt occurs.

On return from the interrupt, execution continues at the instruction
following the IDLE instruction.

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
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Miscellaneous
idle16

Syntax:

IDLE16 ;

Function:
On the ADSP-21061 only, this instruction executes a NOP and puts the
processor in a low power state. IDLE16 is a lower power version of the
IDLE instruction. This instruction halts the processor like the IDLE
instruction; in this case, the internal clock runs at 1/16th the rate of
CLKIN. The ADSP-21061's I/O processor continues to function, but all
operations occur at 1/16th the rate. All internal memory transfers require
an extra 15 cycles. The serial clocks and frame syncs (if being sourced by
the ADSP-21061) are divided down by a factor of 16 during IDLE16.
Similarly, all Host accesses take 16 times longer to complete. The
processor remains in the low power state until an interrupt occurs.

The processor exits from the IDLE16 state when it detects an external
(edge-sensitive) or timer interrupt. Tor information on the minimum pulse
width of the external interrupt, see the ADSP-21061 data sheet. The period
of the timer interrupt for IDLE16 is TPERIOD x TCK x 16.

After recognizing the interrupt, the processor requires two cycles to exit.
Execution continues at the instruction following the IDLE16 instruction.

Opcode:
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32

0 0 0     0 0 0 0 0     1    0   1

31  30  29  28  27  26  25  24  23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0
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Syntax:

CJUMP function (DB) ;
(PC, <reladdr24>)

RFRAME ;

Function:
The CJUMP instruction is generated by the C compiler for function calls,
and is not intended for use in assembly language programs. CJUMP
combines a direct or PC-relative jump with register transfer operations
that save the frame and stack pointers. The RFRAME instruction reverses
the register transfers to restore the frame and stack pointers.

The symbol “function” is a 24-bit immediate address for direct jumps. The
PC-relative address is a 24-bit, twos-complement value. The (DB) modifier
causes the jump to be delayed.

The different forms of this instruction perform the following operations:

Compiler-Generated
Instruction Operations Performed
CJUMP function (DB); JUMP function (DB), R2=I6, I6=I7;
CJUMP (PC,<reladdr24>) (DB); JUMP (PC,function) (DB), R2=I6, I6=I7;
RFRAME; I7=I6, I6=DM(0,I6);

Opcode: (with direct branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

   0  0  0  1       1  0  0  0        0  0  0  0        0  1  0  0        0  0  0  0       0  0  0  0

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

  ADDR

Opcode: (with PC-relative branch)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

   0  0  0  1       1  0  0  0        0  1  0  0        0  1  0  0        0  0  0  0       0  0  0  0

23  22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

RELADDR

Miscellaneous
cjump / rframe
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The ADDR field specifies a 24-bit program memory address for
“function.” RELADDR is a 24-bit, twos-complement value that is added to
the current PC value to generate the branch address.

Opcode: (RFRAME)
47  46  45  44  43  42  41  40  39  38  37  36  35  34  33  32  31  30  29  28  27  26  25  24

   0  0  0  1       1  0  0  1        0  0  0  0        0  0  0  0        0  0  0  0       0  0  0  0

23  22  21  20  19  18  17  16  15  14  13  12   11  10   9   8      7   6   5   4       3   2   1   0

   0  0  0  0       0  0  0  0        0  0  0  0        0  0  0  0        0  0  0  0       0  0  0  0

Miscellaneous
cjump / rframe
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BCompute Operation
Reference

B.1 OVERVIEW
Compute operations execute in the multiplier, the ALU and the shifter.
The 23-bit compute field is like a mini-instruction within the ADSP-21000
instruction and can be specified for a variety of compute operations. This
appendix describes each compute operation in detail, including its
assembly language syntax and opcode field.

A compute operation is one of the following:

• Single-function operations involve a single computation unit.

• Multifunction operations specify parallel operation of the multiplier and
the ALU or two operations in the ALU.

• The MR register transfer is a special type of compute operation used to
access the fixed-point accumulator in the multiplier. (See p. B-52).

The operations in each category are described in the following sections.
For each operation, the assembly language syntax, the function, and the
opcode format and contents are specified. Refer to the beginning of
Appendix A for an explanation of the notation and abbreviations used.

B.2 SINGLE-FUNCTION OPERATIONS
The compute field of a single-function operation looks like:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

0  CU  OPCODE RN RX RY

An operation determined by OPCODE is executed in the computation unit
specified by CU. The x- and the y-operands are received from data
registers RX and RY. The result operand is returned to data register RN.

B – 1
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The CU (computation unit) field is defined as follows:

CU=00 ALU operations
CU=01 Multiplier operations
CU=10 Shifter operations

In some shifter operations, data register RN is used both as a destination
for a result operand and as source for a third input operand.

The available operations and their 8-bit OPCODE values are listed in the
following sections, organized by computation unit: ALU, multiplier and
shifter. In each section, the syntax and opcodes for the operations are first
summarized and then the operations are described in detail.

B.2.1 ALU Operations
The ALU operations are described in this section. Tables B.1 and B.2
summarize the syntax and opcodes for the fixed-point and floating-point
ALU operations, respectively. The rest of this section contains detailed
descriptions of each operation.

Syntax Opcode
Rn = Rx + Ry 0000 0001
Rn = Rx – Ry 0000 0010
Rn = Rx + Ry + CI 0000 0101
Rn = Rx – Ry + CI – 1 0000 0110
Rn = (Rx + Ry)/2 0000 1001
COMP(Rx, Ry) 0000 1010
Rn = Rx + CI 0010 0101
Rn = Rx + CI – 1 0010 0110
Rn = Rx + 1 0010 1001
Rn = Rx – 1 0010 1010
Rn = –Rx 0010 0010
Rn = ABS Rx 0011 0000
Rn = PASS Rx 0010 0001
Rn = Rx AND Ry 0100 0000
Rn = Rx OR  Ry 0100 0001
Rn = Rx XOR Ry 0100 0010
Rn = NOT Rx 0100 0011
Rn = MIN(Rx, Ry) 0110 0001
Rn = MAX(Rx, Ry) 0110 0010
Rn = CLIP Rx BY Ry 0110 0011

Table B.1  Fixed-Point ALU Operations
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Syntax Opcode
Fn = Fx + Fy 1000 0001
Fn = Fx – Fy 1000 0010
Fn = ABS (Fx + Fy) 1001 0001
Fn = ABS (Fx – Fy) 1001 0010
Fn = (Fx + Fy)/2 1000 1001
COMP(Fx, Fy) 1000 1010
Fn = –Fx 1010 0010
Fn = ABS Fx 1011 0000
Fn = PASS Fx 1010 0001
Fn = RND Fx 1010 0101
Fn = SCALB Fx BY Ry 1011 1101
Rn = MANT Fx 1010 1101
Rn = LOGB Fx 1100 0001
Rn = FIX Fx BY Ry 1101 1001
Rn = FIX Fx 1100 1001
Rn = TRUNC Fx BY Ry 1101 1101
Rn = TRUNC Fx 1100 1101
Fn = FLOAT Rx BY Ry 1101 1010
Fn = FLOAT Rx 1100 1010
Fn = RECIPS Fx 1100 0100
Fn = RSQRTS Fx 1100 0101
Fn = Fx COPYSIGN Fy 1110 0000
Fn = MIN(Fx, Fy) 1110 0001
Fn = MAX(Fx, Fy) 1110 0010
Fn = CLIP Fx BY Fy 1110 0011

Table B.2  Floating-Point ALU Operations

The individual registers of the register file are prefixed with an “F”
when used in floating-point computations. The registers are prefixed
with an “R” when used in fixed-point computations. The following
instructions, for example, use the same registers:

F0=F1 * F2; floating-point multiply
R0=R1 * R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer;
they only determine how the ALU, multiplier, or shifter treat the data.
The F and R may be either uppercase or lowercase; the assembler is
case-insensitive.
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Syntax:

Rn = Rx + Ry

Function:
Adds the fixed-point fields in registers Rx and Ry. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx + Ry
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Syntax:

Rn = Rx – Ry

Function:
Subtracts the fixed-point field in register Ry from the fixed-point field in
register Rx. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF), and negative overflows return
the minimum negative number (0x8000 0000).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx – Ry
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ALU Fixed-Point
Rn = Rx + Ry + CI

Syntax:

Rn = Rx + Ry + CI

Function:
Adds with carry (AC from ASTAT) the fixed-point fields in registers Rx
and Ry. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. In saturation mode (the
ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF), and negative overflows return
the minimum negative number (0x8000 0000).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared
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Syntax:

Rn = Rx – Ry + CI – 1

Function:
Subtracts with borrow (AC – 1 from ASTAT) the fixed-point field in
register Ry from the fixed-point field in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx – Ry + CI – 1
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Syntax:

Rn = (Rx + Ry)/2

Function:
Adds the fixed-point fields in registers Rx and Ry and divides the result
by 2. The result is placed in the fixed-point field in register Rn. The
floating-point extension field in Rn is set to all 0s. Rounding is to nearest
(IEEE) or by truncation, as defined by the rounding mode bit in the
MODE1 register.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = (Rx + Ry)/2
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Syntax:

COMP(Rx, Ry)

Function:
Compares the fixed-point field in register Rx with the fixed-point field in
register Ry. Sets the AZ flag if the two operands are equal, and the AN
flag if the operand in register Rx is smaller than the operand in register
Ry.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand
(its value is the AND of ~AZ and ~AN); it is otherwise cleared.

Status flags:
AZ Is set if the operands in registers Rx and Ry are equal, otherwise

cleared
AU Is cleared
AN Is set if the operand in the Rx register is smaller than the operand in

the Ry register, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
COMP(Rx, Ry)
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Syntax:

Rn = Rx + CI

Function:
Adds the fixed-point field in register Rx with the carry flag from the
ASTAT register (AC). The result is placed in the fixed-point field in
register Rn. The floating-point extension field in Rn is set to all 0s. In
saturation mode (the ALU saturation mode bit in MODE1 set) positive
overflows return the maximum positive number (0x7FFF FFFF).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx + CI
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Syntax:

Rn = Rx + CI – 1

Function:
Adds the fixed-point field in register Rx with the borrow from the ASTAT
register (AC – 1). The result is placed in the fixed-point field in register Rn.
The floating-point extension field in Rn is set to all 0s. In saturation mode
(the ALU saturation mode bit in MODE1 set) positive overflows return the
maximum positive number (0x7FFF FFFF).

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx + CI – 1



B Compute Operations

B – 12

Syntax:

Rn = Rx + 1

Function:
Increments the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), overflow causes the maximum positive number
(0x7FFF FFFF) to be returned.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder,

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx + 1
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Syntax:

Rn = Rx – 1

Function:
Decrements the fixed-point operand in register Rx. The result is placed in
the fixed-point field in register Rn. The floating-point extension field in Rn
is set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set), underflow causes the minimum negative number
(0x8000 0000) to be returned.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx – 1
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ALU Fixed-Point
Rn = –Rx

Syntax:

Rn = –Rx

Function:
Negates the fixed-point operand in Rx by twos complement. The result is
placed in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. Negation of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU saturation
mode bit in MODE1 set), overflow causes the maximum positive number
(0x7FFF FFFF) to be returned.

Status flags:
AZ Is set if the fixed-point output is all 0s
AU Is cleared
AN Is set if the most significant output bit is 1
AV Is set if the XOR of the carries of the two most significant adder

stages is 1
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is cleared
AI Is cleared
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Syntax:

Rn = ABS Rx

Function:
Determines the absolute value of the fixed-point operand in Rx. The result
is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s. ABS of the minimum negative number
(0x8000 0000) causes an overflow. In saturation mode (the ALU saturation
mode bit in MODE1 set), overflow causes the maximum positive number
(0x7FFF FFFF) to be returned.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage is 1,

otherwise cleared
AS Is set if the fixed-point operand in Rx is negative, otherwise cleared
AI Is cleared

ALU Fixed-Point
Rn = ABS Rx
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Syntax:

Rn = PASS Rx

Function:
Passes the fixed-point operand in Rx through the ALU to the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = PASS Rx
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Syntax:

Rn = Rx AND Ry

Function:
Logically ANDs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx AND Ry
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Syntax:

Rn = Rx OR Ry

Function:
Logically ORs the fixed-point operands in Rx and Ry. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is set
to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx OR Ry
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Syntax:

Rn = Rx XOR Ry

Function:
Logically XORs the fixed-point operands in Rx and Ry. The result is
placed in the fixed-point field in Rn. The floating-point extension field in
Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = Rx XOR Ry
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Syntax:

Rn = NOT Rx

Function:
Logically complements the fixed-point operand in Rx. The result is placed
in the fixed-point field in Rn. The floating-point extension field in Rn is set
to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = NOT Rx
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Syntax:

Rn = MIN(Rx, Ry)

Function:
Returns the smaller of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = MIN(Rx, Ry)
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Syntax:

Rn = MAX(Rx, Ry)

Function:
Returns the larger of the two fixed-point operands in Rx and Ry. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = MAX(Rx, Ry)
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Syntax:

Rn = CLIP Rx BY Ry

Function:
Returns the fixed-point operand in Rx if the absolute value of the operand
in Rx is less than the absolute value of the fixed-point operand in Ry.
Otherwise, returns |Ry| if Rx is positive, and –|Ry| if Rx is negative. The
result is placed in the fixed-point field in register Rn. The floating-point
extension field in Rn is set to all 0s.

Status flags:
AZ Is set if the fixed-point output is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is cleared

ALU Fixed-Point
Rn = CLIP Rx BY Ry
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Syntax:

Fn = Fx + Fy

Function:
Adds the floating-point operands in registers Fx and Fy. The normalized
result is placed in register Fn. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns ±Infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±Zero. Denormal inputs are flushed to
±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the post-rounded result is a denormal

(unbiased exponent < –126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if they are

opposite-signed Infinities, otherwise cleared

ALU Floating-Point
Fn = Fx + Fy
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Syntax:

Fn = Fx – Fy

Function:
Subtracts the floating-point operand in register Fy from the floating-point
operand in register Fx. The normalized result is placed in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns ±Infinity (round-to-nearest) or
±NORM.MAX (round-to-zero). Post-rounded denormal returns ±Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status flags:
AZ Is set if the post-rounded result is a denormal

(unbiased exponent < –126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if they are like-

signed Infinities, otherwise cleared

ALU Floating-Point
Fn = Fx – Fy
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Syntax:

Fn = ABS (Fx + Fy)

Function:
Adds the floating-point operands in registers Fx and Fy, and places the
absolute value of the normalized result in register Fn. Rounding is to
nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as
defined by the rounding mode and rounding boundary bits in MODE1.
Post-rounded overflow returns +Infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status flags:
AZ Is set if the post-rounded result is a denormal

(unbiased exponent < –126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if they are

opposite-signed Infinities, otherwise cleared

ALU Floating-Point
Fn = ABS (Fx + Fy)
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Syntax:

Fn = ABS (Fx – Fy)

Function:
Subtracts the floating-point operand in Fy from the floating-point operand
in Fx and places the absolute value of the normalized result in register Fn.
Rounding is to nearest (IEEE) or by truncation, to a 32-bit or to a 40-bit
boundary, as defined by the rounding mode and rounding boundary bits
in MODE1. Post-rounded overflow returns +Infinity (round-to-nearest) or
+NORM.MAX (round-to-zero). Post-rounded denormal returns +Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status flags:
AZ Is set if the post-rounded result is a denormal

(unbiased exponent < –126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if they are like-

signed Infinities, otherwise cleared

ALU Floating-Point
Fn = ABS (Fx – Fy)
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Syntax:

Fn = (Fx + Fy)/2

Function:
Adds the floating-point operands in registers Fx and Fy and divides the
result by 2, by decrementing the exponent of the sum before rounding.
The normalized result is placed in register Fn. Rounding is to nearest
(IEEE) or by truncation, to a 32-bit or to a 40-bit boundary, as defined by
the rounding mode and rounding boundary bits in MODE1. Post-rounded
overflow returns ±Infinity (round-to-nearest) or ±NORM.MAX (round-to-
zero). Post-rounded denormal results return ±Zero. A denormal input is
flushed to ±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the post-rounded result is a denormal

(unbiased exponent < –126) or zero, otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if they are

opposite-signed Infinities, otherwise cleared

ALU Floating-Point
Fn = (Fx + Fy)/2
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Syntax:

COMP(Fx, Fy)

Function:
Compares the floating-point operand in register Fx with the floating-point
operand in register Fy. Sets the AZ flag if the two operands are equal, and
the AN flag if the operand in register Fx is smaller than the operand in
register Fy.

The ASTAT register stores the results of the previous eight ALU compare
operations in bits 24-31. These bits are shifted right (bit 24 is overwritten)
whenever a fixed-point or floating-point compare instruction is executed.
The MSB of ASTAT is set if the X operand is greater than the Y operand
(its value is the AND of ~AZ and ~AN); it is otherwise cleared.

Status flags:
AZ Is set if the operands in registers Fx and Fy are equal, otherwise

cleared
AU Is cleared
AN Is set if the operand in the Fx register is smaller than the operand in

the Fy register, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
COMP(Fx, Fy)
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Syntax:

Fn = –Fx

Function:
Complements the sign bit of the floating-point operand in Fx. The
complemented result is placed in register Fn. A denormal input is flushed
to ±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the result operand is a ±Zero, otherwise cleared
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = –Fx
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Syntax:

Fn = ABS Fx

Function:
Returns the absolute value of the floating-point operand in register Fx by
setting the sign bit of the operand to 0. Denormal inputs are flushed to
+Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the result operand is +Zero, otherwise cleared.
AU Is cleared
AN Is cleared
AV Is cleared
AC Is cleared
AS Is set if the input operand is negative, otherwise cleared
AI Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = ABS Fx
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Syntax:

Fn = PASS Fx

Function:
Passes the floating-point operand in Fx through the ALU to the floating-
point field in register Fn. Denormal inputs are flushed to ±Zero. A NAN
input returns an all 1s result.

Status flags:
AZ Is set if the result operand is a ±Zero, otherwise cleared
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = PASS Fx
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Syntax:

Fn = RND Fx

Function:
Rounds the floating-point operand in register Fx to a 32 bit boundary.
Rounding is to nearest (IEEE) or by truncation, as defined by the rounding
mode bit in MODE1. Post-rounded overflow returns ±Infinity (round-to-
nearest) or ±NORM.MAX (round-to-zero). A denormal input is flushed to
±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the result operand is a ±Zero, otherwise cleared
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the post-rounded result overflows

(unbiased exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if the input operand is a NAN, otherwise cleared

ALU Floating-Point
Fn = RND Fx
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Syntax:

Fn = SCALB Fx BY Ry

Function:
Scales the exponent of the floating-point operand in Fx by adding to it the
fixed-point twos-complement integer in Ry. The scaled floating-point
result is placed in register Fn. Overflow returns ±Infinity (round-to-
nearest) or ±NORM.MAX (round-to-zero). Denormal returns ±Zero.
Denormal inputs are flushed to ±Zero. A NAN input returns an all 1s
result.

Status flags:
AZ Is set if the result is a denormal (unbiased exponent < –126) or zero,

otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the result overflows (unbiased exponent > +127), otherwise

cleared
AC Is cleared
AS Is cleared
AI Is set if the input is a NAN, an otherwise cleared

ALU Floating-Point
Fn = SCALB Fx BY Ry
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Syntax:

Rn = MANT Fx

Function:
Extracts the mantissa (fraction bits with explicit hidden bit, excluding the
sign bit) from the floating-point operand in Fx. The unsigned-magnitude
result is left-justified (1.31 format) in the fixed-point field in Rn. Rounding
modes are ignored and no rounding is performed because all results are
inherently exact. Denormal inputs are flushed to ±Zero. A NAN or an
Infinity input returns an all 1s result (–1 in signed fixed-point format).

Status flags:
AZ Is set if the result is zero, otherwise cleared
AU Is cleared
AN Is cleared
AV Is cleared
AC Is cleared
AS Is set if the input is negative, otherwise cleared
AI Is set if the input operands is a NAN or an Infinity, otherwise

cleared

ALU Floating-Point
Rn = MANT Fx
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Syntax:

Rn = LOGB Fx

Function:
Converts the exponent of the floating-point operand in register Fx to an
unbiased twos-complement fixed-point integer. The result is placed in the
fixed-point field in register Rn. Unbiasing is done by subtracting 127 from
the floating-point exponent in Fx. If saturation mode is not set, a ±Infinity
input returns a floating-point +Infinity and a ±Zero input returns a
floating-point –Infinity. If saturation mode is set, a ±Infinity input returns
the maximum positive value (0x7FFF FFFF) and a ±Zero input returns the
maximum negative value (0x8000 0000). Denormal inputs are flushed to
±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the fixed-point result is zero, otherwise cleared
AU Is cleared
AN Is set if the result is negative, otherwise cleared
AV Is set if the input operand is an Infinity or a Zero, otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if the input is a NAN, otherwise cleared

ALU Floating-Point
Rn = LOGB Fx
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Syntax:

Rn = FIX Fx Rn = TRUNC Fx
Rn = FIX Fx BY Ry Rn = TRUNC Fx BY Ry

Function:
Converts the floating-point operand in Fx to a twos-complement 32-bit
fixed-point integer result. If the MODE1 register TRUNC bit=1, the FIX
operation truncates the mantissa towards –Infinity. If the TRUNC bit=0,
the FIX operation rounds the mantissa towards the nearest integer. The
TRUNC operation always truncates toward 0. Note that the TRUNC bit
does not influence operation of the TRUNC instruction.

If a scaling factor (Ry) is specified, the fixed-point twos-complement
integer in Ry is added to the exponent of the floating-point operand in Fx
before the conversion. The result of the conversion is right-justified (32.0
format) in the fixed-point field in register Rn. The floating-point extension
field in Rn is set to all 0s. In saturation mode (the ALU saturation mode bit
in MODE1 set) positive overflows and +Infinity return the maximum
positive number (0x7FFF FFFF), and negative overflows and –Infinity
return the minimum negative number (0x8000 0000).

For the FIX operation, rounding is to nearest (IEEE) or by truncation, as
defined by the rounding mode bit in MODE1. A NAN input returns a
floating-point all 1s result. If saturation mode is not set, an Infinity input
or a result that overflows returns a floating-point all 1s result. All positive
underflows return zero. Negative underflows that are rounded-to-nearest
return zero, and negative underflows that are rounded by truncation
return –1 (0xFF FFFF FF00).

Status flags:
AZ Is set if the fixed-point result is Zero, otherwise cleared
AU Is set if the pre-rounded result is a denormal, otherwise cleared
AN Is set if the fixed-point result is negative, otherwise cleared
AV Is set if the conversion causes the floating-point mantissa to be

shifted left, i.e. if the floating-point exponent + scale bias is
> 157  (127 + 31 – 1) or if the input is ±Infinity, otherwise cleared

AC Is cleared
AS Is cleared
AI Is set if the input operand is a NAN or, when saturation mode is not

set, either input is an Infinity or the result overflows, otherwise
cleared

ALU Floating-Point
Rn = FIX Fx

 Rn = TRUNC Fx
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Syntax:

Fn = FLOAT Rx BY Ry
Fn = FLOAT Rx

Function:
Converts the fixed-point operand in Rx to a floating-point result. If a
scaling factor (Ry) is specified, the fixed-point twos-complement integer in
Ry is added to the exponent of the floating-point result. The final result is
placed in register Fn.

Rounding is to nearest (IEEE) or by truncation, as defined by the rounding
mode, to a 40-bit boundary, regardless of the values of the rounding
boundary bits in MODE1. The exponent scale bias may cause a floating-
point overflow or a floating-point underflow. Overflow causes a ±Infinity
(round-to-nearest) or ±NORM.MAX (round-to-zero) to be returned;
underflow causes a ±Zero to be returned.

Status flags:
AZ Is set if the result is a denormal (unbiased exponent < –126) or zero,

otherwise cleared
AU Is set if the post-rounded result is a denormal, otherwise cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is set if the result overflows (unbiased exponent >127)
AC Is cleared
AS Is cleared
AI Is cleared

ALU Floating-Point
Fn = FLOAT Rx BY Ry / Fn = FLOAT Rx
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Syntax:

Fn = RECIPS Fx

Function:
Creates an 8-bit accurate seed for 1/Fx, the reciprocal of Fx. The mantissa
of the seed is determined from a ROM table using the 7 MSBs (excluding
the hidden bit) of the Fx mantissa as an index. The unbiased exponent of
the seed is calculated as the twos complement of the unbiased Fx
exponent, decremented by one; i.e., if e is the unbiased exponent of Fx,
then the unbiased exponent of Fn = –e – 1. The sign of the seed is the sign
of the input. ±Zero returns ±Infinity and sets the overflow flag. If the
unbiased exponent of Fx is greater than +125, the result is ±Zero. A NAN
input returns an all 1s result.

The following code performs floating-point division using an iterative
convergence algorithm.* The result is accurate to one LSB in whichever
format mode, 32-bit or 40-bit, is set (32-bit only for ADSP-21010). The
following inputs are required: F0=numerator, F12=denominator, F11=2.0.
The quotient is returned in F0. (The two highlighted instructions can be
removed if only a ±1 LSB accurate single-precision result is necessary.)

F0=RECIPS F12, F7=F0; {Get 8 bit seed R0=1/D}
F12=F0*F12; {D' = D*R0}
F7=F0*F7, F0=F11-F12; {F0=R1=2-D', F7=N*R0}
F12=F0*F12; {F12=D'-D'*R1}
F7=F0*F7, F0=F11-F12; {F7=N*R0*R1, F0=R2=2-D'}

 F12=F0*F12;  {F12=D'=D'*R2}
 F7=F0*F7, F0=F11-F12;  {F7=N*R0*R1*R2, F0=R3=2-D'}

F0=F0*F7; {F7=N*R0*R1*R2*R3}

Note that this code segment can be made into a subroutine by adding an
RTS(DB) clause to the third-to-last instruction.

Status flags:
AZ Is set if the floating-point result is ±Zero (unbiased exponent of Fx is

greater than +125), otherwise cleared
AU Is cleared
AN Is set if the input operand is negative, otherwise cleared
AV Is set if the input operand is ±Zero, otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if the input operand is a NAN, otherwise cleared

* Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 284.

ALU Floating-Point
Fn = RECIPS Fx
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Syntax:
Fn = RSQRTS Fx

Function: Creates a 4-bit accurate seed for 1/√Fx, the reciprocal square root
of Fx. The mantissa of the seed is determined from a ROM table using the
LSB of the biased exponent of Fx concatenated with the 6 MSBs (excluding
the hidden bit) of the mantissa of Fx as an index. The unbiased exponent
of the seed is calculated as the twos complement of the unbiased Fx
exponent, shifted right by one bit and decremented by one; i.e., if e is the
unbiased exponent of Fx, then the unbiased exponent of
Fn = –INT[e/2] – 1. The sign of the seed is the sign of the input. ±Zero
returns ±Infinity and sets the overflow flag. +Infinity returns +Zero. A
NAN input or a negative nonzero input returns an all 1s result.

The following code calculates a floating-point reciprocal square root
(1/√x) using a Newton-Raphson iteration algorithm.* The result is
accurate to one LSB in whichever format mode, 32-bit or 40-bit, is set
(32-bit only for ADSP-21010). To calculate the square root, simply
multiply the result by the original input. The following inputs are
required: F0=input, F8=3.0, F1=0.5. The result is returned in F4. (The four
highlighted instructions can be removed if only a ±1 LSB accurate single-
precision result is necessary.)

F4=RSQRTS F0; {Fetch 4-bit seed}
F12=F4*F4; {F12=X0^2}
F12=F12*F0; {F12=C*X0^2}
F4=F1*F4, F12=F8-F12; {F4=.5*X0, F12=3-C*X0^2}
F4=F4*F12; {F4=X1=.5*X0(3-C*X0^2)}
F12=F4*F4; {F12=X1^2}
F12=F12*F0; {F12=C*X1^2}
F4=F1*F4, F12=F8-F12; {F4=.5*X1, F12=3-C*X1^2}

 F4=F4*F12;  {F4=X2=.5*X1(3-C*X1^2)}
 F12=F4*F4;  {F12=X2^2}
 F12=F12*F0;  {F12=C*X2^2}
 F4=F1*F4, F12=F8-F12;  {F4=.5*X2, F12=3-C*X2^2}

F4=F4*F12; {F4=X3=.5*X2(3-C*X2^2)}

Note that this code segment can be made into a subroutine by adding an
RTS(DB) clause to the third-to-last instruction.

Status flags:
AZ Is set if the floating-point result is +Zero (Fx = +Infinity), otherwise cleared
AU Is cleared
AN Is set if the input operand is –Zero, otherwise cleared
AV Is set if the input operand is ±Zero, otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if the input operand is negative and nonzero, or a NAN, otherwise

cleared

* Cavanagh, J. 1984. Digital Computer Arithmetic. McGraw-Hill. Page 278.

ALU Floating-Point
Fn = RSQRTS Fx
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Syntax:

Fn = Fx COPYSIGN Fy

Function:
Copies the sign of the floating-point operand in register Fy to the floating-
point operand from register Fx without changing the exponent or the
mantissa. The result is placed in register Fn. A denormal input is flushed
to ±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if the floating-point result is ±Zero, otherwise cleared
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = Fx COPYSIGN Fy
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Syntax:

Fn = MIN(Fx, Fy)

Function:
Returns the smaller of the floating-point operands in register Fx and Fy. A
NAN input returns an all 1s result. MIN of +Zero and –Zero returns
–Zero. Denormal inputs are flushed to ±Zero.

Status flags:
AZ Is set if the floating-point result is ±Zero, otherwise cleared.
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = MIN(Fx, Fy)
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Syntax:

Fn = MAX(Fx, Fy)

Function:
Returns the larger of the floating-point operands in registers Fx and Fy. A
NAN input returns an all 1s result. MAX of +Zero and –Zero returns
+Zero. Denormal inputs are flushed to ±Zero.

Status flags:
AZ Is set if the floating-point result is ±Zero, otherwise cleared.
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = MAX(Fx, Fy)
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Syntax:

Fn = CLIP Fx BY Fy

Function:
Returns the floating-point operand in Fx if the absolute value of the
operand in Fx is less than the absolute value of the floating-point operand
in Fy. Else, returns | Fy | if Fx is positive, and –| Fy | if Fx is negative. A
NAN input returns an all 1s result. Denormal inputs are flushed to ±Zero.

Status flags:
AZ Is set if the floating-point result is ±Zero, otherwise cleared.
AU Is cleared
AN Is set if the floating-point result is negative, otherwise cleared
AV Is cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, otherwise cleared

ALU Floating-Point
Fn = CLIP Fx BY Fy



BCompute Operations

B – 45

B.2.2 Multiplier Operations
The multiplier operations are described in this section. Table B.3
summarizes the syntax and opcodes for the fixed-point and floating-point
multiplier operations. The rest of this section contains detailed
descriptions of each operation.

Fixed-point:
Syntax Opcode
Rn =  Rx * Ry mod2† 01yx f00r
MRF =  Rx * Ry mod2† 01yx f10r
MRB =  Rx * Ry mod2† 01yx f11r

Rn =  MRF + Rx * Ry mod2† 10yx f00r
Rn =  MRB + Rx * Ry mod2† 10yx f01r
MRF =  MRF + Rx * Ry mod2† 10yx f10r
MRB =  MRB + Rx * Ry mod2† 10yx f11r

Rn =  MRF – Rx * Ry mod2† 11yx f00r
Rn =  MRB – Rx * Ry mod2† 11yx f01r
MRF =  MRF – Rx * Ry mod2† 11yx f10r
MRB =  MRB – Rx * Ry mod2† 11yx f11r

Rn = SAT MRF mod1†† 0000 f00x
Rn = SAT MRB mod1†† 0000 f01x
MRF = SAT MRF mod1†† 0000 f10x
MRB = SAT MRB mod1†† 0000 f11x

Rn = RND MRF mod1†† 0001 100x
Rn = RND MRB mod1†† 0001 101x
MRF = RND MRF mod1†† 0001 110x
MRB = RND MRB mod1†† 0001 111x

MRF =  0 0001 0100
MRB =  0 0001 0110

MR = Rn
Rn = MR

Floating-point:
Syntax Opcode
Fn = Fx * Fy 0011 0000

† See Table B.4
†† See Table B.5

y y-input; 1=signed, 0=unsigned
x x-input; 1=signed, 0=unsigned
f format; 1=fractional, 0=integer
r rounding; 1=yes, 0=no

Table B.3  Multiplier Operations
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Mod2 in Table B.3 is an optional modifier, enclosed in parentheses,
consisting of three or four letters that indicate whether the x-input is
signed (S) or unsigned (U), whether the y-input is signed or unsigned,
whether the inputs are in integer (I) or fractional (F) format and whether
the result when written to the register file is to be rounded-to-nearest (R).
The options for mod2 and the corresponding opcode values are listed in
Table B.4.

Mod2 Opcode
(SSI) --11 0--0
(SUI) --01 0--0
(USI) --10 0--0
(UUI) --00 0--0
(SSF) --11 1--0
(SUF) --01 1--0
(USF) --10 1--0
(UUF) --00 1--0
(SSFR) --11 1--1
(SUFR) --01 1--1
(USFR) --10 1--1
(UUFR) --00 1--1

Table B.4  Multiplier Mod2 Options

Similarly, mod1 in Table B.3 is an optional modifier, enclosed in
parentheses, consisting of two letters that indicate whether the input is
signed (S) or unsigned (U) and whether the input is in integer (I) or
fractional (F) format. The options for mod1 and the corresponding opcode
values are listed in Table B.5.

Mod1 Opcode
(SI) (for SAT only) ---- 0--1
(UI) (for SAT only) ---- 0--0
(SF) ---- 1--1
(UF) ---- 1--0

Table B.5  Multiplier Mod1 Options
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Syntax:

Rn =  Rx * Ry mod2
MRF =  Rx * Ry mod2
MRB =  Rx * Ry mod2

Function:
Multiplies the fixed-point fields in registers Rx and Ry. If rounding is
specified (fractional data only), the result is rounded. The result is placed
either in the fixed-point field in register Rn or one of the MR accumulation
registers. If Rn is specified, only the portion of the result that has the same
format as the inputs is transferred (bits 31-0 for integers, bits 63-32 for
fractional). The floating-point extension field in Rn is set to all 0s. If MRF
or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is set if the upper bits are not all zeros (signed or unsigned result) or

ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
Rn|MR = Rx * Ry
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Syntax:

Rn =  MRF + Rx * Ry mod2
Rn =  MRB + Rx * Ry mod2
MRF =  MRF + Rx * Ry mod2
MRB =  MRB + Rx * Ry mod2

Function:
Multiplies the fixed-point fields in registers Rx and Ry, and adds the
product to the specified MR register value. If rounding is specified
(fractional data only), the result is rounded. The result is placed either in
the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31-0 for integers, bits 63-32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is set if the upper bits are not all zeros (signed or unsigned result) or

ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
Rn|MR = MR + Rx * Ry
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Syntax:

Rn =  MRF – Rx * Ry mod2
Rn =  MRB – Rx * Ry mod2
MRF =  MRF – Rx * Ry mod2
MRB =  MRB – Rx * Ry mod2

Function:
Multiplies the fixed-point fields in registers Rx and Ry, and subtracts the
product from the specified MR register value. If rounding is specified
(fractional data only), the result is rounded. The result is placed either in
the fixed-point field in register Rn or one of the MR accumulation
registers, which must be the same MR register that provided the input. If
Rn is specified, only the portion of the result that has the same format as
the inputs is transferred (bits 31-0 for integers, bits 63-32 for fractional).
The floating-point extension field in Rn is set to all 0s. If MRF or MRB is
specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is set if the upper bits are not all zeros (signed or unsigned result) or

ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
Rn|MR = MR – Rx * Ry
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Syntax:

Rn = SAT MRF mod1
Rn = SAT MRB mod1
MRF = SAT MRF mod1
MRB = SAT MRB mod1

Function:
If the value of the specified MR register is greater than the maximum
value for the specified data format, the multiplier sets the result to the
maximum value. Otherwise, the MR value is unaffected. The result is
placed either in the fixed-point field in register Rn or one of the MR
accumulation registers, which must be the same MR register that provided
the input. If Rn is specified, only the portion of the result that has the same
format as the inputs is transferred (bits 31-0 for integers, bits 63-32 for
fractional). The floating-point extension field in Rn is set to all 0s. If MRF
or MRB is specified, the entire 80-bit result is placed in MRF or MRB.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is cleared
MU Is set if the upper 48 bits of a fractional result are all zeros (signed or

unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
Rn|MR = SAT MR
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Syntax:

Rn = RND MRF mod1
Rn = RND MRB mod1
MRF = RND MRF mod1
MRB = RND MRB mod1

Function:
Rounds the specified MR value to nearest at bit 32 (the MR1-MR0
boundary). The result is placed either in the fixed-point field in register Rn
or one of the MR accumulation registers, which must be the same MR
register that provided the input. If Rn is specified, only the portion of the
result that has the same format as the inputs is transferred (bits 31-0 for
integers, bits 63-32 for fractional). The floating-point extension field in Rn
is set to all 0s. If MRF or MRB is specified, the entire 80-bit result is placed
in MRF or MRB.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is set if the upper bits are not all zeros (signed or unsigned result) or

ones (signed result). Number of upper bits depends on format. For a
signed result, fractional=33, integer=49. For an unsigned result,
fractional=32, integer=48.

MU Is set if the upper 48 bits of a fractional result are all zeros (signed or
unsigned result) or ones (signed result) and the lower 32 bits are not
all zeros. Integer results do not underflow.

MI Is cleared

Multiplier Fixed-Point
Rn|MR = RND MR
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Multiplier Fixed-PointMultiplier Fixed-Point
MR=0 MR=Rn / Rn=MR

MR=Rn / Rn=MR

Syntax: MRF =  0
MRB =  0

Function: Sets the value of the specified MR register to zero. All 80 bits (MR2,
MR1, MR0) are cleared.

Status flags:
MN Is cleared
MV Is cleared
MU Is cleared
MI Is cleared

Function: A transfer to an MR register places the fixed-point field of register Rn in
the specified MR register. The floating-point extension field in Rn is ignored. A
transfer from an MR register places the specified MR register in the fixed-point
field in register Rn. The floating-point extension field in Rn is set to all 0s.

Syntax: MR0F = Rn Rn = MR0F
MR1F = Rn Rn = MR1F
MR2F = Rn Rn = MR2F
MR0B = Rn Rn = MR0B
MR1B = Rn Rn = MR1B
MR2B = Rn Rn = MR2B

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

1  0 0 0 0 0   T    AI      RK

The MR register is specified by Ai and the data register by Rk. The direction of
the transfer is determined by T (0=to register file, 1=to MR register).

Ai MR Register Status flags:
0000 MR0F MN Is cleared
0001 MR1F MV Is cleared
0010 MR2F MU Is cleared
0100 MR0B MI Is cleared
0101 MR1B
0110 MR2B
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Syntax:

Fn = Fx * Fy

Function:
Multiplies the floating-point operands in registers Fx and Fy. The result is
placed in the register Fn.

Status flags:
MN Is set if the result is negative, otherwise cleared
MV Is set if the unbiased exponent of the result is greater than 127,

otherwise cleared
MU Is set if the unbiased exponent of the result is less than –126,

otherwise cleared
MI Is set if either input is a NAN or if the inputs are ±Infinity and

±Zero, otherwise cleared

Multiplier Floating-Point
Fn = Fx * Fy

Reminder: The individual registers of the register file are prefixed with
an “F” when used in floating-point computations. The registers are
prefixed with an “R” when used in fixed-point computations. The
following instructions, for example, use the same registers:

F0=F1 * F2; floating-point multiply
R0=R1 * R2; fixed-point multiply

The F and R prefixes do not affect the 32-bit (or 40-bit) data transfer;
they only determine how the ALU, multiplier, or shifter treat the data.
The F or R may be either uppercase or lowercase; the assembler is
case-insensitive.
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B.2.3 Shifter Operations
Shifter operations are described in this section. Table B.6 summarizes the
syntax and opcodes for the shifter operations. The succeeding pages
provide detailed descriptions of each operation.

The shifter operates on the register file’s 32-bit fixed-point fields (bits 39-
8). Two-input shifter operations can take their y-input from the register
file or from immediate data provided in the instruction. Either form uses
the same opcode. However, the latter case, called an immediate shift or
shifter immediate operation, is allowed only with instruction type 6,
which has an immediate data field in its opcode for this purpose. All other
instruction types must obtain the y-input from the register file when the
compute operation is a two-input shifter operation.

Syntax Opcode
Rn = LSHIFT Rx BY Ry|<data8> 0000 0000
Rn = Rn OR LSHIFT Rx BY Ry|<data8> 0010 0000

Rn = ASHIFT Rx BY Ry|<data8> 0000 0100
Rn = Rn OR ASHIFT Rx BY Ry|<data8> 0010 0100

Rn = ROT Rx BY RY|<data8> 0000 1000

Rn = BCLR Rx BY Ry|<data8> 1100 0100
Rn = BSET Rx BY Ry|<data8> 1100 0000
Rn = BTGL Rx BY Ry|<data8> 1100 1000
BTST Rx BY Ry|<data8> 1100 1100

Rn = FDEP Rx BY Ry|<bit6>:<len6> 0100 0100
Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6> 0110 0100
Rn = FDEP Rx BY Ry|<bit6>:<len6> (SE) 0100 1100
Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6> (SE) 0110 1100
Rn = FEXT Rx BY Ry|<bit6>:<len6> 0100 0000
Rn = FEXT Rx BY Ry|<bit6>:<len6> (SE) 0100 1000

Rn = EXP Rx 1000 0000
Rn = EXP Rx (EX) 1000 0100
Rn = LEFTZ Rx 1000 1000
Rn = LEFTO Rx 1000 1100

Rn = FPACK Fx 1001 0000
Fn = FUNPACK Rx 1001 0100

Instruction modifiers:
(SE) Sign extension of deposited or extracted field
(EX) Extended exponent extract

Table B.6  Shifter Operations
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Syntax:

Rn = LSHIFT Rx BY Ry
Rn = LSHIFT Rx BY <data8>

Function:
Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The floating-
point extension field of Rn is set to all 0s. The shift values are twos-
complement numbers. Positive values select a left shift, negative values
select a right shift. The 8-bit immediate data can take values between –128
and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right
to off-scale left.

Status flags:
SZ Is set if the shifted result is zero, otherwise cleared
SV Is set if the input is shifted to the left by more than 0, otherwise

cleared
SS Is cleared

Shifter
Rn = LSHIFT Rx BY Ry|<data8>
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Syntax:

Rn = Rn OR LSHIFT Rx BY Ry
Rn = Rn OR LSHIFT Rx BY <data8>

Function:
Logically shifts the fixed-point operand in register Rx by the 32-bit value
in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are twos-complement numbers. Positive
values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between –128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status flags:
SZ Is set if the shifted result is zero, otherwise cleared
SV Is set if the input is shifted left by more than 0, otherwise cleared
SS Is cleared

Shifter
Rn = Rn OR LSHIFT Rx BY Ry|<data8>
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Syntax:

Rn = ASHIFT Rx BY Ry
Rn = ASHIFT Rx BY <data8>

Function:
Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is placed in the fixed-point field of register Rn. The floating-
point extension field of Rn is set to all 0s. The shift values are twos-
complement numbers. Positive values select a left shift, negative values
select a right shift. The 8-bit immediate data can take values between –128
and 127 inclusive, allowing for a shift of a 32-bit field from off-scale right
to off-scale left.

Status flags:
SZ Is set if the shifted result is zero , otherwise cleared
SV Is set if the input is shifted left by more than 0, otherwise cleared
SS Is cleared

Shifter
Rn = ASHIFT Rx BY Ry|<data8>
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Syntax:

Rn = Rn OR ASHIFT Rx BY Ry
Rn = Rn OR ASHIFT Rx BY <data8>

Function:
Arithmetically shifts the fixed-point operand in register Rx by the 32-bit
value in register Ry or by the 8-bit immediate value in the instruction. The
shifted result is logically ORed with the fixed-point field of register Rn
and then written back to register Rn. The floating-point extension field of
Rn is set to all 0s. The shift values are twos-complement numbers. Positive
values select a left shift, negative values select a right shift. The 8-bit
immediate data can take values between –128 and 127 inclusive, allowing
for a shift of a 32-bit field from off-scale right to off-scale left.

Status flags:
SZ Is set if the shifted result is zero, otherwise cleared
SV Is set if the input is shifted left by more than 0, otherwise cleared
SS Is cleared

Shifter
Rn = Rn OR ASHIFT Rx BY Ry|<data8>
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Syntax:

Rn = ROT Rx BY Ry
Rn = ROT Rx BY <data8>

Function:
Rotates the fixed-point operand in register Rx by the 32-bit value in
register Ry or by the 8-bit immediate value in the instruction. The rotated
result is placed in the fixed-point field of register Rn. The floating-point
extension field of Rn is set to all 0s. The shift values are twos-complement
numbers. Positive values select a rotate left; negative values select a rotate
right. The 8-bit immediate data can take values between –128 and 127
inclusive, allowing for a rotate of a 32-bit field from full right wrap around
to full left wrap around.

Status flags:
SZ Is set if the rotated result is zero, otherwise cleared
SV Is cleared
SS Is cleared

Shifter
Rn = ROT Rx BY Ry|<data8>
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Syntax:

Rn = BCLR Rx BY Ry
Rn = BCLR Rx BY <data8>

Function:
Clears a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be cleared. If the bit position value is greater than 31 or less than 0,
no bits are cleared.

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a
system register. This BIT CLR instruction should not be confused with the
BCLR shifter operation. See Appendix E for more information on BIT
CLR.

Shifter
Rn = BCLR Rx BY Ry|<data8>
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Syntax:

Rn = BSET Rx BY Ry
Rn = BSET Rx BY <data8>

Function:
Sets a bit in the fixed-point operand in register Rx. The result is placed in
the fixed-point field of register Rn. The floating-point extension field of Rn
is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be set. If the bit position value is greater than 31 or less than 0, no
bits are set.

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a
system register. This BIT SET instruction should not be confused with the
BSET shifter operation. See Appendix E for more information on BIT SET.

Shifter
Rn = BSET Rx BY Ry|<data8>
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Syntax:

Rn = BTGL Rx BY Ry
Rn = BTGL Rx BY <data8>

Function:
Toggles a bit in the fixed-point operand in register Rx. The result is placed
in the fixed-point field of register Rn. The floating-point extension field of
Rn is set to all 0s. The position of the bit is the 32-bit value in register Ry or
the 8-bit immediate value in the instruction. The 8-bit immediate data can
take values between 31 and 0 inclusive, allowing for any bit within a 32-bit
field to be toggled. If the bit position value is greater than 31 or less than 0,
no bits are toggled.

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation affects a bit in a register file location. There
is also a bit manipulation instruction that affects one or more bits in a
system register. This BIT TGL instruction should not be confused with the
BTGL shifter operation. See Appendix E for more information on BIT
TGL.

Shifter
Rn = BTGL Rx BY Ry|<data8>
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Syntax:

BTST Rx BY Ry
BTST Rx BY <data8>

Function:
Tests a bit in the fixed-point operand in register Rx. The SZ flag is set if the
bit is a 0 and cleared if the bit is a 1. The position of the bit is the 32-bit
value in register Ry or the 8-bit immediate value in the instruction. The
8-bit immediate data can take values between 31 and 0 inclusive, allowing
for any bit within a 32-bit field to be tested. If the bit position value is
greater than 31 or less than 0, no bits are tested.

Status flags:
SZ Is cleared if the tested bit is a 1, is set if the tested bit is a 0 or if the

bit position is greater than 31
SV Is set if the bit position is greater than 31, otherwise cleared
SS Is cleared

Note: This compute operation tests a bit in a register file location. There is
also a bit manipulation instruction that tests one or more bits in a system
register. This BIT TST instruction should not be confused with the BTST
shifter operation. See Appendix E for more information on BIT TST.

Shifter
BTST Rx BY Ry|<data8>
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Shifter
Rn = FDEP Rx BY Ry|<bit6>:<len6>

Syntax:
Rn = FDEP Rx BY Ry
Rn = FDEP Rx BY <bit6>:<len6>

Function:
Deposits a field from register Rx to register Rn. The input field is right-aligned
within the fixed-point field of Rx. Its length is determined by the len6 field in
register Ry or by the immediate len6 field in the instruction. The field is
deposited in the fixed-point field of Rn, starting from a bit position determined
by the bit6 field in register Ry or by the immediate bit6 field in the instruction.
Bits to the left and to the right of the deposited field are set to 0. The floating-pt.
extension field of Rn (bits 7-0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for deposit of fields ranging in
length from 0 to 32 bits, and to bit positions ranging from 0 to off-scale left.

Example: If len6=14 and bit6=13, then the 14 bits of Rx are deposited in Rn bits
34-21 (of the 40-bit word).

39       31       23       15       7        0
|--------|--------|--abcdef|ghijklmn|--------| Rx
                     \-------------/

                  14 bits

39       31       23       15       7        0
|00000abc|defghijk|lmn00000|00000000|00000000| Rn
      \--------------/
                     |

            bit position 13 (from reference point)
Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are deposited to the left of the 32-bit fixed-point output

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared

039

len6

719

bit6

13

Ry

039 7

Rx

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

039 7

Rn

bit6 = starting bit position for deposit, 
           referenced from LSB of 32-bit field

deposit field

bit6 reference point
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Shifter
Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6>

Syntax:
Rn = Rn OR FDEP Rx BY Ry
Rn = Rn OR FDEP Rx BY <bit6>:<len6>

Function:
Deposits a field from register Rx to register Rn. The field value is logically ORed
bitwise with the specified field of register Rn and the new value is written back
to register Rn. The input field is right-aligned within the fixed-point field of Rx.
Its length is determined by the len6 field in register Ry or by the immediate len6
field in the instruction. The field is deposited in the fixed-point field of Rn,
starting from a bit position determined by the bit6 field in register Ry or by the
immediate bit6 field in the instruction. Bit6 and len6 can take values between 0
and 63 inclusive, allowing for deposit of fields ranging in length from 0 to 32 bits,
and to bit positions ranging from 0 to off-scale left.

Example:

39       31       23       15       7        0
|--------|--------|--abcdef|ghijklmn|--------| Rx
                     \--------------/

                len6 bits

39       31       23       15       7        0
|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old
      \--------------/
                     |

            bit position bit6 (from reference point)

39       31       23       15       7        0
|abcdeopq|rstuvwxy|zabtuvwx|yzabcdef|ghijklmn| Rn new

|
OR result

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are deposited to the left of the 32-bit fixed-point output

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared
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Syntax:
Rn = FDEP Rx BY Ry (SE)
Rn = FDEP Rx BY <bit6>:<len6> (SE)

Function:
Deposits and sign-extends a field from register Rx to register Rn. The input field
is right-aligned within the fixed-point field of Rx. Its length is determined by the
len6 field in register Ry or by the immediate len6 field in the instruction. The
field is deposited in the fixed-point field of Rn, starting from a bit position
determined by the bit6 field in register Ry or by the immediate bit6 field in the
instruction. The MSBs of Rn are sign-extended by the MSB of the deposited field,
unless the MSB of the deposited field is off-scale left. Bits to the right of the
deposited field are set to 0. The floating-point extension field of Rn (bits 7-0 of the
40-bit word) is set to all 0s. Bit6 and len6 can take values between 0 and 63
inclusive, allowing for deposit of fields ranging in length from 0 to 32 bits into bit
positions ranging from 0 to off-scale left.

Example:
39       31       23       15       7        0
|--------|--------|--abcdef|ghijklmn|--------| Rx
                     \---------------/

                len6 bits

39       31       23       15       7        0
|aaaaaabc|defghijk|lmn00000|00000000|00000000| Rn
\----/\--------------/
sign                 |
extension           bit position bit6 (from reference point)

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are deposited to the left of the 32-bit fixed-point output

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared

039

len6

719

bit6
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Ry
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Rx

len6 = number of bits to take from Rx, starting from LSB of 32-bit field

039 7

Rn

bit6 = starting bit position for deposit, 
           referenced from LSB of 32-bit field

deposit field

bit6 reference point

sign bit extension

Shifter
Rn = FDEP Rx BY Ry|<bit6>:<len6> (SE)
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Syntax:
Rn = Rn OR FDEP Rx BY Ry (SE)
Rn = Rn OR FDEP Rx BY <bit6>:<len6> (SE)

Function:
Deposits and sign-extends a field from register Rx to register Rn. The sign-
extended field value is logically ORed bitwise with the value of register Rn and
the new value is written back to register Rn. The input field is right-aligned
within the fixed-point field of Rx. Its length is determined by the len6 field in
register Ry or by the immediate len6 field in the instruction. The field is
deposited in the fixed-point field of Rn, starting from a bit position determined
by the bit6 field in register Ry or by the immediate bit6 field in the instruction.
Bit6 and len6 can take values between 0 and 63 inclusive, allowing for deposit of
fields ranging in length from 0 to 32 bits into bit positions ranging from 0 to off-
scale left.

Example:

39       31       23       15       7        0
|--------|--------|--abcdef|ghijklmn|--------| Rx
                     \-------------/

                len6 bits

39       31       23       15       7        0
|aaaaaabc|defghijk|lmn00000|00000000|00000000|
\----/\--------------/
sign                 |
extension           bit position bit6 (from reference point)

39       31       23       15       7        0
|abcdefgh|ijklmnop|qrstuvwx|yzabcdef|ghijklmn| Rn old

39       31       23       15       7        0
|vwxyzabc|defghijk|lmntuvwx|yzabcdef|ghijklmn| Rn new
          |
      OR result

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are deposited to the left of the 32-bit fixed-point output

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared

Shifter
Rn = Rn OR FDEP Rx BY Ry|<bit6>:<len6> (SE)
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Shifter
Rn = FEXT Rx BY Ry|<bit6>:<len6>

039

len6

719

bit6

13

Ry

039 7

Rn

extracted bits placed in Rn, starting at LSB of 32-bit field

039 7

Rx

bit6 = starting bit position for extract, 
           referenced from LSB of 32-bit field

extract field

bit6 reference point

Syntax:
Rn = FEXT Rx BY Ry
Rn = FEXT Rx BY <bit6>:<len6>

Function:
Extracts a field from register Rx to register Rn. The output field is placed right-
aligned in the fixed-point field of Rn. Its length is determined by the len6 field in
register Ry or by the immediate len6 field in the instruction. The field is extracted
from the fixed-point field of Rx starting from a bit position determined by the
bit6 field in register Ry or by the immediate bit6 field in the instruction. Bits to
the left of the extracted field are set to 0 in register Rn. The floating-point
extension field of Rn (bits 7-0 of the 40-bit word) is set to all 0s. Bit6 and len6 can
take values between 0 and 63 inclusive, allowing for extraction of fields ranging
in length from 0 to 32 bits, and from bit positions ranging from 0 to off-scale left.

Example:

39       31       23       15       7        0
|-----abc|defghijk|lmn-----|--------|--------| Rx
      \--------------/

      len6 bits   |
            bit position bit6 (from reference point)

39       31       23       15       7        0
|00000000|00000000|00abcdef|ghijklmn|00000000| Rn

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are extracted from the left of the 32-bit fixed-point, input

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared
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Shifter
Rn = FEXT Rx BY Ry|<bit6>:<len6> (SE)

Syntax:
Rn = FEXT Rx BY Ry (SE)
Rn = FEXT Rx BY <bit6>:<len6> (SE)

Function:
Extracts and sign-extends a field from register Rx to register Rn. The output field
is placed right-aligned in the fixed-point field of Rn. Its length is determined by
the len6 field in register Ry or by the immediate len6 field in the instruction. The
field is extracted from the fixed-point field of Rx starting from a bit position
determined by the bit6 field in register Ry or by the immediate bit6 field in the
instruction. The MSBs of Rn are sign-extended by the MSB of the extracted field,
unless the MSB is extracted from off-scale left. The floating-point extension field
of Rn(bits 7-0 of the 40-bit word) is set to all 0s. Bit6 and len6 can take values
between 0 and 63 inclusive, allowing for extraction of fields ranging in length
from 0 to 32 bits and from bit positions ranging from 0 to off-scale left.

Example:

39       31       23       15       7        0
|-----abc|defghijk|lmn-----|--------|--------| Rx
      \--------------/

      len6 bits   |
            bit position bit6 (from reference point)

39       31       23       15       7        0
|aaaaaaaa|aaaaaaaa|aaabcdef|ghijklmn|00000000| Rn
\-------------------/
    sign extension

Status flags:
SZ Is set if the output operand is 0, otherwise cleared
SV Is set if any bits are extracted from the left of the 32-bit fixed-point input

field (i.e., if len6 + bit6 > 32), otherwise cleared
SS Is cleared
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Syntax:

Rn = EXP Rx

Function:
Extracts the exponent of the fixed-point operand in Rx. The exponent is
placed in the shf8 field in register Rn. The exponent is calculated as the
twos complement of:

# leading sign bits in Rx – 1

Status flags:
SZ Is set if the extracted exponent is 0, otherwise cleared
SV Is cleared
SS Is set if the fixed-point operand in Rx is negative (bit 31 is a 1),

otherwise cleared

Shifter
Rn = EXP Rx
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Syntax:

Rn = EXP Rx (EX)

Function:
Extracts the exponent of the fixed-point operand in Rx, assuming that the
operand is the result of an ALU operation. The exponent is placed in the
shf8 field in register Rn. If the AV status bit is set, a value of +1 is placed
in the shf8 field to indicate an extra bit (the ALU overflow bit). If the AV
status bit is not set, the exponent is calculated as the twos complement of:

# leading sign bits in Rx – 1

Status flags:
SZ Is set if the extracted exponent is 0, otherwise cleared
SV Is cleared
SS Is set if the exclusive OR of the AV status bit and the sign bit (bit 31)

of the fixed-point operand in Rx is equal to 1, otherwise cleared

Shifter
Rn = EXP Rx (EX)
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Shifter
Rn = LEFTZ Rx

Syntax:

Rn = LEFTZ Rx

Function:
Extracts the number of leading 0s from the fixed-point operand in Rx. The
extracted number is placed in the bit6 field in Rn.

Status flags:
SZ Is set if the MSB of Rx is 1, otherwise cleared
SV Is set if the result is 32, otherwise cleared
SS Is cleared
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Syntax:

Rn = LEFTO Rx

Function:
Extracts the number of leading 1s from the fixed-point operand in Rx. The
extracted number is placed in the bit6 field in Rn.

Status flags:
SZ Is set if the MSB of Rx is 0, otherwise cleared
SV Is set if the result is 32, otherwise cleared
SS Is cleared

Shifter
Rn = LEFTO Rx
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Shifter
Rn = FPACK Fx

Syntax:

Rn = FPACK Fx

Function:
Converts the IEEE 32-bit floating-point value in Fx to a 16-bit floating-
point value stored in Rn. The short float data format has an 11-bit
mantissa with a four-bit exponent plus sign bit. The 16-bit floating-point
numbers reside in the lower 16 bits of the 32-bit floating-point field.

The result of the FPACK operation is as follows:

Condition Result
135 < exp Largest magnitude representation.
120 < exp ≤ 135 Exponent is MSB of source exponent concatenated

with the three LSBs of source exponent. The
packed fraction is the rounded upper 11 bits of the
source fraction.

109 < exp ≤ 120 Exponent=0. Packed fraction is the upper bits
(source exponent – 110) of the source fraction
prefixed by zeros and the “hidden” 1. The packed
fraction is rounded.

exp < 110 Packed word is all zeros.

exp = source exponent
sign bit remains the same in all cases

The short float type supports gradual underflow. This method
sacrifices precision for dynamic range. When packing a number which
would have underflowed, the exponent is set to zero and the mantissa
(including “hidden” 1) is right-shifted the appropriate amount. The
packed result is a denormal which can be unpacked into a normal IEEE
floating-point number.

Status flags:
SZ Is cleared
SV Is set if overflow occurs, cleared otherwise
SS Is cleared
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Syntax:

Fn = FUNPACK Rx

Function:
Converts the 16-bit floating-point value in Rx to an IEEE 32-bit floating-
point value stored in Fx.

The result of the FUNPACK operation is as follows:

Condition Result
0 < exp ≤ 15 Exponent is the 3 LSBs of the source exponent

prefixed by the MSB of the source exponent and
four copies of the complement of the MSB. The
unpacked fraction is the source fraction with 12
zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of
leading zeros in the source fraction. The unpacked
fraction is the remainder of the source fraction
with zeros appended to pad it and the “hidden” 1
stripped away.

exp = source exponent
sign bit remains the same in all cases

The short float type supports gradual underflow. This method
sacrifices precision for dynamic range. When packing a number which
would have underflowed, the exponent is set to zero and the mantissa
(including “hidden” 1) is right-shifted the appropriate amount. The
packed result is a denormal which can be unpacked into a normal IEEE
floating-point number.

Status flags:
SZ Is cleared
SV Is cleared
SS Is cleared

Shifter
Fx = FUNPACK Rn



B Compute Operations

B – 76

B.3 MULTIFUNCTION COMPUTATIONS
Multifunction computations are of three types, each of which has a
different format for the 23-bit compute field:

• Dual add/subtract
• Parallel multiplier/ALU
• Parallel multiplier and add/subtract

See “Multifunction Computations” in the Computation Units chapter for a
summary of the multifunction operations.

Each of the four input operands for multifunction computations are
constrained to a different set of four register file locations, as shown below
in Figure B.1. For example, the X-input to the ALU can only be R8, R9, R10
or R11. In all other compute operations, the input operands may be any
register file locations.

R0 - F0
R1 - F1
R2 - F2

R3 - F3

R4 - F4
R5 - F5

R6 - F6
R7 - F7

R8 - F8
R9 - F9

R10 - F10
R11 - F11

R12 - F12
R13 - F13

R14 - F14
R15 - F15

Multiplier

ALU

Any Register

Any Register

Register File

Figure B.1  Allowed Input Registers For Multifunction Computations
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Multifunction
Dual Add/Subtract (Fixed-Pt.)

The dual add/subtract operation computes the sum and the difference of
two inputs and returns the two results to different registers. There are
fixed-point and floating-point versions of this operation.

Fixed-Point:

Syntax:

Ra = Rx + Ry, Rs = Rx – Ry

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

0   0 0     0 1 1 1    RS      RA       RX RY

Function:
Does a dual add/subtract of the fixed-point fields in registers Rx and Ry.
The sum is placed in the fixed-point field of register Ra and the difference
in the fixed-point field of Rs. The floating-point extension fields of Ra and
Rs are set to all 0s. In saturation mode (the ALU saturation mode bit in
MODE1 set) positive overflows return the maximum positive number
(0x7FFF FFFF), and negative overflows return the minimum negative
number (0x8000 0000).

Status flags:
AZ Is set if either of the fixed-point outputs is all 0s, otherwise cleared
AU Is cleared
AN Is set if the most significant output bit is 1 of either of the outputs,

otherwise cleared
AV Is set if the XOR of the carries of the two most significant adder

stages of either of the outputs is 1, otherwise cleared
AC Is set if the carry from the most significant adder stage of either of

the outputs is 1, otherwise cleared
AS Is cleared
AI Is cleared
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Floating-Point:

Syntax:

Fa = Fx + Fy, Fs = Fx – Fy

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

0   0 0      1 1 1 1    FS     FA      FX FY

Function:
Does a dual add/subtract of the floating-point operands in registers Fx
and Fy. The normalized results are placed in registers Fa and Fs: the sum
in Fa and the difference in Fs. Rounding is to nearest (IEEE) or by
truncation, to a 32-bit or to a 40-bit boundary, as defined by the rounding
mode and rounding boundary bits in MODE1. Post-rounded overflow
returns ±Infinity (round-to-nearest) or ±NORM.MAX (round-to-zero).
Post-rounded denormal returns ±Zero. Denormal inputs are flushed to
±Zero. A NAN input returns an all 1s result.

Status flags:
AZ Is set if either of the post-rounded results is a denormal (unbiased

exponent < –126) or zero, otherwise cleared
AU Is set if either post-rounded result is a denormal, otherwise cleared
AN Is set if either of the floating-point results is negative, otherwise

cleared
AV Is set if either of the post-rounded results overflows (unbiased

exponent > +127), otherwise cleared
AC Is cleared
AS Is cleared
AI Is set if either of the input operands is a NAN, or if both of the input

operands are Infinities, otherwise cleared

Multifunction
Dual Add/Subtract (Floating-Pt.)
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The parallel multiplier/ALU operation performs a multiply or
multiply/accumulate and one of the following ALU operations: add,
subtract, average, fixed-point to floating-point or floating-point to fixed-
point conversion, or floating-point ABS, MIN or MAX.

For detailed information about a particular operation, see the individual
descriptions under Single-Function Operations.

Fixed-Point:

Syntax: See Table B.7

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

 R R  R      R
1  OPCODE    RM      RA  X Y  X      Y

 M M  A      A

Multifunction
Parallel Multiplier & ALU (Fixed-Pt.)
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Floating-Point:

Syntax: See Table B.7

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

 F   F  F       F
1 OPCODE   FM     FA  X   Y  X       Y

 M   M  A       A

The multiplier and ALU operations are determined by OPCODE. The
selections for the 6-bit OPCODE field are listed in Table B.7. The
multiplier x- and y-operands are received from data registers RXM (FXM)
and RYM (FYM). The multiplier result operand is returned to data
register RM (FM). The ALU x- and y-operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operand is returned
to data register RA (FA).

The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a particular set of four
data registers.

Input Allowed Sources
Multiplier X: R3-R0 (F3-F0)
Multiplier Y: R7-R4 (F7-F4)
ALU X: R11-R8 (F11-F8)
ALU Y: R15-R12 (F15-F12)

Multifunction
Parallel Multiplier & ALU (Floating-Pt.)
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Syntax Opcode
Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12 000100
Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 – R15-12 000101
Rm=R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2 000110

MRF=MRF + R3-0 * R7-4 (SSF), Ra=R11-8 + R15-12 001000
MRF=MRF + R3-0 * R7-4 (SSF), Ra=R11-8 – R15-12 001001
MRF=MRF + R3-0 * R7-4 (SSF), Ra=(R11-8 + R15-12)/2 001010

Rm=MRF + R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12 001100
Rm=MRF + R3-0 * R7-4 (SSFR), Ra=R11-8 – R15-12 001101
Rm=MRF + R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2 001110

MRF=MRF – R3-0 * R7-4 (SSF), Ra=R11-8 + R15-12 010000
MRF=MRF – R3-0 * R7-4 (SSF), Ra=R11-8 – R15-12 010001
MRF=MRF – R3-0 * R7-4 (SSF), Ra=(R11-8 + R15-12)/2 010010

Rm=MRF – R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12 010100
Rm=MRF – R3-0 * R7-4 (SSFR), Ra=R11-8 – R15-12 010101
Rm=MRF – R3-0 * R7-4 (SSFR), Ra=(R11-8 + R15-12)/2 010110

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12 011000
Fm=F3-0 * F7-4, Fa=F11-8 – F15-12 011001
Fm=F3-0 * F7-4, Fa=FLOAT R11-8 by R15-12 011010
Fm=F3-0 * F7-4, Fa=FIX F11-8 by R15-12 011011
Fm=F3-0 * F7-4, Fa=(F11-8 + F15-12)/2 011100
Fm=F3-0 * F7-4, Fa=ABS F11-8 011101
Fm=F3-0 * F7-4, Fa=MAX (F11-8, F15-12) 011110
Fm=F3-0 * F7-4, Fa=MIN (F11-8, F15-12) 011111

Table B.7  Parallel Multiplier/ALU Computations
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The parallel multiplier and dual add/subtract operation performs a
multiply or multiply/accumulate and computes the sum and the
difference of the ALU inputs. For detailed information on the multiplier
operations, see the individual descriptions under Single-Function
Operations. For information on the dual add/subtract operation, see the
Dual Add/Subtract section.

Fixed-Point:

Syntax:

Rm=R3-0 * R7-4 (SSFR), Ra=R11-8 + R15-12, Rs=R11-8 – R15-12

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

 R   R  R       R
1   1 0  RS    RM      RA  X   Y  X       Y

 M   M    A       A

Floating-Point:

Syntax:

Fm=F3-0 * F7-4, Fa=F11-8 + F15-12, Fs=F11-8 – F15-12

Compute Field:

22  21  20  19  18  17  16  15  14  13  12  11  10   9   8   7   6   5   4   3   2   1   0

 F   F    F       F
1     1 1  FS   FM      FA  X   Y    X       Y

 M   M  A       A

The multiplier x- and y-operands are received from data registers RXM
(FXM) and RYM (FYM). The multiplier result operand is returned to data
register RM (FM). The ALU x- and y-operands are received from data
registers RXA (FXA) and RYA (FYA). The ALU result operands are
returned to data register RA (FA) and RS (FS).

Multifunction
Parallel Multiplier & Dual Add/Subtract
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The result operands can be returned to any registers within the register
file. Each of the four input operands is restricted to a different set of four
data registers.

Input Allowed Sources
Multiplier X: R3-R0 (F3-F0)
Multiplier Y: R7-R4 (F7-F4)
ALU X: R11-R8 (F11-F8)
ALU Y: R15-R12 (F15-F12)

Multifunction
Parallel Multiplier & Dual Add/Subtract
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CNumeric Formats

C.1 OVERVIEW
The ADSP-2106x supports the 32-bit single-precision floating-point data
format defined in the IEEE Standard 754/854. In addition, the ADSP-
2106x supports an extended-precision version of the same format with
eight additional bits in the mantissa (40 bits total). The ADSP-2106x also
supports 32-bit fixed-point formats—fractional and integer—which can be
signed (twos-complement) or unsigned.

C.2 IEEE SINGLE-PRECISION FLOATING-POINT DATA FORMAT
IEEE Standard 754/854 specifies a 32-bit single-precision floating-point
format, shown in Figure C.1. A number in this format consists of a sign
bit s, a 24-bit significand, and an 8-bit unsigned-magnitude exponent e.
For normalized numbers, the significand consists of a 23-bit fraction f and
a “hidden” bit of 1 that is implicitly presumed to precede f22 in the
significand. The binary point is presumed to lie between this hidden bit
and f22. The least significant bit (LSB) of the fraction is f0; the LSB of the
exponent is e0. The hidden bit effectively increases the precision of the
floating-point significand to 24 bits from the 23 bits actually stored in the
data format. It also insures that the significand of any number in the IEEE
normalized-number format is always greater than or equal to 1 and less
than 2.

The unsigned exponent e can range between 1 ≤ e ≤ 254 for normal
numbers in the single-precision format. This exponent is biased by +127
(254 ÷ 2). To calculate the true unbiased exponent, 127 must be subtracted
from e.

Figure C.1  IEEE 32-Bit Single-Precision Floating-Point Format

s e e 1 . f f

31 30 23 22 0

22 07 0
•  •  • •  •  •

Hidden Bit Binary Point

C – 1
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The IEEE Standard also provides for several special data types in the
single-precision floating-point format:

• An exponent value of 255 (all ones) with a nonzero fraction is a Not-A-
Number (NAN). NANs are usually used as flags for data flow control,
for the values of uninitialized variables, and for the results of invalid
operations such as 0 * ∞.

• Infinity is represented as an exponent of 255 and a zero fraction. Note
that because the fraction is signed, both positive and negative Infinity
can be represented.

• Zero is represented by a zero exponent and a zero fraction. As with
Infinity, both positive Zero and negative Zero can be represented.

The IEEE single-precision floating-point data types supported by the
ADSP-2106x and their interpretations are summarized in Table C.1.

Type Exponent Fraction Value
NAN 255 Nonzero Undefined
Infinity 255 0 (–1)s Infinity
Normal 1 ≤ e ≤ 254 Any (–1)s (1.f22-0) 2e–127

Zero 0 0 (–1)s Zero

Table C.1  IEEE Single-Precision Floating-Point Data Types

C.3 EXTENDED PRECISION FLOATING-POINT FORMAT
The extended precision floating-point format is 40 bits wide, with the
same 8-bit exponent as in the standard format but a 32-bit significand.
This format is shown in Figure C.2. In all other respects, the extended
floating-point format is the same as the IEEE standard format.

s e e 1 . f f

39 38 31 30 0

30 07 0
•  •  • •  •  •

Hidden Bit Binary Point

Figure C.2  40-Bit Extended-Precision Floating-Point Format
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C.4 SHORT WORD FLOATING-POINT FORMAT
The ADSP-2106x supports a 16-bit floating-point data type and
provides conversion instructions for it. The short float data format has
an 11-bit mantissa with a four-bit exponent plus sign bit, as shown in
Figure C.3. The 16-bit floating-point numbers reside in the lower 16
bits of the 32-bit floating-point field.

Figure C.3  16-Bit Floating-Point Format

Two shifter instructions, FPACK and FUNPACK, perform the packing
and unpacking conversions between 32-bit floating-point words and
16-bit floating-point words. The FPACK instruction converts a 32-bit
IEEE floating-point number to a 16-bit floating-point number.
FUNPACK converts the 16-bit floating-point numbers back to 32-bit
IEEE floating-point. Each instruction executes in a single cycle.

The results of the FPACK and FUNPACK operations are as follows:

FPACK

Condition Result
135 < exp Largest magnitude representation.
120 < exp ≤ 135 Exponent is MSB of source exponent concatenated

with the three LSBs of source exponent. The
packed fraction is the rounded upper 11 bits of the
source fraction.

109 < exp ≤ 120 Exponent=0. Packed fraction is the upper bits
(source exponent – 110) of the source fraction
prefixed by zeros and the “hidden” 1. The packed
fraction is rounded.

exp < 110 Packed word is all zeros.

exp = source exponent
sign bit remains the same in all cases

s e e 1 . f f

15 14 11 10 0

10 03 0
•  •  • •  •  •
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FUNPACK

Condition Result
0 < exp ≤ 15 Exponent is the 3 LSBs of the source exponent

prefixed by the MSB of the source exponent and
four copies of the complement of the MSB. The
unpacked fraction is the source fraction with 12
zeros appended.

exp = 0 Exponent is (120 – N) where N is the number of
leading zeros in the source fraction. The unpacked
fraction is the remainder of the source fraction
with zeros appended to pad it and the “hidden” 1
stripped away.

exp = source exponent
sign bit remains the same in all cases

The short float type supports gradual underflow. This method
sacrifices precision for dynamic range. When packing a number which
would have underflowed, the exponent is set to zero and the mantissa
(including “hidden” 1) is right-shifted the appropriate amount. The
packed result is a denormal which can be unpacked into a normal IEEE
floating-point number.

During the FPACK operation, an overflow will set the SV condition
and non-overflow will clear it. During the FUNPACK operation, the
SV condition will be cleared. The SZ and SS conditions are cleared by
both instructions.



CNumeric Formats

C – 5

C.5 FIXED-POINT FORMATS
The ADSP-2106x supports two 32-bit fixed-point formats: fractional and
integer. In both formats, numbers can be signed (twos-complement) or
unsigned. The four possible combinations are shown in Figure C.4. In the
fractional format, there is an implied binary point to the left of the most
significant magnitude bit. In integer format, the binary point is
understood to be to the right of the LSB. Note that the sign bit is
negatively weighted in a twos-complement format.

ALU outputs always have the same width and data format as the inputs.
The multiplier, however, produces a 64-bit product from two 32-bit
inputs. If both operands are unsigned integers, the result is a 64-bit
unsigned integer. If both operands are unsigned fractions, the result is a
64-bit unsigned fraction. These formats are shown in Figure C.5.

If one operand is signed and the other unsigned, the result is signed. If
both inputs are signed, the result is signed and automatically shifted left
one bit. The LSB becomes zero and bit 62 moves into the sign bit position.
Normally bit 63 and bit 62 are identical when both operands are signed.
(The only exception is full-scale negative multiplied by itself.) Thus, the
left shift normally removes a redundant sign bit, increasing the precision
of the most significant product. Also, if the data format is fractional, a
single-bit left shift renormalizes the MSP to a fractional format. The signed
formats with and without left shifting are shown in Figure C.6.

The multiplier has an 80-bit accumulator to allow the accumulation of 64-
bit products. The multiplier and accumulator are described in detail in the
Computation Units chapter.
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31 30 29

•  •  •

2 1 0

–2 2 2 2 2 2
31 30 29 2 1 0

Sign
Bit

Weight

Bit

31 30 29

•  •  •

2 1 0

–2 2 2 2 2 2
0 –1 –2 –29 –30 –31

Sign
Bit

Weight

Bit
Signed Fractional

Signed Integer

31 30 29

•  •  •

2 1 0

2 2 2 2 2 2
31 30 29 2 1 0

Weight

Bit

31 30 29

•  •  •

2 1 0

2 2 2 2 2 2
–1 –2 –3 –30 –31 –32

Weight

Bit

Unsigned Integer

Unsigned Fractional

•

•

•

•

Binary point

Binary point

Binary point

Binary point

Figure C.4  32-Bit Fixed-Point Formats
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63 62 61

•  •  •

2 1 0

2 2 2 2 2 2
63 62 61 2 1 0

Weight

Bit

63 62 61

•  •  •

2 1 0

2 2 2 2 2 2
–1 –2 –3 –62 –63 –64

Weight

Bit

Unsigned Integer

Unsigned Fractional

Figure C.5  64-Bit Unsigned Fixed-Point Product
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63 62 61

•  •  •

2 1 0

–2 2 2 2 2 2
63 62 61 2 1 0

Sign
Bit

Weight

Bit

63 62 61

•  •  •

2 1 0

–2 2 2 2 2 2
0 –1 –2 –61 –62 –63
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JTAG Test Access Port

D.1 OVERVIEW
A boundary scan allows a system designer to test interconnections on a
printed circuit board with minimal test-specific hardware. The scan is
made possible by the ability to control and monitor each input and output
pin on each chip through a set of serially scannable latches. Each input
and output is connected to a latch, and the latches are connected as a long
shift register so that data can be read from or written to them through a
serial test access port (TAP). The ADSP-2106x contains a test access port
compatible with the industry-standard IEEE 1149.1 (JTAG) specification.

Only the IEEE 1149.1 features specific to the ADSP-2106x are described
here. For more information, see the IEEE 1149.1 specification and the
references listed at the end of this appendix.

The boundary scan allows a variety of functions to be performed on each
input and output signal of the ADSP-2106x. Each input has a latch that
monitors the value of the incoming signal and can also drive data into the
chip in place of the incoming value. Similarly, each output has a latch that
monitors the outgoing signal and can also drive the output in place of the
outgoing value. For bidirectional pins, the combination of input and
output functions is available.

Every latch associated with a pin is part of a single serial shift register
path. Each latch is a master/slave type latch with the controlling clock
provided externally. This clock (TCK) is asynchronous to the ADSP-2106x
system clock (CLKIN).



D JTAG Test Access Port

D – 2

D.2 TEST ACCESS PORT
The test access port (TAP) of the ADSP-2106x controls the operation of
the boundary scan. The TAP consists of five pins that control a state
machine, including the boundary scan. The state machine and pins
conform to the IEEE 1149.1 specification.

TCK (input) Test Clock. Used to clock serial data into scan latches and
control sequencing of the test state machine. TCK can be
asynchronous with CLKIN.

TMS (input) Test Mode Select. Primary control signal for the state
machine. Synchronous with TCK. A sequence of values on
TMS adjusts the current state of the TAP.

TDI (input) Test Data Input. Serial input data to the scan latches.
Synchronous with TCK.

TDO (output) Test Data Output. Serial output data from the scan latches.
Synchronous with TCK.

TRST (input) Test Reset. Resets the test state machine. Can be
asynchronous with TCK.

A BSDL file for the ADSP-2106x is available on Analog Devices’ BBS
and Internet ftp site. The BBS can be reached at:

(617) 461-4258 8 data bits, no parity, 1 stop bit,
300/1200/2400/9600/14400 baud

To connect to the ftp site, login as anonymous using your email
address for your password and type (from the Unix prompt):

ftp  ftp.analog.com (or  ftp 137.71.23.11)
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D.3 INSTRUCTION REGISTER
The instruction register allows an instruction to be shifted into the
processor. This instruction selects the test to be performed and/or the
test data register to be accessed. The instruction register is 5 bits long
with no parity bit. A value of 10000 binary is loaded (LSB nearest TDI)
into the instruction register whenever the TAP reset state is entered.

Table D.1 lists the binary code for each instruction. Bit 0 is nearest TDI
and bit 4 is nearest TDO. An “x” specifies a “don’t-care” state. No data
registers are placed into test modes by any of the public instructions.
The instructions affect the ADSP-2106x as defined in the 1149.1
specification. The optional instructions RUNBIST, IDCODE and
USERCODE are not supported by the ADSP-2106x.

Instruction
Bits Instruction Register
4 3 2 1 0 Name (Serial Path) Type
1 x x x x BYPASS Bypass Public
0 0 0 0 0 EXTEST Boundary Public
0 0 0 0 1 SAMPLE/PRELOAD Boundary Public
0 0 0 1 0 reserved for emulation     — Private
0 0 0 1 1 INTEST Boundary Public
0 0 1 0 0 reserved for emulation     — Private
0 0 1 0 1 reserved for emulation     — Private
0 0 1 1 0 reserved for emulation     — Private
0 0 1 1 1 reserved for emulation     — Private
0 1 x x x reserved for emulation     — Private

Table D.1  Test Instructions

The entry under “Register” is the serial scan path, either Boundary or
Bypass in this case, enabled by the instruction. Figure D.1 (on the next
page) shows these register paths. The 1-bit Bypass register is fully
defined in the 1149.1 specification. The Boundary register is described
in the next section.

No special values need be written into any register prior to selection of
any instruction. As Table D.1 shows, certain instructions are reserved
for emulator use. See Section D.7 for more information.
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Figure D.1  Serial Scan Paths
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D.4 BOUNDARY REGISTER
The Boundary register is 363 bits long. This section defines the latch
type and function of each position in the scan path. The positions are
numbered with 0 being the first bit output (closest to TDO) and 362
being the last (closest to TDI).

Scan Latch Signal
Position Type Name
0 input IRQ0            this end closest to TDO (scan in first)
1 input IRQ1
2 input IRQ2
3 input EBOOT
4 input RESET
5 input RPBA
6 input LBOOT
7 input IDO
8 input ID1
9 input ID2
10 output L5ACK (NC  on the ADSP-21061)
11 input L5ACK (NC  on the ADSP-21061)
12 output L5CLK (NC  on the ADSP-21061)
13 input L5CLK (NC  on the ADSP-21061)
14 output L5DAT0 (NC  on the ADSP-21061)
15 input L5DAT0 (NC  on the ADSP-21061)
16 output L5DAT1 (NC  on the ADSP-21061)
17 input L5DAT1 (NC  on the ADSP-21061)
18 output L5DAT2 (NC  on the ADSP-21061)
19 input L5DAT2 (NC  on the ADSP-21061)
20 output L5DAT3 (NC  on the ADSP-21061)
21 input L5DAT3 (NC  on the ADSP-21061)
22 output enable L5ACK output enable (NC  on the ADSP-21061)
23 output enable L5DATx, L5CLK output enable (NC  on the ADSP-21061)
24 output L4ACK (NC  on the ADSP-21061)
25 input L4ACK (NC  on the ADSP-21061)
26 output L4CLK (NC  on the ADSP-21061)
27 input L4CLK (NC  on the ADSP-21061)
28 output L4DAT0 (NC  on the ADSP-21061)
29 input L4DAT0 (NC  on the ADSP-21061)
30 output L4DAT1 (NC  on the ADSP-21061)
31 input L4DAT1 (NC  on the ADSP-21061)
32 output L4DAT2 (NC  on the ADSP-21061)
33 input L4DAT2 (NC  on the ADSP-21061)
34 output L4DAT3 (NC  on the ADSP-21061)
35 input L4DAT3 (NC  on the ADSP-21061)
36 output enable L4ACK output enable (NC  on the ADSP-21061)
37 output enable L4DATx, L4CLK output enable (NC  on the ADSP-21061)
38 output L3ACK (NC  on the ADSP-21061)
39 input L3ACK (NC  on the ADSP-21061)

Output Enables:
1 = Drive the associated signals during the EXTEST and INTEST instructions
0 = Tristate the associated signals during the EXTEST and INTEST instructions
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Scan Latch Signal
Position Type Name
40 output L3CLK (NC  on the ADSP-21061)
41 input L3CLK (NC  on the ADSP-21061)
42 output L3DAT0 (NC  on the ADSP-21061)
43 input L3DAT0 (NC  on the ADSP-21061)
44 output L3DAT1 (NC  on the ADSP-21061)
45 input L3DAT1 (NC  on the ADSP-21061)
46 output L3DAT2 (NC  on the ADSP-21061)
47 input L3DAT2 (NC  on the ADSP-21061)
48 output L3DAT3 (NC  on the ADSP-21061)
49 input L3DAT3 (NC  on the ADSP-21061)
50 output enable L3ACK output enable (NC  on the ADSP-21061)
51 output enable L3DATx, L3CLK output enable (NC  on the ADSP-21061)
52 output NC (Do Not Connect)
53 input NC (Do Not Connect)
54 output L2ACK (NC  on the ADSP-21061)
55 input L2ACK (NC  on the ADSP-21061)
56 output L2CLK (NC  on the ADSP-21061)
57 input L2CLK (NC  on the ADSP-21061)
58 output L2DAT0 (NC  on the ADSP-21061)
59 input L2DAT0 (NC  on the ADSP-21061)
60 output L2DAT1 (NC  on the ADSP-21061)
61 input L2DAT1 (NC  on the ADSP-21061)
62 output L2DAT2 (NC  on the ADSP-21061)
63 input L2DAT2 (NC  on the ADSP-21061)
64 output L2DAT3 (NC  on the ADSP-21061)
65 input L2DAT3 (NC  on the ADSP-21061)
66 output enable L2ACK output enable (NC  on the ADSP-21061)
67 output enable L2DATx, L2CLK output enable (NC  on the ADSP-21061)
68 output L1ACK (NC  on the ADSP-21061)
69 input L1ACK (NC  on the ADSP-21061)
70 output L1CLK (NC  on the ADSP-21061)
71 input L1CLK (NC  on the ADSP-21061)
72 output L1DAT0 (NC  on the ADSP-21061)
73 input L1DAT0 (NC  on the ADSP-21061)
74 output L1DAT1 (NC  on the ADSP-21061)
75 input L1DAT1 (NC  on the ADSP-21061)
76 output L1DAT2 (NC  on the ADSP-21061)
77 input L1DAT2 (NC  on the ADSP-21061)
78 output L1DAT3 (NC  on the ADSP-21061)
79 input L1DAT3 (NC  on the ADSP-21061)
80 output enable L1ACK output enable (NC  on the ADSP-21061)
81 output enable L1DATx, L1CLK output enable (NC  on the ADSP-21061)
82 output L0ACK (NC  on the ADSP-21061)
83 input L0ACK (NC  on the ADSP-21061)
84 output L0CLK (NC  on the ADSP-21061)
85 input L0CLK (NC  on the ADSP-21061)
86 output L0DAT0 (NC  on the ADSP-21061)
87 input L0DAT0 (NC  on the ADSP-21061)
88 output L0DAT1 (NC  on the ADSP-21061)
89 input L0DAT1 (NC  on the ADSP-21061)
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Scan Latch Signal
Position Type Name
90 output L0DAT2 (NC  on the ADSP-21061)
91 input L0DAT2 (NC  on the ADSP-21061)
92 output L0DAT3 (NC  on the ADSP-21061)
93 input L0DAT3 (NC  on the ADSP-21061)
94 output enable L0ACK output enable (NC  on the ADSP-21061)
95 output enable L0DATx, L0CLK output enable (NC  on the ADSP-21061)
96 output DATA0
97 input DATA0
98 output DATA1
99 input DATA1
100 output DATA2
101 input DATA2
102 output DATA3
103 input DATA3
104 output DATA4
105 input DATA4
106 output DATA5
107 input DATA5
108 output DATA6
109 input DATA6
110 output DATA7
111 input DATA7
112 output DATA8
113 input DATA8
114 output DATA9
115 input DATA9
116 output DATA10
117 input DATA10
118 output DATA11
119 input DATA11
120 output DATA12
121 input DATA12
122 output DATA13
123 input DATA13
124 output DATA14
125 input DATA14
126 output DATA15
127 input DATA15
128 output DATA16
129 input DATA16
130 output DATA17
131 input DATA17
132 output DATA18
133 input DATA18
134 output DATA19
135 input DATA19
136 output DATA20
137 input DATA20
138 output DATA21
139 input DATA21
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Scan Latch Signal
Position Type Name
140 output DATA22
141 input DATA22
142 output DATA23
143 input DATA23
144 output DATA24
145 input DATA24
146 output DATA25
147 input DATA25
148 output DATA26
149 input DATA26
150 output enable DATAx output enable
151 output DATA27
152 input DATA27
153 output DATA28
154 input DATA28
155 output DATA29
156 input DATA29
157 output DATA30
158 input DATA30
159 output DATA31
160 input DATA31
161 output DATA32
162 input DATA32
163 output DATA33
164 input DATA33
165 output DATA34
166 input DATA34
167 output DATA35
168 input DATA35
169 output NC (Do Not Connect)
170 input NC (Do Not Connect)
171 output DATA36
172 input DATA36
173 output DATA37
174 input DATA37
175 output DATA38
176 input DATA38
177 output DATA39
178 input DATA39
179 output DATA40
180 input DATA40
181 output DATA41
182 input DATA41
183 output DATA42
184 input DATA42
185 output DATA43
186 input DATA43
187 output DATA44
188 input DATA44
189 output DATA45
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Scan Latch Signal
Position Type Name
190 input DATA45
191 output DATA46
192 input DATA46
193 output DATA47
194 input DATA47
195 output enable BR1 output enable
196 output enable BR2 output enable
197 output enable BR3 output enable
198 output BR1
199 input BR1
200 output BR2
201 input BR2
202 output BR3
203 input BR3
204 output BR4
205 input BR4
206 output BR5
207 input BR5
208 output BR6
209 input BR6
210 output enable BR4 output enable
211 output enable BR5 output enable
212 output enable BR6 output enable
213 output PAGE
214 input PAGE
215 output DMAG1
216 output DMAG2
217 output ACK
218 input ACK
219 clock* CLKIN
220 output enable ACK output enable
221 output enable RD, WR, PAGE, ADRCLK, DMAGx output enable
222 output WR
223 input WR
224 output RD
225 input RD
226 input CS
227 output HBG
228 input HBG
229 output REDY
230 output ADRCLK
231 output enable HBG output enable
232 output enable REDY output enable
233 output enable RFS0 output enable
234 output enable RCLK0 output enable
235 output enable TFS0 output enable
236 output enable TCLK0 output enable
237 output enable DT0 output enable
238 output RFS0
239 input RFS0

* CLKIN can be sampled but not controlled (read-only). CLKIN continues to clock
the ADSP-2106x no matter which instruction is enabled.
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Scan Latch Signal
Position Type Name
240 output RCLK0
241 input RCLK0
242 input DR0
243 output TFS0
244 input TFS0
245 output TCLK0
246 input TCLK0
247 output DT0
248 output CPA
249 input CPA
250 output enable RFS1, CPA output enable
251 output enable RCLK1 output enable
252 output enable TFS1 output enable
253 output enable TCLK1 output enable
254 output enable DT1 output enable
255 output RFS1
256 input RFS1
257 output RCLK1
258 input RCLK1
259 input DR1
260 output TFS1
261 input TFS1
262 output TCLK1
263 input TCLK1
264 output DT1
265 input HBR
266 input DMAR1
267 input DMAR2
268 input SBTS
269 output ADDR31
270 input ADDR31
271 output ADDR30
272 input ADDR30
273 output ADDR29
274 input ADDR29
275 output enable BMS output enable
276 output ADDR28
277 input ADDR28
278 output BMS
279 input BMS
280 output SW
281 input SW
282 output MS0
283 input MS0
284 output MS1
285 input MS1
286 output MS2
287 input MS2
288 output MS3
289 input MS3
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Scan Latch Signal
Position Type Name
290 output ADDR27
291 input ADDR27
292 output ADDR26
293 input ADDR26
294 output ADDR25
295 input ADDR25
296 output ADDR24
297 input ADDR24
298 output ADDR23
299 input ADDR23
300 output ADDR22
301 input ADDR22
302 output ADDR21
303 input ADDR21
304 output ADDR20
305 input ADDR20
306 output ADDR19
307 input ADDR19
308 output enable ADDRx, MSx, SW output enable
309 output ADDR18
310 input ADDR18
311 output ADDR17
312 input ADDR17
313 output ADDR16
314 input ADDR16
315 output ADDR15
316 input ADDR15
317 output ADDR14
318 input ADDR14
319 output ADDR13
320 input ADDR13
321 output ADDR12
322 input ADDR12
323 output ADDR11
324 input ADDR11
325 output ADDR10
326 input ADDR10
327 output ADDR9
328 input ADDR9
329 output ADDR8
330 input ADDR8
331 output ADDR7
332 input ADDR7
333 output ADDR6
334 input ADDR6
335 output ADDR5
336 input ADDR5
337 output ADDR4
338 input ADDR4
339 output ADDR3
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Scan Latch Signal
Position Type Name
340 input ADDR3
341 output ADDR2
342 input ADDR2
343 output ADDR1
344 input ADDR1
345 output ADDR0
346 input ADDR0
347 output enable FLAG0 output enable
348 output enable FLAG1 output enable
349 output enable FLAG2 output enable
350 output enable FLAG3 output enable
351 output FLAG0
352 input FLAG0
353 output FLAG1
354 input FLAG1
355 output FLAG2
356 input FLAG2
357 output FLAG3
358 input FLAG3
359 output ICSA
360 output EMU
361 output TIMEXP
362 output enable EMU output enable this end closest to TDI

(scan in last)

Output Enables:
1 = Drive the associated signals during the EXTEST and INTEST instructions
0 = Tristate the associated signals during the EXTEST and INTEST instructions
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D.5 DEVICE IDENTIFICATION REGISTER
No device identification register is included in the ADSP-2106x.

D.6 BUILT-IN SELF-TEST OPERATION (BIST)
No self-test functions are supported by the ADSP-2106x.

D.7 PRIVATE INSTRUCTIONS
Loading a value of 001xx into the instruction register enables the
private instructions reserved for emulation. The ADSP-2106x EZ-ICE
emulator uses the TAP and boundary scan as a way to access the
processor in the target system. The EZ-ICE emulator requires a target
board connector for access to the TAP. See “EZ-ICE Emulator” in
Chapter 11, System Design, for information on this connector.
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E.1 OVERVIEW
This appendix provides bit definitions for the ADSP-2106x’s control and
status registers. Some of the registers are located in the processor core;
these are called system registers, a subset of the processor’s universal
register set. The core processor system registers are MODE1, MODE2,
ASTAT, STKY, IRPTL, IMASK, IMASKP, USTAT1, and USTAT2.

The remaining control registers are located in the ADSP-2106x’s I/O
Processor (IOP). These include the SYSCON and SYSTAT registers. These
registers are memory-mapped in ADSP-2106x internal memory.

Register Function Initialization After Reset
MODE1 Mode Control 1 0x0000 (cleared)
MODE2 Mode Control 2 0xn000 0000 *
ASTAT Arithmetic Status 0x00nn 0000 **
STKY Sticky Status 0x0540 0000
IRPTL Interrupt Latch 0x0000 (cleared)
IMASK Interrupt Mask 0x0003
IMASKP Interrupt Mask Pointer 0x0000 (cleared)
USTAT1 User Status 1 0x0000 (cleared)
USTAT2 User Status 2 0x0000 (cleared)

Table E.1  System Registers (Core Processor)
* MODE2 bits 28-31 are the processor ID and silicon revision #.
** ASTAT bits 19-22 are equal to the values of the FLAG0-3 input pins after reset;
the flag pins are configured as inputs after reset

Register Function Initialization After Reset
SYSCON System Configuration 0x0000 0010
SYSTAT System Status 0x0000 0nn0 *

Table E.2  IOP Registers (I/O Processor)
* SYSTAT bits 4-11 depend on the value of the ID2-0 inputs.
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All control and status bits are active high unless otherwise noted. Default
bit values after reset are shown; if no value is shown, the bit is undefined
at reset or depends upon processor inputs. Reserved bits are shown with a
gray background. Reserved bits must always be written with zeros.

E.2 SYSTEM REGISTERS (CORE PROCESSOR)
The system registers of the ADSP-2106x core processor are listed in Table
E.1. The system registers are a subset of the universal register set. They
can be written from an immediate field in an instruction or they can be
loaded from or stored to data memory. They can also be transferred to or
from any other universal register in one cycle.

E.2.1 Effect Latency & Read Latency
A write to any system register other than USTAT1 or USTAT2 has one
cycle of latency before any changes are effective. This delay is called effect
latency. Also, if a write to a system register is immediately followed by a
read, the value read is always the new one, except for IMASKP which
requires an extra cycle before the value is updated. This delay is called
read latency.

Effect latency and read latency for the ADSP-2106x system registers are
listed below. A “0” indicates that the write takes effect on the cycle
immediately after the write instruction is executed, and a “1” indicates
one cycle of latency.

Read Effect
Register Contents Latency Latency
MODE1 mode control bits 0 1
MODE2 mode control bits 0 1
IRPTL interrupt latch 0 1
IMASK interrupt mask 0 1
IMASKP interrupt mask pointer (for nesting) 1 1
ASTAT arithmetic status flags 0 1
STKY sticky status flags 0 1
USTAT1 user-defined status flags 0 0
USTAT2 user-defined status flags 0 0
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E.2.2 System Register Bit Operations
The system register bit manipulation instruction can be used to set, clear,
toggle, or test specific bits in the system registers. An immediate field in
the bit manipulation instruction specifies the affected bits. This instruction
is described in Appendix A, Instruction Set Reference, Group IV–
Miscellaneous.

Examples: BIT SET MODE2 0x00000070;
BIT TST ASTAT 0x00002000; {result in BTF flag}

Although the shifter and ALU have bit manipulation capabilities, these
computations operate on register file locations only. System register bit
manipulation instructions eliminate the overhead of transferring system
registers to and from the register file:

Bit Instruction Shifter Operation
(System Registers) (Data Register File)
BIT SET  register  data Rn = BSET Rx BY Ry|data
BIT CLR  register  data Rn = BCLR Rx BY Ry|data
BIT TGL  register  data Rn = BTGL Rx BY Ry|data
BIT TST  register  data BTST Rx BY Ry|data
(result in BTF flag) (result in SZ status flag)

E.2.2.1 Bit Test Flag
The test and XOR operations of the system register bit manipulation
instruction store the result in the bit test flag (BTF, bit 18 in the ASTAT
register). The state of BTF is a condition that you can use in conditional
instructions. The test operation sets BTF if all specified bits in the system
register are set. The XOR operation sets BTF if all bits in the system
register match the specified bit pattern.

E.2.3 User-Defined Status Registers
Two undefined 32-bit status registers, USTAT1 and USTAT2, can be user-
defined. Bits in these registers can be set and tested using system register
instructions. You can use these registers for low-overhead, general-
purpose software flags or for temporary storage of data.
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E.3 IOP REGISTERS (I/O PROCESSOR)
The ADSP-2106x’s I/O Processor (IOP) registers are a separate set of
memory-mapped control and data registers. The IOP registers are used
to configure system-level functions including serial port I/O, link port
I/O, and DMA transfers. I/O operations are handled by the
ADSP-2106x’s on-chip I/O processor, independently from and
transparent to the processor core.

The IOP registers are programmed by writing to the appropriate
address in memory. They can be programmed by the code executing
on the ADSP-2106x core or by an external device such as a host
processor or another ADSP-2106x. The symbolic names of the registers
and individual bits can be used in ADSP-2106x programs—the
#define definitions for these symbols are contained in the file
def21060.h which is provided in the INCLUDE directory of the
ADSP-21000 Family Development Software. The def21060.h file is
shown at the end of this appendix.

E.3.1 IOP Registers Summary
Tables E.3, E.4, E.5, and E.6 list the IOP registers used for processor
and system control, DMA operations, link port operations, and serial
port operations. Table E.7 (on pages 10-13) shows the memory-mapped
address, functional group, and reset initialization value of each IOP
register.

The memory-mapped IOP registers can be accessed by any external
device that is the bus master, either another ADSP-2106x or a host
processor. This allows, for example, an external device to set up a
DMA transfer to the ADSP-2106x’s internal memory without the
ADSP-2106x’s intervention. A conflict occurs if both the ADSP-2106x
core processor and the external bus master try to access the same IOP
register group at the same time. In this case, the following rule applies:

When both the ADSP-2106x core processor and the external bus master
simultaneously attempt to access the same group of IOP registers, the external
device always has priority. The ADSP-2106x core will be forced to wait until
the external device is finished.

Table E.7 shows the different IOP register groups.
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The IOP registers are arranged to allow a host processor (or other bus
master) to easily access the most important registers by reading or
writing to the smallest amount of memory. The host only needs to
control a small number of address lines to access a set of 16, 32, or 64
IOP registers including SYSCON, SYSTAT, VIRPT, WAIT,
MSGR0–MSGR7, and one or two full DMA channels.

Register
Name Width Description
SYSCON 32 System Configuration Register
SYSTAT 32 System Status Register
WAIT 32 Memory Wait State Configuration Register
VIRPT 32 Multiprocessor Vector Interrupt Register
MSGR0 32 Message Register 0
MSGR1 32 Message Register 1
MSGR2 32 Message Register 2
MSGR3 32 Message Register 3
MSGR4 32 Message Register 4
MSGR5 32 Message Register 5
MSGR6 32 Message Register 6
MSGR7 32 Message Register 7
BMAX 16 Bus Timeout Maximum
BCNT 16 Bus Timeout Counter
ELAST 32 Address of last external access in memory bank 0

(used for detection of PAGE changes)

Table E.3  IOP Registers (System Control)
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Register Name(s) Width Description
EPB0 48 External Port FIFO Buffer 0
EPB1 48 External Port FIFO Buffer 1
EPB2 48 External Port FIFO Buffer 2
EPB3 48 External Port FIFO Buffer 3
DMAC6 16 DMA Channel 6 Control Register

(Ext. Port Buffer 0 or Link Buffer 4)1, 2

DMAC7 16 DMA Channel 7 Control Register (Ext. Port Buffer 1 or
Link Buffer 5)1, 2

DMAC8 16 DMA Channel 8 Control Register (Ext. Port Buffer 2)3

DMAC9 16 DMA Channel 9 Control Register (Ext. Port Buffer 3)3

DMASTAT 32 DMA Channel Status Register
II0, IM0, C0, CP0 16-18 DMA Channel 0 Parameter Registers (SPORT0 Receive)4

GP0, DB0, DA0
II1, IM1, C1, CP1 16-18 DMA Channel 1 Parameter Registers (SPORT1 Receive or
GP1, DB1, DA1 Link Buffer 0)1, 2, 4, 5

II2, IM2, C2, CP2 16-18 DMA Channel 2 Parameter Registers (SPORT0 Transmit)4, 5

GP2, DB2, DA2
II3, IM3, C3, CP3 16-18 DMA Channel 3 Parameter Registers (SPORT1 Transmit or
GP3, DB3, DA3 Link Buffer 1)1, 2, 4, 5

II4, IM4, C4, CP4 16-18 DMA Channel 4 Parameter Registers (Link Buffer 2)1, 5

GP4, DB4, DA4
II5, IM5, C5, CP5 16-18 DMA Channel 5 Parameter Registers (Link Buffer 3)1, 5

GP5, DB5, DA5
II6, IM6, C6, CP6 16-32 DMA Channel 6 Parameter Registers (Ext. Port Buffer 0 or
GP6, EI6, EM6, EC6 Link Buffer 4)1, 2

II7, IM7, C7, CP7 16-32 DMA Channel 7 Parameter Registers (Ext. Port Buffer 1 or
GP7, EI7, EM7, EC7 Link Buffer 5)1, 2

II8, IM8, C8, CP8 16-32 DMA Channel 8 Parameter Registers (Ext. Port Buffer 2)3

GP8, EI8, EM8, EC8
II9, IM9, C9, CP9 16-32 DMA Channel 9 Parameter Registers (Ext. Port Buffer 3)3

GP9, EI9, EM9, EC9

Table E.4  IOP Registers (DMA)

1. DMA control, buffer, and parameter registers associated with the link ports are not
applicable to the ADSP-21061.

2. There are no shared DMA channels on the ADPS-21061.
3. DMA control, buffer, and parameter registers associated wiht DMA channels 8 and 9

are not applicalbe to the ADSP-21061.
4. The IM0, IM1, IM2, and IM3 registers contain the fixed value of 1 on the ADSP-21061.
5. The DBx and DAx registers are not available on the ADSP-21061 because there is no 2-

D DMA on the ADSP-21061.
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Register
Name Width Description
LBUF0 48/32 Link Data Buffer 0
LBUF1 48/32 Link Data Buffer 1
LBUF2 48/32 Link Data Buffer 2
LBUF3 48/32 Link Data Buffer 3
LBUF4 48/32 Link Data Buffer 4
LBUF5 48/32 Link Data Buffer 5
LCTL 32 Link Buffer Control Register
LCOM 32 Link Common Control Register
LAR 18 Link Assignment Register
LSRQ 32 Link Service Request & Mask Register
LPATH1 32 Link Path 1 Register (Mesh Multiprocessing)
LPATH2 32 Link Path 2 Register (Mesh Multiprocessing)
LPATH3 32 Link Path 3 Register (Mesh Multiprocessing)
LPCNT 32 Link Path Counter (Mesh Multiprocessing)
CNST1 40/32 Link Port Constant 1 (Mesh Multiprocessing)
CNST2 40/32 Link Port Constant 2 (Mesh Multiprocessing)

Table E.5  IOP Registers (Link Ports)
Note: The IOP registers that support the link ports are not available on the ADSP-21061.

Register
Name Width Description
STCTL0 32 SPORT0 Transmit Control Register
SRCTL0 32 SPORT0 Receive Control Register
TX0 32 SPORT0 Transmit Data Buffer
RX0 32 SPORT0 Receive Data Buffer
TDIV0 32 SPORT0 Transmit Divisors
RDIV0 32 SPORT0 Receive Divisors
MTCS0 32 SPORT0 Multichannel Transmit Selector
MRCS0 32 SPORT0 Multichannel Receive Selector
MTCCS0 32 SPORT0 Multichannel Transmit Compand Selector
MRCCS0 32 SPORT0 Multichannel Receive Compand Selector
SPATH0 16 SPORT0 Path Length (Mesh Multiprocessing)1

KEYWD0 32 SPORT0 Receive Comparison2

KEYMASK0 32 SPORT0 Receive Comparison Mask2

STCTL1 32 SPORT1 Transmit Control Register
SRCTL1 32 SPORT1 Receive Control Register
TX1 32 SPORT1 Transmit Data Buffer
RX1 32 SPORT1 Receive Data Buffer
TDIV1 32 SPORT1 Transmit Divisors
RDIV1 32 SPORT1 Receive Divisors
MTCS1 32 SPORT1 Multichannel Transmit Selector
MRCS1 32 SPORT1 Multichannel Receive Selector
MTCCS1 32 SPORT1 Multichannel Transmit Compand Selector
MRCCS1 32 SPORT1 Multichannel Receive Compand Selector
SPATH1 16 SPORT1 Path Length (Mesh Multiprocessing)1

KEYWD1 32 SPORT1 Receive Comparison2

KEYMASK1 32 SPORT1 Receive Comparison Mask2

Table E.6  IOP Registers (Serial Ports)
1. Not available on the ADSP-21061.
2. Only available on the ADSP-21061.



E Control/Status Registers

E – 8

E.3.2 IOP Register Access Restrictions
Because the IOP registers are memory-mapped they cannot be written
with data coming directly from memory. They must instead be written
from (or read into) ADSP-2106x core registers, usually one of the
general-purpose registers of the register file (R15–R0). The IOP
registers can also be written or read by external devices, usually other
ADSP-2106xs and/or a host processor.

IOP registers other than the DMA buffers cannot be the target of DMA
transfers. During DMA transfers the DMA buffer registers are written
and read to internal memory over the I/O data bus—these transfers
are directly controlled by the ADSP-2106x’s DMA controller, however,
not with addresses generated over the I/O address bus. The DMA
buffer registers on the ADSP-21060 and ADSP-21062 include EPB0–
EPB3 (external port data buffers), LBUF0–LBUF5 (link port data
buffers), and TX0, RX0, TX1, and RX1 (serial port data buffers). On the
ADSP-21061, the DMA buffer registers include EBP0, EBP1, TX0, RX0,
TX1, and RX1.

E.3.3 IOP Register Group Access Contention
The ADSP-2106x has four separate on-chip buses that can
independently access the memory-mapped IOP registers: the PM bus,
DM bus, I/O bus, and external port bus. The external port bus
connects the off-chip DATA47-0 bus to all on-chip buses. The I/O bus
connects the external port’s data buffers to memory and to the on-chip
I/O processor. The I/O bus carries data being transferred to and from
the DMA buffer IOP registers.

Any of these buses can attempt to read or write an IOP register at any
time. Access contention occurs when more than one of the buses
attempts to access the same group of IOP registers (see Table E.7). One
exception to this access contention rule exists: the I/O bus and external
port bus can simultaneously access the DB (DMA buffer) group of
registers, allowing DMA transfers to internal memory at full speed.

IOP register group access conflicts are resolved on a fixed priority
basis. External port to IOP register accesses occur first, then
PM and/or DM bus, then I/O bus:

External port ↔ IOP register accesses 1st priority
PM-DM bus ↔ IOP register accesses 2nd priority
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I/O bus ↔ IOP register accesses 3rd priority

The bus with the highest priority will gain access to the IOP registers
first and any lower priority accesses are held off (by extra cycles
generated by the core processor and/or I/O processor). If a DMA
grant has been given for an I/O access, that access will be completed
before an access from any another bus is allowed.

The external port DMA data buffers (EPB0–EPB3) are 6-word deep
FIFOs. An input to the buffers can occur in the same cycle as an
output. The external port bus has its own independent access to these
buffers. Contention occurs when the PM bus, DM bus, and/or I/O bus
try to access the data buffers at the same time. In this case the I/O bus
access proceeds first, but subsequent I/O bus accesses are held off
until after the PM and/or DM bus accesses.

E.3.4 IOP Register Write Latencies
IOP register writes are internally completed at the end of the cycle in
which they occur. The IOP register will therefore read back the newly
written value on the very next cycle.

Not all writes take effect in the next cycle, however. Control and mode
bits generally take effect in the second cycle after completion of the
write, with the exception of the external port packing control bits and
buffer flush bits which take effect in the third cycle after completion of
the write.

The external port and core processor may conflict if they attempt to
access the same IOP register group. In this case the core processor
access is delayed until all external port accesses have completed.
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Register Initialization Register
Address Name After RESET Group Description
0x0000 SYSCON 0x0000 0010 SC System Configuration
0x0001 VIRPT 0x0002 0014 SC Multiprocessor Vector Interrupt
0x0002 WAIT 0x21AD 6B5A SC External  Memory Wait State Configuration
0x0003 SYSTAT 0x0000 0nn0 * SC System Status
0x0004 EPB0 ni DB External Port DMA FIFO Buffer 0
0x0005 EPB1 ni DB External Port DMA FIFO Buffer 1
0x0006 EPB2 ni DB External Port DMA FIFO Buffer 21

0x0007 EPB3 ni DB External Port DMA FIFO Buffer 31

0x0008 MSGR0 ni SC Message Register 0
0x0009 MSGR1 ni SC Message Register 1
0x000A MSGR2 ni SC Message Register 2
0x000B MSGR3 ni SC Message Register 3
0x000C MSGR4 ni SC Message Register 4
0x000D MSGR5 ni SC Message Register 5
0x000E MSGR6 ni SC Message Register 6
0x000F MSGR7 ni SC Message Register 7
0x0010–0x0017 reserved
0x0018 BMAX 0x0000 0000 SC Bus Timeout Maximum
0x0019 BCNT 0x0000 0000 SC Bus Timeout Counter
0x001A reserved
0x001B ELAST ni SC Address of Last External Access in Bank 0
0x001C DMAC6 † DB DMA Channel 6 Control Reg. (Ext. Port Buffer 0 or Link Buffer 4)
0x001D DMAC7 0x0000 0000 DB DMA Channel 7 Control Reg. (Ext. Port Buffer 1 or Link Buffer 5)
0x001E DMAC8 0x0000 0000 DB DMA Channel 8 Control Reg. (Ext. Port Buffer 2)1

0x001F DMAC9 0x0000 0000 DB DMA Channel 9 Control Reg. (Ext. Port Buffer 3)1

0x0020–0x002F reserved
0x0030 II4 ni DA DMA Channel 4 Index (Link Buffer 2)1

0x0031 IM4 ni DA DMA Channel 4 Modifier (Link Buffer 2)1

0x0032 C4 ni DA DMA Channel 4 Count (Link Buffer 2)1

0x0033 CP4 ni DA DMA Channel 4 Chain Pointer (Link Buffer 2)1

0x0034 GP4 ni DA DMA Channel 4 General-Purpose/2-D DMA (Link Buffer 2)1

0x0035 DB4 ni DA DMA Channel 4 General-Purpose/2-D DMA (Link Buffer 2)1

0x0036 DA4 ni DA DMA Channel 4 General-Purpose/2-D DMA (Link Buffer 2)1

0x0037 DMASTAT ni SC DMA Channel Status Register
0x0038 II5 ni DA DMA Channel 5 Index (Link Buffer 3)1

0x0039 IM5 ni DA DMA Channel 5 Modifier (Link Buffer 3)1

0x003A C5 ni DA DMA Channel 5 Count (Link Buffer 3)1

0x003B CP5 ni DA DMA Channel 5 Chain Pointer (Link Buffer 3)1

0x003C GP5 ni DA DMA Channel 5 General-Purpose/2-D DMA (Link Buffer 3)1

0x003D DB5 ni DA DMA Channel 5 General-Purpose/2-D DMA (Link Buffer 3)1

0x003E DA5 ni DA DMA Channel 5 General-Purpose/2-D DMA (Link Buffer 3)1

0x003F reserved
0x0040 II6 † DA DMA Channel 6 Index (Ext. Port Buffer 0 or Link Buffer 4)
0x0041 IM6 † DA DMA Channel 6 Modifier (Ext. Port Buffer 0 or Link Buffer 4)
0x0042 C6 † DA DMA Channel 6 Count (Ext. Port Buffer 0 or Link Buffer 4)
0x0043 CP6 † DA DMA Channel 6 Chain Pointer (Ext. Port Buffer 0 or Link Buffer 4)
0x0044 GP6 † DA DMA Channel 6 Gen-Pur. Reg. (Ext. Port Buffer 0 or Link Buffer 4)
0x0045 EI6 † DA DMA Channel 6 Ext. Index (Ext. Port Buffer 0 or Link Buffer 4)
0x0046 EM6 † DA DMA Channel 6 Ext. Modifier (Ext. Port Buffer 0 or Link Buffer 4)
0x0047 EC6 † DA DMA Channel 6 Ext. Count (Ext. Port Buffer 0 or Link Buffer 4)
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Register Initialization Register
Address Name After RESET Group Description
0x0048 II7 ni DA DMA Channel 7 Index (Ext. Port Buffer 1 or Link Buffer 5)
0x0049 IM7 ni DA DMA Channel 7 Modifier (Ext. Port Buffer 1 or Link Buffer 5)
0x004A C7 ni DA DMA Channel 7 Count (Ext. Port Buffer 1 or Link Buffer 5)
0x004B CP7 ni DA DMA Channel 7 Chain Pointer (Ext. Port Buffer 1 or Link Buffer 5)
0x004C GP7 ni DA DMA Channel 7 Gen-Pur. Reg. (Ext. Port Buffer 1 or Link Buffer 5)
0x004D EI7 ni DA DMA Channel 7 Ext. Index (Ext. Port Buffer 1 or Link Buffer 5)
0x004E EM7 ni DA DMA Channel 7 Ext. Modifier (Ext. Port Buffer 1 or Link Buffer 5)
0x004F EC7 ni DA DMA Channel 7 Ext. Count (Ext. Port Buffer 1 or Link Buffer 5)
0x0050 II8 ni DA DMA Channel 8 Index (Ext. Port Buffer 2)1

0x0051 IM8 ni DA DMA Channel 8 Modifier (Ext. Port Buffer 2)1

0x0052 C8 ni DA DMA Channel 8 Count (Ext. Port Buffer 2)1

0x0053 CP8 ni DA DMA Channel 8 Chain Pointer (Ext. Port Buffer 2)1

0x0054 GP8 ni DA DMA Channel 8 Gen-Purpose Register (Ext. Port Buffer 2)1

0x0055 EI8 ni DA DMA Channel 8 Ext. Index (Ext. Port Buffer 2)1

0x0056 EM8 ni DA DMA Channel 8 Ext. Modifier (Ext. Port Buffer 2)1

0x0057 EC8 ni DA DMA Channel 8 Ext. Count (Ext. Port Buffer 2)1

0x0058 II9 ni DA DMA Channel 9 Index (Ext. Port Buffer 3)1

0x0059 IM9 ni DA DMA Channel 9 Modifier (Ext. Port Buffer 3)1

0x005A C9 ni DA DMA Channel 9 Count (Ext. Port Buffer 3)1

0x005B CP9 ni DA DMA Channel 9 Chain Pointer (Ext. Port Buffer 3)1

0x005C GP9 ni DA DMA Channel 9 Gen-Purpose Register (Ext. Port Buffer 3)1

0x005D EI9 ni DA DMA Channel 9 Ext. Index (Ext. Port Buffer 3)1

0x005E EM9 ni DA DMA Channel 9 Ext. Modifier (Ext. Port Buffer 3)1

0x005F EC9 ni DA DMA Channel 9 Ext. Count (Ext. Port Buffer 3)1

0x0060 II0 ni DA DMA Channel 0 Index (SPORT0 Receive)
0x0061 IM0 ni DA DMA Channel 0 Modifier (SPORT0 Receive)2

0x0062 C0 ni DA DMA Channel 0 Count (SPORT0 Receive)
0x0063 CP0 ni DA DMA Channel 0 Chain Pointer (SPORT0 Receive)
0x0064 GP0 ni DA DMA Channel 0 General-Purpose/2-D DMA (SPORT0 Receive)
0x0065 DB0 ni DA DMA Channel 0 General-Purpose/2-D DMA (SPORT0 Receive)1

0x0066 DA0 ni DA DMA Channel 0 General-Purpose/2-D DMA (SPORT0 Receive)1

0x0067 reserved
0x0068 II1 ni DA DMA Channel 1 Index (SPORT1 Receive or Link Buffer 0)
0x0069 IM1 ni DA DMA Channel 1 Modifier (SPORT1 Receive or Link Buffer 0)2

0x006A C1 ni DA DMA Channel 1 Count (SPORT1 Receive or Link Buffer 0)
0x006B CP1 ni DA DMA Channel 1 Chain Pointer (SPORT1 Receive or Link Buffer 0)
0x006C GP1 ni DA DMA Channel 1 Gen-Pur/2D DMA (SPORT1 Rcv or Link Buffer 0)
0x006D DB1 ni DA DMA Channel 1 Gen-Pur/2D DMA (SPORT1 Rcv or Link Buffer 0)1

0x006E DA1 ni DA DMA Channel 1 Gen-Pur/2D DMA (SPORT1 Rcv or Link Buffer 0)1

0x006F reserved

ni – not initialized
* SYSTAT bits 4-11 depend on the value of the ID2-0 inputs.
† Initialized during booting (see “Booting” in the System Design chapter)

IOP Register Groups: SC – System Control register group DB – DMA Buffer register group
DA – DMA Address register group LSP – Link/Serial Port register group

Table E.7    IOP Register Addresses, RESET Initialization, & Grouping  (cont. on next page)
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Register Initialization Register
Address Name After RESET Group Description
0x0070 II2 ni DA DMA Channel 2 Index (SPORT0 Transmit)
0x0071 IM2 ni DA DMA Channel 2 Modifier (SPORT0 Transmit)2

0x0072 C2 ni DA DMA Channel 2 Count (SPORT0 Transmit)
0x0073 CP2 ni DA DMA Channel 2 Chain Pointer (SPORT0 Transmit)
0x0074 GP2 ni DA DMA Channel 2 Gen-Pur/2D DMA (SPORT0 Transmit)
0x0075 DB2 ni DA DMA Channel 2 Gen-Pur/2D DMA (SPORT0 Transmit)1

0x0076 DA2 ni DA DMA Channel 2 Gen-Pur/2D DMA (SPORT0 Transmit)1

0x0077 reserved
0x0078 II3 ni DA DMA Channel 3 Index (SPORT1 Transmit or Link Buffer 1)
0x0079 IM3 ni DA DMA Channel 3 Modifier (SPORT1 Transmit or Link Buffer 1)2

0x007A C3 ni DA DMA Channel 3 Count (SPORT1 Transmit or Link Buffer 1)
0x007B CP3 ni DA DMA Channel 3 Chain Pointer (SPORT1 Transmit or Link Buffer 1)
0x007C GP3 ni DA DMA Channel 3 Gen-Pur/2D DMA (SPORT1 Transmit or Link Buffer 1)
0x007D DB3 ni DA DMA Channel 3 Gen-Pur/2D DMA (SPORT1 Transmit or Link Buffer 1)1

0x007E DA3 ni DA DMA Channel 3 Gen-Pur/2D DMA (SPORT1 Transmit or Link Buffer 1)1

0x007F reserved
0x00A0–0x00BF reserved
0x00C0 LBUF0 ni LSP Link Buffer 01

0x00C1 LBUF1 ni LSP Link Buffer 11

0x00C2 LBUF2 ni LSP Link Buffer 21

0x00C3 LBUF3 ni LSP Link Buffer 31

0x00C4 LBUF4 ni LSP Link Buffer 41

0x00C5 LBUF5 ni LSP Link Buffer 51

0x00C6 LCTL 0x0000 0000 LSP Link Buffer Control Register1

0x00C7 LCOM 0x0000 0000 LSP Link Common Control Register1

0x00C8 LAR 0x2C688 LSP Link Buffer Assignment Register1

0x00C9 LSRQ 0x0000 0000 LSP Link Port Service Request & Mask Register1

0x00CA LPATH1 ni LSP Link Path 1 Register (Mesh Multiprocessing)1

0x00CB LPATH2 ni LSP Link Path 2 Register (Mesh Multiprocessing)1

0x00CC LPATH3 ni LSP Link Path 3 Register (Mesh Multiprocessing)1

0x00CD LPCNT ni LSP Link Path Counter (Mesh Multiprocessing)1

0x00CE CNST1 ni LSP Link Port Constant 1 (Mesh Multiprocessing)1

0x00CF CNST2 ni LSP Link Port Constant 2 (Mesh Multiprocessing)1

0x00D0–0x00DF reserved
0x00E0 STCTL0 0x0000 0000 LSP SPORT0 Transmit Control Register
0x00E1 SRCTL0 0x0000 0000 LSP SPORT0 Receive Control Register
0x00E2 TX0 ni LSP SPORT0 Transmit Data Buffer
0x00E3 RX0 ni LSP SPORT0 Receive Data Buffer
0x00E4 TDIV0 ni LSP SPORT0 Transmit Divisors
0x00E5 reserved
0x00E6 RDIV0 ni LSP SPORT0 Receive Divisors
0x00E7 reserved
0x00E8 MTCS0 ni LSP SPORT0 Multichannel Transmit Selector
0x00E9 MRCS0 ni LSP SPORT0 Multichannel Receive Selector
0x00EA MTCCS0 ni LSP SPORT0 Multichannel Transmit Compand Selector
0x00EB MRCCS0 ni LSP SPORT0 Multichannel Receive Compand Selector
0x00EC KEYWD0 ni LSP SPORT0 Receive Comparison3

0x00ED KEYMASK0 ni LSP SPORT0 Receive Comparison Mask3

0x00EE SPATH0 0x0001 LSP SPORT0 Path Length (Mesh Multiprocessing)
0x00EF reserved 0x0001



EControl/Status Registers

E – 13

Register Initialization Register
Address Name After RESET Group Description
0x00F0 STCTL1 0x0000 0000 LSP SPORT1 Transmit Control Register
0x00F1 SRCTL1 0x0000 0000 LSP SPORT1 Receive Control Register
0x00F2 TX1 ni LSP SPORT1 Transmit Data Buffer
0x00F3 RX1 ni LSP SPORT1 Receive Data Buffer
0x00F4 TDIV1 ni LSP SPORT1 Transmit Divisors
0x00F5 reserved
0x00F6 RDIV1 ni LSP SPORT1 Receive Divisors
0x00F7 reserved
0x00F8 MTCS1 ni LSP SPORT1 Multichannel Transmit Selector
0x00F9 MRCS1 ni LSP SPORT1 Multichannel Receive Selector
0x00FA MTCCS1 ni LSP SPORT1 Multichannel Transmit Compand Selector
0x00FB MRCCS1 ni LSP SPORT1 Multichannel Receive Compand Selector
0x00FC KEYWD1 ni LSP SPORT1 Receive Comparison3

0x00FD KEYMASK1 ni LSP SPORT1 Receive Comparison Mask3

0x00FE SPATH1 0x0001 LSP SPORT1 Path Length (Mesh Multiprocessing)
0x00FF reserved 0x0001

ni – not initialized

IOP Register Groups: SC – System Control register group DB – DMA Buffer register group
DA – DMA Address register group LSP – Link/Serial Port register group

Table E.7   IOP Register Addresses, RESET Initialization, & Grouping  (cont.)

1. Not available on the ADSP-21061.
2. The contents of the IM0-3 registers are fixed to ‘1’ on the ADSP-21061; on this DSP,

these registers may be written, but the writes are ignored and reads of these
registers return the value ‘1.’

3. Only available on the ADSP-21061. This register location is reserved on the ADSP-
21060 and ADSP-21062.
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E.4 MODE1 REGISTER
Bit Name Definition
0 BR8 Bit-reversing for I8 (DAG2)
1 BR0 Bit-reversing for I0 (DAG1)
2 SRCU Alternate register select for computation units
3 SRD1H DAG1 alternate register select (7-4)
4 SRD1L DAG1 alternate register select (3-0)
5 SRD2H DAG2 alternate register select (15-12)
6 SRD2L DAG2 alternate register select (11-8)
7 SRRFH Register file alternate select for R15-R8
8-9  – reserved
10 SRRFL Register file alternate select for R7-R0
11 NESTM Interrupt nesting enable
12 IRPTEN Global interrupt enable
13 ALUSAT Enable ALU saturation (full scale in fixed-point)
14 SSE* Enable short word sign extension
15 TRUNC 1=Floating-point truncation; 0=Round to nearest
16 RND32 1=Round floating-point data to 32 bits; 0=Round to 40 bits
17-18 CSEL Spare condition code select (00 selects bus master condition)**
19-31  – reserved

* Does not apply to PX register writes.
** The bus master condition (BM) indicates whether the ADSP-2106x is the current bus

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.
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master in a multiprocessor system. To enable the use of this condition, bits 17 and 18 of
MODE1 must both be zeros; otherwise the condition is always evaluated as false.

E.5 MODE2 REGISTER
Bit Name Definition
0 IRQ0E IRQ0 1=edge sensitive; 0=level-sensitive
1 IRQ1E IRQ1 1=edge sensitive; 0=level-sensitive
2 IRQ2E IRQ2 1=edge sensitive; 0=level-sensitive
3 reserved
4 CADIS Cache disable
5 TIMEN Timer enable
6 BUSLK External bus lock (multiprocessor systems)
7-14 reserved
15 FLG0O FLAG0 1=output; 0=input
16 FLG1O FLAG1 1=output; 0=input
17 FLG2O FLAG2 1=output; 0=input
18 FLG3O FLAG3 1=output; 0=input
19 CAFRZ Cache freeze
20-27 reserved
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11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

0=Disable Timer
1=Enable Timer

0=Enable Cache
1=Disable Cache

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27 16

0=IRQ0 Level-Sensitive
1=IRQ0 Edge-Sensitive

0=IRQ1 Level-Sensitive
1=IRQ1 Edge-Sensitive

0=IRQ2 Level-Sensitive
1=IRQ2 Edge-Sensitive

0=No External Bus Lock
1=External Bus Lock

0=Cache Updates
1=Cache Freeze (No Updates)

0=FLAG1 Input
1=FLAG1 Output

0=FLAG2 Input
1=FLAG2 Output

IRQ0E

IRQ1E

IRQ2E

BUSLK

TIMEN

CADIS

FLG1O

FLG2O

CAFRZ

Silicon Revision #

0=FLAG0 Input
1=FLAG0 Output

FLG0O

0=FLAG3 Input
1=FLAG3 Output

FLG3O

Processor ID

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

MODE2
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28-29 Silicon revision #
30-31 Processor ID (ID=01 for ADSP-21060, ID=10 for ADSP-21062)

E.6 ARITHMETIC STATUS REGISTER (ASTAT)
Bit Name Definition
0 AZ ALU result zero or floating-point underflow
1 AV ALU overflow
2 AN ALU result negative
3 AC ALU fixed-point carry
4 AS ALU X input sign (ABS and MANT operations)
5 AI ALU floating-point invalid operation
6 MN Multiplier result negative
7 MV Multiplier overflow
8 MU Multiplier floating-point underflow
9 MI Multiplier floating-point invalid operation
10 AF ALU floating-point operation
11 SV Shifter overflow
12 SZ Shifter result zero
13 SS Shifter input sign
14-17 reserved
18 BTF Bit test flag for system registers
19 FLG0 FLAG0 value
20 FLG1 FLAG1 value
21 FLG2 FLAG2 value
22 FLG3 FLAG3 value
23 reserved
24-31 CACC Compare accumulation bits
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11 10 9 8 7 6 5 4 3 2 1 0

Bit Test Flag for System Registers

000000000000

15 14 13 12

0000

ALU Floating-Point Invalid Operation

ALU X-Input Sign (for ABS and MANT)

ALU Fixed-Point Carry

ALU Negative

ALU Overflow

26 25 24 23 22 21 20 19 18 17

00000000

31 30 29 28 27

0000

16

ALU Zero/Floating-Point Underflow

Multiplier Floating-Point 
Invalid Operation

Multiplier Negative
Multiplier Overflow

Multiplier Floating-Point Underflow

ALU Floating-Point Operation

Shifter Input Sign

Shifter Overflow

Shifter Zero

FLAG0 Value

FLAG1 Value

FLAG3 Value

FLAG2 Value

Compare Accumulation Shift Register
CACC

AZ

AV

AN

AC

AS

AI

MN

SS

SZ

SV

AF

MI

MU

MV

BTF

FLG0

FLG1

FLG3

FLG2

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

ASTAT
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E.7 STICKY STATUS (STKY)
Bit Name Definition
0 AUS ALU floating-point underflow
1 AVS ALU floating-point overflow
2 AOS ALU fixed-point overflow
3-4 reserved
5 AIS ALU floating-point invalid operation
6 MOS Multiplier fixed-point overflow
7 MVS Multiplier floating-point overflow
8 MUS Multiplier floating-point underflow
9 MIS Multiplier floating-point invalid operation
10-16 reserved
17 CB7S DAG1 circular buffer 7 overflow
18 CB15S DAG2 circular buffer 15 overflow
19-20 reserved
21 PCFL PC stack full (not sticky)
22 PCEM PC stack empty (not sticky)
23 SSOV Status stack overflow (MODE1 and ASTAT)
24 SSEM Status stack empty (not sticky)
25 LSOV Loop stack overflow (Loop Address and Loop Counter)
26 LSEM Loop stack empty (not sticky)
27-31 reserved

Bits 21-26 are read-only. Writes to the STKY register have no effect on these bits.

All bits except 21, 22, 24, 26 are sticky (see “Stack Flags” in the Program Sequencing
chapter). Once a sticky bit is set, it remains set until explicitly cleared.
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AUS

AVS

AOS

AIS

11 10 9 8 7 6 5 4 3 2 1 0

DAG1 Circular Buffer 7 Overflow

000000000000

15 14 13 12

0000

ALU Floating-Point Invalid Operation

ALU Fixed-Point Overflow

ALU Floating-Point Overflow

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

ALU Floating-Point UnderflowMultiplier Floating-Point Invalid Operation

Multiplier Floating-Point Overflow

Multiplier Floating-Point Underflow

Status Stack Empty (read-only)

Status Stack Overflow (read-only)

Multiplier Fixed-Point Overflow

DAG2 Circular Buffer 15 Overflow

PC Stack Empty (read-only)

PC Stack Full (read-only)

Loop Stack Empty (read-only)

Loop Stack Overflow (read-only)

MIS

MUS

MVS

MOS

CB7S

CB15S

PCFL

PCEM

LSEM

LSOV

SSEM

SSOV

NS - Not Sticky

NS

NS

NS

NS

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

STKY
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E.8 INTERRUPT LATCH (IRPTL) & INTERRUPT MASK (IMASK)
IRPTL and IMASK have the exact same bit positions, corresponding to the
ADSP-2106x interrupts in order of priority.

Vector Interrupt
Bit Address* Name Function
0 0x00  – reserved
1 0x04 RSTI Reset (read-only)** HIGHEST PRIORITY
2 0x08  – reserved
3 0x0C SOVFI Status stack or loop stack overflow or PC stack full
4 0x10 TMZHI Timer=0 (high priority option)
5 0x14 VIRPTI Vector Interrupt
6 0x18 IRQ2I IRQ2 asserted
7 0x1C IRQ1I IRQ1 asserted
8 0x20 IRQ0I IRQ0 asserted
9 0x24  – reserved
10 0x28 SPR0I DMA Channel 0 – SPORT0 Receive
11 0x2C SPR1I DMA Channel 1 – SPORT1 Receive (or Link Buffer 0)
12 0x30 SPT0I DMA Channel 2 – SPORT0 Transmit
13 0x34 SPT1I DMA Channel 3 – SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 – Link Buffer 2
15 0x3C LP3I DMA Channel 5 – Link Buffer 3
16 0x40 EP0I DMA Channel 6 – Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1I DMA Channel 7 – Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 – Ext. Port Buffer 2
19 0x4C EP3I DMA Channel 9 – Ext. Port Buffer 3
20 0x50 LSRQI Link Port Service Request
21 0x54 CB7I Circular Buffer 7 overflow
22 0x58 CB15I Circular Buffer 15 overflow
23 0x5C TMZLI Timer=0 (low priority option)
24 0x60 FIXI Fixed-point overflow
25 0x64 FLTOI Floating-point overflow exception
26 0x68 FLTUI Floating-point underflow exception
27 0x6C FLTII Floating-point invalid exception
28 0x70 SFT0I User software interrupt 0
29 0x74 SFT1I User software interrupt 1
30 0x78 SFT2I User software interrupt 2
31 0x7C SFT3I User software interrupt 3 LOWEST PRIORITY

* Offset from base address: 0x0002 0000 for interrupt vector table in internal
memory, 0x0040 0000 for interrupt vector table in external memory
** Non-maskable
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All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SPR0I
SPORT0 Receive DMA

RSTI
RESET (non-maskable, read-only)

SOVFI
Stack Full/Overflow

TMZHI
Timer Expired (High Priority)

VIRPTI
Multiprocessor Vector Interrupt

IRQ2I
IRQ2 Asserted

IRQ1I
IRQ1 Asserted

IRQ0I
IRQ0 Asserted

SPR1I
SPORT1 Receive (or Link Buffer 0) DMA

SPT0I
SPORT0 Transmit DMA

SPT1I
SPORT1 Transmit  (or Link Buffer 1) DMA

LP2I
Link Buffer 2 DMA

LP3I
Link Buffer 3 DMA

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EP0I
Ext. Port Buffer 0 (or Link Buffer 4) DMA

LSRQI
Link Port Service Request

CB7I
DAG1 Circular Buffer 7 Overflow

CB15I
DAG2 Circular Buffer 15 Overflow

TMZLI
Timer Expired (Low Priority)

EP1I
Ext. Port Buffer 1 (or Link Buffer 5) DMA

EP2I
Ext. Port Buffer 2 DMA

EP3I
Ext. Port Buffer 3 DMA

FLTUI
Floating-Point Underflow

FLTII
Floating-Point Invalid Operation

FLTOI
Floating-Point Overflow

FIXI
Fixed-Point Overflow

SFT0I
User Software Interrupt 0

SFT1I
User Software Interrupt 1

SFT2I
User Software Interrupt 2

SFT3I
User Software Interrupt 3

Default values for IMASK only; IRPTL is cleared after reset.
For IMASK:  1=unmasked (enabled),  0=masked (disabled)

IRPTL & IMASK
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E.9 SYSTEM CONFIGURATION (SYSCON)
The SYSCON register is used to set up system configuration selections.
SYSCON is memory-mapped in internal memory at address 0x0000.
After reset the SYSCON register is initialized to 0x0000 0010. This
causes the ADSP-2106x to assume a 16-bit bus for any host processor;
two 16-bit words must be written to SYSCON to change the setting of
HPM, even if the host bus is 32 bits wide.

Bit Name Definition
0 SRST Software Reset
1 BSO Boot Select Override
2 IIVT Internal Interrupt Vector Table (for “no booting” mode)
3 IWT Instruction Word Transfer (1=48-bit instruction, 0=32-bit data)
4-5 HPM Host Packing Mode (00=none, 01=16-to-32, 10=16-to-48, 11=32-to-48)
6 HMSWF Host Packing Order – MSW First (1=MSW first, 0=LSW first)
7 HPFLSH Host Packing Status Flush
8 IMDW0 Internal Memory Block 0 Data Width (0=32-bit data, 1=40-bit data)
9 IMDW1 Internal Memory Block 1 Data Width (0=32-bit data, 1=40-bit data)
10 ADREDY Active Drive REDY (1=active drive, 0=open drain)
11 BHD Buffer Hang Disable (1=prevent hangs, 0=allow hangs)
12-15 MSIZE External Memory Bank Size (MSIZE = log2(bank size) – 13)
16-17 EBPR External Bus Priority (01=core processor, 10=I/O processor, 00=even)
18 DCPR DMA Channel 6-9 Priority (1=rotating priority, 0=sequential priority)
19-27 reserved
28 IMGR Internal Memory Grouping (Mesh Multiprocessing)
29-31 reserved

SRST Software Reset—Causes a software reset. This has the same effect as
the RESET pin.

BSO Boot Select Override—Deactivates the MS3-0 memory select lines
and activates the BMS boot memory select output. This allows the
ADSP-2106x to read from its boot EPROM when it is no longer in
boot mode. Since only 256 instructions can be loaded during EPROM
booting, setting the BSO bit lets the ADSP-2106x read additional code
or data from its boot EPROM after booting is completed. (See
“Booting” in Chapter 11, System Design.)

1=Activate BMSBMS to read from boot EPROM
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11 10 9 8 7 6 5 4 3 2 1 0

000010000000

15 14 13 12

0000

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

SRST
Software Reset

BSO
Boot Select Override

IIVT
Internal Interrupt Vector Table
(“no boot” mode)

IWT
Instruction Word Transfer
1=48-bit instruction, 0=32-bit data

HPM
Host Packing Mode
00=no packing, 01=16-to-32,
10=16-to-48, 11=32-to-48

HMSWF
Host Packing Order – MSW First
1=MSW First, 0=LSW First

MSIZE
External Memory Bank Size

MSIZE = log2(bank size) – 13

HPFLSH
Host Packing Status Flush

IMDW1
Internal Memory Block 1 Data Width

0=32-bit data, 1=40-bit data

IMDW0
Internal Memory Block 0 Data Width

0=32-bit data, 1=40-bit data

EBPR
External Bus Priority
00=even, 01=core processor,
10=I/O processor

DCPR
DMA Channel 6-9 Priority
1 = rotating, 0 = sequential

IMGR
Internal Memory Grouping

(for mesh multiprocessing)

BHD
Buffer Hang Disable
0=enable, 1=disable

ADREDY
Active Drive REDY

0=open drain (o/d), 1=active drive (a/d)

SYSCON
0x0000

IIVT Internal Interrupt Vector Table (“no booting” mode)—Locates the interrupt
vector table at address 0x0002 0000 in internal memory for  no booting mode
(EBOOT=0, LBOOT=0, BMS(input)=0). When IIVT=0 in no booting mode, the
interrupt vector table is located at address 0x0040 0000 in external memory.
Note that IIVT is initialized to zero after reset, locating the interrupt table in
external memory for no booting mode. (When the ADSP-2106x is configured
for any booting mode—EPROM, host, or link port—the interrupt vector table
is always located in internal memory, regardless of the value of IIVT.)

1=Locate interrupt table in internal memory for “no booting” mode
0=Locate interrupt table in external memory for “no booting” mode

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.
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IWT Instruction Word Transfer—Specifies the word width for direct reads
and direct writes of the ADSP-2106x’s internal memory (by other
ADSP-2106xs or by the host). IWT=1 overrides the IMDW bits (see
below) and forces a 48-bit (3-column) memory transfer. IWT=0 defers
to the data word setting of the IMDW bits in the SYSCON register.
IWT should be set whenever the ADSP-2106x bus master or host
processor is reading or writing instructions from (this) ADSP-2106x.

1=48-bit words for direct read/writes
0=32-bit words for direct read/writes

HPM(1:0) Host Packing Mode—Specifies the internal word width and external
host bus width for host processor accesses of the ADSP-2106x’s
internal memory or IOP registers. If the host access is a read or write
to the external port data buffers (EPB0, EPB1, EPB2, or EPB3), the
external host bus width selected by HPM must correspond to the
external word width selected in the PMODE bits of the DMACx
control register (DMAC6, DMAC7, DMAC8, and DMAC9):

HPM and PMODE must select the same external bus width
for host data transfers to and from the ADSP-2106x!!

If the host access is a read or write of any IOP register other than the
external port buffers or link port buffers (LBUF0-LBUF5), the word
width will always be 32 bits no matter what the host bus width is. If
the host access is a read or write of the link port buffers, the word
width is determined only by HPM, and not by the LEXT bit in LCTL.

00=No packing. Maximum bus width is 32 bits for asynchronous
transfers. The lower 16 bits of the 48-bit data bus will be written and
read as zeros, even when reading 48-bit words. For synchronous
transfers, the host bus should be 32 bits wide for data transfers or
48 bits wide for instruction word transfers. (Note: To read and write
48-bit words from internal memory, the IWT bit must be set to 1 or the
IMDW bit for the block of memory being accessed must be set to 1.)

Default  → 01=16-bit host bus, 32-bit words. The host bus will be 16 bits wide;
at Reset any memory access will be 32-bit words.

(Note: If the memory access is made to a block of ADSP-2106x internal
memory for which the IMDW bit is set, the access will read or write the
upper 32 bits of the 48-bit word.)

10=16-bit host bus, 48-bit words. The host bus will be 16 bits wide;
any memory access will be 48-bit words.

11=32-bit host bus, 48-bit words. The host bus will be 32 bits wide;
any memory access will be 48-bit words.
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To change the host packing mode, the following sequence must occur:

1. Write to the SYSCON register, changing the setting of HPM.
2. Read SYSCON (and ignore data) to ensure that the write was

completed.
3. Repeat the write to SYSCON (to flush the read, since it may have

occurred in the old packing mode).
4. Wait 4 cycles.

HMSWF Host Packing Order – Most Significant Word First—Specifies the
order in which host-accessed words are packed, for 16-to-32 bit and
16-to-48 bit packing. HMSWF is ignored for 32-to-48 bit packing.
When HMSWF=1, packing is done MSW first (most significant 16-bit
word first). When HMSWF=0, packing is is done LSW first.

1=MSW first
0=LSW first

HPFLSH Host Packing Status Flush—Resets the host packing status. Host
accesses must not occur while the HPFLSH bit is being written by the
ADSP-2106x processor core. There is a two cycle latency before the
reset takes effect, after which the host may resume normal operations.
(Note: HPFLSH is always read as a zero.)

1=Flush packing status

IMDWx Internal Memory Block Data Width—Selects the data word width for
each block of internal memory. For 32-bit data words, set IMDWx to 0.
For 40-bit data (transferred within 48-bit words), set IMDWx to 1.
IMDW0 (bit 8 of SYSCON) selects the data word width for memory
block 0 and IMDW1 (bit 9) selects the data word width for memory
block 1. (Note: 48-bit instructions can be stored in a memory block
regardless of the setting of the IMDWx bit. See “Configuring Memory
For 32-Bit or 40-Bit Data” in the Memory chapter for more information.)

0=32-bit data
1=40-bit data
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BHD Buffer Hang Disable—Disables the hang condition that occurs
when the ADSP-2106x core tries to read from an empty (or write
to a full) SPORT buffer (RX/TX), link port buffer (LBUFx), or
external port buffer (EPBx). The hang condition also occurs when
an external device—either another ADSP-2106x or a host
processor—tries to read from an empty buffer or write to a full
buffer.

After reset, BHD=0 so that buffer hang is enabled; this is the
normal mode of operation for the buffers. Setting BHD=1 to
disable buffer hang is useful for debugging purposes.

(Note: The full or empty status of a particular buffer can be
determined by reading the appropriate control/status register—
DMACx for the external port buffers, LCOM for the link port
buffers, and SRCTLx/STCTLx for the SPORT buffers.)

1=prevent hangs
0=allow hangs

ADREDY Active Drive REDY—Changes REDY signal to an active drive
output.

1=active drive (a/d)
0=open drain (o/d)

MSIZE(3:0) External Memory Bank Size—Selects the size of the external
memory banks (each memory bank is the same size). The value of
MSIZE is calculated with the following equation:

MSIZE=log2(bank size) – 13

(See “External Memory Banks” in the Memory chapter for more
information.)

EBPR(1:0) External Bus Priority—Determines priority for use of external bus
(DATA47-0 , ADDR31-0) for conflicts between the ADSP-2106x’s
processor core and on-chip I/O processor. This type of contention
occurs when the processor core attempts an off-chip read or write
at the same time that a DMA transfer is in progress
(independently controlled by the I/O processor).

00=Even priority—both accesses alternate with each other
01=Core processor has priority
10=I/O processor has priority (for DMA transfer)
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Note: The setting of EPBR is not related to the CPA pin function
(core priority access).

(Additional Details: The ADSP-2106x has three on-chip buses that
are multiplexed at the external port: the PM bus (instructions or
data), DM bus (data), and I/O bus (DMA data). The PM bus and
DM bus are controlled by the ADSP-2106x processor core. The
I/O bus is controlled by the on-chip I/O processor. The I/O bus
connects the external port’s DMA buffers to the ADSP-2106x’s
internal memory and IOP registers.

Contention for use of the external bus occurs when both the
processor core and I/O processor attempt an off-chip read or
write during the same cycle. The contention occurs at the
ADSP-2106x’s external port, where the three internal buses are
multiplexed together.

PM vs. DM bus conflicts are resolved with a fixed priority if the
accesses are both reads or both writes—the DM bus access occurs
first. An extra cycle is generated in the following cycle to allow
the PM bus access to occur.

For core processor priority, the I/O processor access will be
delayed until neither the PM bus nor DM bus is carrying an
access. For I/O bus priority, the PM and/or DM bus accesses
will be delayed until all pending I/O bus accesses are completed.)

Note: For even priority, if both the core and I/O processor try to
use the external bus continuously, they will each get a bus slot
every other cycle.

DCPR DMA Channel 6-9 Priority—Selects rotating or sequential priority
for DMA channels 6-9. When DCPR is set to 1, a rotating priority
scheme is implemented in which priority moves to the next
highest numbered channel (modulo 4). When DCPR is 0, highest
priority is assigned to channel 6 and lowest priority to channel 9.

1=Rotating priority
0=Sequential priority (ch6 high – ch9 low)

E.10 SYSTEM STATUS (SYSTAT)
The SYSTAT register provides status information, primarily for
multiprocessor systems. SYSTAT is memory-mapped in internal
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memory at address 0x0003. After reset, all bits in SYSTAT are initialized
to zero except for IDC(2:0) and CRBM(2:0). IDC(2:0) will be equal to the
value of the ADSP-2106x’s ID2-0 inputs. CRBM(2:0) is equal to the ID of
the current bus master, for ID>0. For ID=0, CRBM=1.

Bit Name Definition
0 HSTM Host Mastership
1 BSYN Bus Synchronization
2-3 reserved
4-6 CRBM Current Bus Master (ID2-0 of ADSP-2106x bus master)
7 reserved
8-10 IDC ID Code (ID2-0 of this ADSP-2106x)
11 reserved
12 DWPD Direct Write Pending
13 VIPD Vector Interrupt Pending
14-15 HPS Host Packing Status
16-31 reserved

HSTM Host Mastership—Indicates whether the host processor has been
granted control of the bus.

1=Host is bus master
0=Host is not bus master

BSYN Bus Synchronization—Indicates when the ADSP-2106x’s bus
arbitration logic is synchronized after reset. (See “Bus
Synchronization After Reset” in the Multiprocessing chapter of this
manual for details.)

1=Bus arbitration logic is synchronized
0=Bus arbitration logic is not synchronized

CRBM(2:0) Current Bus Master—Indicates the ID of the ADSP-2106x that is the
current bus master. If CRBM is equal to the ID of this ADSP-2106x
then it is the current bus master. CRBM is only valid for ID2-0 > 0
(greater than zero). When ID2-0=000, CRBM is always 1.

IDC(2:0) ID Code—Indicates the ID2-0 inputs of this ADSP-2106x.

DWPD Direct Write Pending—Indicates when a direct write to the
ADSP-2106x’s internal memory is pending. The DWPD bit is cleared
when the direct write has been completed. (Direct writes may be
delayed for several cycles if DMA chaining is underway or if higher
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SYSTAT
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00000000
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0000
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000000000000
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0000
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HSTM
Host Mastership

CRBM
Current Bus Master

DWPD
Direct Write Pending

HPS
Host Packing Status
00 = packing complete
01 = first stage of all packing and unpacking modes
10 = second stage of 16-to-48 bit packing/unpacking or 32-to-48 bit packing/unpacking

BSYN
Bus Synchronization

IDC
ID Code

VIPD
Vector Interrupt Pending

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

priority DMA requests occur. Maximum delay is 12 cycles.)

1=Direct write pending
0=No direct write pending

VIPD Vector Interrupt Pending—Indicates that a pending vector interrupt has
not yet been serviced. The VIPD bit is set when the VIRPT register is
written to and is cleared upon return from the interrupt service routine.
The host processor (or other ADSP-2106x) that issued the vector interrupt
should monitor this bit to determine when the service routine has been
completed (and when a new vector interrupt may be issued).

1=Vector interrupt pending
0=No vector interrupt pending

HPS(1:0) Host Packing Status—Indicates when host word packing is completed
or, if not, what stage of the process is taking place.

00=Packing complete
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01=First stage of all packing and unpacking modes.
10=Second stage of 16-to-48 bit packing/unpacking or 32-to-48 bit
packing/unpacking

E.11 EXTERNAL MEMORY WAIT STATE CONTROL (WAIT)
The WAIT register is used to set up external memory wait states and
response to the ACK signal. WAIT is memory-mapped in internal
memory at address 0x0002. The WAIT register is initialized to
0x21AD 6B5A after a processor reset; this configures the ADSP-2106x
for 1) no idle state on PAGE  boundary crossings, 2) six internal wait
states, 3) dependence on ACK for all memory banks and for unbanked
memory, and 4) multiprocessor memory space wait state enabled.

Bit Name Definition
0-1 EB0WM External Bank 0 wait state mode
2-4 EB0WS External Bank 0 number of wait states
5-6 EB1WM External Bank 1 wait state mode
7-9 EB1WS External Bank 1 number of wait states
10-11 EB2WM External Bank 2 wait state mode
12-14 EB2WS External Bank 2 number of wait states
15-16 EB3WM External Bank 3 wait state mode
17-19 EB3WS External Bank 3 number of wait states
20-21 UBWM Unbanked memory wait state mode*
22-24 UBWS Unbanked memory number of wait states*
25-27 PAGSZ Page size for DRAM (only in Bank 0)
28 PAGEIS Single idle cycle on DRAM page boundary crossing
29 MMSWS Single wait state for Multiprocessor Memory Space access
30 HIDMA Single idle cycle for DMA handshake
31 reserved
* Unbanked memory wait states and wait state mode are applied to BMS-asserted

accesses.

Wait State Mode

EBxWM Wait State Mode
00 External acknowledge only (ACK)
01 Internal wait states only
10 Both internal and external acknowledge required
11 Either internal or external acknowledge sufficient
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All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

DRAM Page Size

PAGSZ DRAM Page Size
000 256 words
001 512 words
010 1024 words (1K)
011 2048 words (2K)
100 4096 words (4K)
101 8192 words (8K)
110 16384 words (16K)
111 32768 words (32K)

Number of Wait States

# of Bus Hold
Wait Idle Time

EBxWS States Cycle? Cycle?
000 0 no no
001 1 yes no
010 2 yes no
011 3 yes no
100 4 no yes
101 5 no yes
110 6 no yes
111 0 yes no

Bus Idle Cycle – inactive bus cycle automatically generated
to avoid bus driver conflicts; devices with slow disable
times should enable bus idle cycle generation by using # of
wait states code 001, 010, or 011.

Hold Time Cycle – inactive bus cycle automatically
generated at the end of a read or write to allow a longer
hold time for address and data; the address and data will
remain unchanged and driven for one cycle after the read or
write strobes are deasserted

Note that the bus idle cycle or hold time cycles will occur if
programmed, regardless of the waitstate mode. For
example, the ACK-only waitstate mode may have a hold
time cycle programmed for it.

11 10 9 8 7 6 5 4 3 2 1 0

010110101101

15 14 13 12

0110

EB0WM
Ext. Bank 0 Waitstate Mode

EB0WS
Ext. Bank 0 Number of Waitstates

EB1WM
Ext. Bank 1 Waitstate Mode

EB1WS
Ext. Bank 1 Number of Waitstates

16

EB3WM
Ext. Bank 3 Waitstate Mode

EB2WS
Ext. Bank 2 Number of Waitstates

EB2WM
Ext. Bank 2 Waitstate Mode

26 25 24 23 22 21 20 19 18 17

01101011000

31 30 29 28 27

0100

EB3WS
Ext. Bank 3 Number of Waitstates

UBWM
Unbanked Memory Waitstate Mode

UBWS
Unbanked Memory Number of Waitstates

HIDMA
Handshake Idle Cycle for DMA

MMSWS
Multiprocessor Memory Space Waitstate

PAGEIS
 Page Boundary Crossing Idle Cycle

PAGSZ
 Page Size (for DRAM)

1

WAIT
0x0002
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E.12 EXTERNAL PORT DMA CONTROL (DMAC6-DMAC9)
The DMAC6, DMAC7, DMAC8, and DMAC9 registers on the ADSP-21060 and
ADSP-21062 are used to control  external port DMA operations on DMA
channels 6, 7, 8, and 9. (On the ADSP-21061, only DMAC6 and DMAC7 are
available.) These registers are memory-mapped at internal memory addresses
0x001C, 0x001D, 0x001E, and 0x001F, respectively. After reset, the DMAC7,
DMAC8, and DMAC9 registers are cleared (initialized to 0x0000 0000). DMAC6 is
initialized during booting according to the booting mode used.

Bit Name Definition
0 DEN DMA Enable for external port
1 CHEN DMA Chaining Enable for external port
2 TRAN DMA Transfer Direction (1=transmit, 0=receive)
3-4 PS Pack Status (read-only)
5 DTYPE Data Type (0=data, 1=instructions)
6-7 PMODE Packing Mode (00=none, 01=16/32, 10=16/48, 11=32/48)
8 MSWF Most-Significant-Word-First during packing
9 MASTER DMA Master Mode Enable
10 HSHAKE DMA Handshake (use DMARx pin to initiate DMA)
11 INTIO Single-Word Interrupt Enable for external port buffers
12 EXTERN Handshake DMA is ext. device to ext. memory
13 FLSH Flush external port buffer (to empty status)
14-15 FS External port buffer status (00=empty, 11=full, 10=partially full)
16-31 reserved

DEN Ext. Port DMA Enable—Enables DMA for the external port buffers.
(Note that the DMA channels shared between the external port and link
ports, channels 6 and 7, may also become enabled by the link buffers on
the ADSP-21060 and ADSP-21062.)

CHEN Ext. Port DMA Chaining Enable—Enables chained DMA transfers.
When CHEN=1 and DEN=0, the DMA channel is placed in chain
insertion mode in which a new DMA chain can be inserted into the
current chain without affecting the current DMA transfer. This mode of
operation is identical to CHEN=1 and DEN=1 except that automatic
chaining is disabled when the current DMA transfer ends. The complete
list of modes selected by the CHEN and DEN bits are as follows:

CHEN DEN Mode of Operation
0 0 Chaining disabled, DMA disabled
0 1 Chaining disabled, DMA enabled
1 0 Chain Insertion mode (chaining enabled, DMA enabled,

auto-chaining disabled)
1 1 Chaining enabled, DMA enabled, auto-chaining

enabled
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0x001C
0x001D
0x001E
0x001F11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

DEN
DMA Enable for Ext. Port
1=enable, 0=disable

CHEN
DMA Chaining Enable for Ext. Port
1=enable, 0=disable

TRAN
DMA Channel Direction
0=read from ext. memory
1=write to ext. memory

PS
Packing Status (read-only)
00=packing complete
01=1st stage of all pack & unpack modes
10=2nd stage of 16-to-48 bit pack/unpack,

or 2nd stage of 32-to-48 pack/unpack

FLSH
Flush Ext. Port FIFO Buffer

1=flush

EXTERN
Ext. Devices to Ext. Memory DMA

1=extern mode

FS
Ext. Port FIFO Buffer Status

00=empty, 10=partially full, 11=full

AA26AA25AA24AA23AA22 A21 A20AA19AA18AA17

000000000000
AA31AA30AA29AA28 A27

0000
AA16

DTYPE
Data Type
0=data, 1=instructions

PMODE
Packing Mode
00=no packing
01=16/32
10=16/48
11=32/48

INTIO
Single-Word Interrupts for

Ext. Port FIFO Buffers
1=enable, 0=disable

HSHAKE
DMA Handshake

1=enable, 0=disable

MASTER
DMA Master Mode

1=enable, 0=disable

MSWF
Most Significant Word First

for Packing
1=enable, 0=disable

DMAC6
DMAC7
DMAC8
DMAC9

All control and status bits are active high unless otherwise noted. Default bit values after reset
are shown; if no value   is shown, the bit is undefined at reset or depends upon processor
inputs. Reserved bits are shown with a gray background; these bits should always be written
with zeros.

The DMAC8 and DMAC9 registers are not available on the ADSP-21061.

TRAN Transfer Direction—Specifies the data transfer direction as internal-to-
external when set to 1. (When EXTERN is selected, TRAN=1 specifies a
read from external memory and TRAN=0 specifies a write to external
memory.)

PS Packing Status—Indicates whether the packing buffer is on its first,
second, or last packing stage:

PS Status
00 packing complete
01 1st stage of all pack and unpack modes
10 2nd stage of 16-to-48 bit pack or unpack modes,

or 2nd stage of 32-to-48 bit pack or unpack modes
11 reserved
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DTYPE Data Type—Specifies the type of data being transferred; this
information is used by internal memory to determine the word
width. DTYPE=1 overrides the IMDW bits and forces a 48-bit (3-
column) memory transfer. DTYPE=0 defers to the data word setting
of the IMDW bits in the SYSCON register. The data word may be 32-
bit or 40-bit, as determined by the setting of the IMDW bits in the
SYSCON register.

PMODE Packing Mode—Specifies the EPBx buffer packing mode. For host
processor accesses of the EPBx buffers, the HPM bits of the SYSCON
register must be set to correspond to the external bus width specified
by PMODE.

PMODE Packing Mode
00 No packing/unpacking
01 16-bit external bus to/from 32-bit internal packing
10 16-bit external bus to/from 48-bit internal packing
11 32-bit external bus to/from 48-bit internal packing

MSWF Most Significant Word First—Specifies the order in which words are
packed, for 16-to-32 bit packing and 16-to-48 bit packing. MSWF is
ignored for 32-to-48 bit packing. When MSWF=1, packing is done
MSW first (most significant 16-bit word first). When MSWF=0,
packing is is done LSW first.

1=MSW first
0=LSW first

INTIO Single-Word I/O Interrupts—Used when DEN=0, to allow the
external port DMA interrupts to occur for individual words received
and transmitted. Generating DMA interrupts in this fashion is useful
for implementing interrupt-driven single-word transfers under
control of the ADSP-2106x core processor. Setting INTIO=1 causes
the interrupts to occur when an EPBx input buffer is “not empty” (for
TRAN=0) or when an output buffer is “not full” (for TRAN=1).

FLSH Flush DMA Channel—Reinitializes the state of the DMA channel,
clearing the FS and PS status bits to zero. The EPBx buffer is flushed,
and any internal DMA states are reset. This operation has a two-cycle
latency. FLSH is a self-clearing control bit which is not latched and
will always read as a 0.

The FLSH bit should only be used to clear the DMA channel when
the channel is not active. Use of the FLSH bit while the channel is active
may cause unexpected results. The DMASTAT register can be read to
determine if the channel is active. (For a particular channel, the
channel active status bit in DMASTAT will be set if DMA is enabled
and the current DMA sequence has not completed.) Also, due to the



EControl/Status Registers

E – 37

added latency of the FLSH bit, it should not be set in the same
DMACx write in which the DEN bit is set. As a general rule, set
FLSH at least one cycle before setting any other DMACx control bits.

FS EPBx Buffer Status—FS is a two-bit status field that indicates
whether data is present in the EPBx buffer. When data is being
transferred out from the ADSP-2106x, these status bits indicate
whether there is room in the buffer for more data.
When data is being transferred into the ADSP-2106x, these status bits
indicate whether new (unread) data is available in the buffer.

FS Status
00 empty
01 undefined
10 partially full
11 full

MASTER Master Mode DMA Enable—The MASTER, HSHAKE, and EXTERN
bits are used in combination, as described below.

HSHAKE Handshake DMA Enable—The MASTER, HSHAKE, and EXTERN
bits are used in combination, as described below.

EXTERN External Handshake Mode Enable—Specifies an external memory to
external device DMA transfer. HSHAKE must equal 1 and MASTER
equal 0 in this mode.
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The MASTER, HSHAKE, and EXTERN bits are used in combination to
provide the following DMA transfer modes:

M H E DMA Mode of Operation1

0 0 0 Slave Mode. The DMA request is generated whenever the receive
buffer is not empty or the transmit buffer is not full.2

0 0 1 Reserved
0 1 0 Handshake Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) The
DMA request is generated when the DMARx line is asserted. The
transfer occurs when DMAGx is asserted.1

0 1 1 External Handshake Mode. (For the ADSP-21060 and ADSP-
21062, applies to EPB1, EPB2 buffers, channels 7, 8 only. For the
ADSP-21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.)
Identical to Handshake Mode, but with data transferred between
external memory and an external device.

1 0 0 Master Mode. The DMA controller will attempt a transfer
whenever the receive buffer is not empty or the transmit buffer is
not full and the DMA counter is non-zero.1 DMAR1 should be
kept high (inactive) if channel 7 is in master mode, and DMAR2
should be kept high if channel 8 is in master mode on the ADSP-
21060 or ADSP-21062. DMAR2 should be kept high if channel 6 is
in master mode on the ADSP-21061.

1 0 1 Reserved
1 1 0 Paced Master Mode. (For the ADSP-21060 and ADSP-21062,

applies to EPB1, EPB2 buffers, channels 7, 8 only. For the ADSP-
21061, applies to EPB0, EPB1 buffers, channels 6, 7 only.) In this
mode the transfers are paced by the DMARx signal—the DMA
request is generated when DMARx is asserted. DMARx requests
operate in the same way as in handshake mode. The bus transfer
occurs when RD or WR is asserted. The address is driven as in
normal master mode. No external gates are required to OR the
RD-DMAGx and WR-DMAGx pairs, thus allowing the buffer
access to be zero-waitstate with no idle states. Waitstates and
acknowledge (ACK) apply to Paced Master Mode transfers; see
Section 5.4.4, “Wait States & Acknowledge” in Chapter 5,
Memory.

1 1 1 Reserved

1. When an external port DMA channel is configured for output (i.e.,
TRAN=1), the EPBx buffer will start to fill as soon as that DMA channel is
enabled. The EPBx buffer will start to fill up even if no DMAR assertions or
slave mode DMA buffer reads have been made yet.

2. If data is to be read from the ADSP-2106x (i.e. TRAN=1), the EPBx buffer
will be filled as soon as the DEN enable bit is set to 1.
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E.13 DMA CHANNEL STATUS  (DMASTAT)
The DMASTAT register maintains status bits for each DMA channel. This
register is memory-mapped at internal memory addresses 0x0037. For a
particular channel, the channel active status bit will be set if DMA is
enabled and the current DMA sequence has not completed. The chaining
status bit will be set if the channel is currently performing chaining
operations or if chaining is pending. There is a single cycle of latency
between internal status changes and the update of the DMASTAT register.

Bit Definition
0 DMA Channel 0 Status1

1 DMA Channel 1 Status1

2 DMA Channel 2 Status1

3 DMA Channel 3 Status1

4 DMA Channel 4 Status1, 2

5 DMA Channel 5 Status1, 2

6 DMA Channel 6 Status1

7 DMA Channel 7 Status1

8 DMA Channel 8 Status1

9 DMA Channel 9 Status1

10 DMA Channel 0 Chaining Status3

11 DMA Channel 1 Chaining Status3

12 DMA Channel 2 Chaining Status3

13 DMA Channel 3 Chaining Status3

14 DMA Channel 4 Chaining Status2, 3

15 DMA Channel 5 Chaining Status2, 3

16 DMA Channel 6 Chaining Status3

17 DMA Channel 7 Chaining Status3

18 DMA Channel 8 Chaining Status3

19 DMA Channel 9 Chaining Status3

20-31 undefined/reserved

1. Channel Status:  1 (active)=transferring data or waiting to transfer the current
block, and not transferring TCB. 0 (inactive)=DMA disabled, transfer complete, or
chaining.

2. Not valid for the ADSP-21061.
3. Channel Chaining Status:  1=transferring TCB or waiting to transfer TCB.

0=chaining disabled.

Note 1: Status does not change on the master ADSP-2106x during external port DMA
until the external portion is completed (i.e., the EPBx buffers are emptied).

Note 2: If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status
will never go to 1. Therefore, test channel status to see if it is ready so that
your program can rewrite the chain pointer (CPx register).
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27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28

AA
AA
AA
AA
AA
AA
AA
AA

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

Channel 0 Status

AA
AA
AA
AA
AA
AA
AA
AA

Channel 1 Status
Channel 2 Status
Channel 3 Status
Channel 4 Status
Channel 5 Status
Channel 6 Status
Channel 7 Status

Channel 4 Chaining Status

Channel 9 Status
Channel 8 Status

Channel 3 Chaining Status
Channel 2 Chaining Status
Channel 1 Chaining Status
Channel 0 Chaining Status

Channel 5 Chaining Status

Channel 6 Chaining Status
Channel 7 Chaining Status
Channel 8 Chaining Status
Channel 9 Chaining Status

DMASTAT
0x0037

1. Channel Status:
1 (active) = transferring data or waiting to transfer the current block, and not

transferring TCB.
0 (inactive) = DMA disabled, transfer complete, or chaining.

2. Channel Chaining Status:
1 (active) = transferring TCB or waiting to transfer TCB.
0 (inactive) = chaining disabled.

3. Status does not change on the master ADSP-2106x during external port DMA until
the external portion is completed (i.e., the EPBx buffers are emptied).

4. If in chain insertion mode (DEN=0, CHEN=1), then channel chaining status will
never go to 1. Therefore, test channel status to see if it is ready so that your program
can rewrite the chain pointer (CPx register).

5. On the ADSP-21061, the DMASTAT register bits for channels 4, 5, 8, and 9 are not
valid. These bits include bits: 4, 5, 8, 9, 14, 15, 18, and 19.

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.
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E.14 LINK BUFFER CONTROL (LCTL)
LCTL is the main control register for the six link port data buffers
(LBUF0-5). [This register is not available on the ADSP-21061.] The LCTL
register contains control bits unique to each link buffer. LCTL is memory-
mapped at address 0x00C6. After reset, LCTL is cleared (initialized to
0x0000 0000).

Bit(s) Name Definition
0-3 * Link Buffer 0 control bits
4-7 * Link Buffer 1 control bits
8-11 * Link Buffer 2 control bits
12-15 * Link Buffer 3 control bits
16-19 * Link Buffer 4 control bits
20-23 * Link Buffer 5 control bits
24 LEXT0 Extended word size
25 LEXT1 Extended word size
26 LEXT2 Extended word size
27 LEXT3 Extended word size
28 LEXT4 Extended word size
29 LEXT5 Extended word size
30-31 reserved

* Each four-bit group includes the following control bits for each link buffer (x=0,1,2,3,4,5):

Bit# Name Definition
0+4x LxEN LBUFx enable
1+4x LxDEN LBUFx DMA enable
2+4x LxCHEN LBUFx DMA chaining enable
3+4x LxTRAN LBUFx direction: 1=transmit, 0=receive

LxEN Link Buffer Enable—Enables/disables the link buffer. When the buffer
is disabled, the assigned link port will deassert LxACK if receiving and
LxCLK if transmitting. LxSTAT and LRERR are cleared when LxEN
transitions from high to low.

LxDEN Link Buffer DMA Enable—Enables the associated DMA channel.

LxCHEN Link Buffer DMA Chaining Enable—DMA chaining enable for that
channel.

LxTRAN Link Port Transmit/Receive Select—Selects the direction of the link
buffer, link port and DMA channel: 0 to receive data, 1 to transmit data.

LEXTx Extended Word Size—Specifies word size for link port transfers:

    LEXTx=1 specifies 48-bit transfers in link buffer x
    LEXTx=0 specifies 32-bit transfers in link buffer x

The LEXTx bits override the setting of the IMDW memory word width
bits in SYSCON. If LEXTx=1, data to be transmitted will be read from
48-bit word space in memory, regardless of the setting of IMDW.
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11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

L0EN
LBUF0 Enable

1=Enable, 0=Disable

L0DEN
LBUF0 DMA Enable

L0CHEN
LBUF0 Chained DMA Enable

L0TRAN
LBUF0 Direction
1=Transmit, 0=Receive

L1EN
LBUF1 Enable

L1DEN
LBUF1 DMA Enable

L1CHEN
LBUF1 Chained DMA Enable

L1TRAN
LBUF1 Direction
1=Transmit, 0=Receive

L3EN
LBUF3 Enable

L3DEN
LBUF3 DMA Enable

L3CHEN
LBUF3 Chained DMA Enable

L3TRAN
LBUF3 Direction

1=Transmit, 0=Receive

L2EN
LBUF2 Enable

L2DEN
LBUF2 DMA Enable

L2CHEN
LBUF2 Chained DMA Enable

L2TRAN
LBUF2 Direction

1=Transmit, 0=Receive

27 26 25 24 23 22 21 20 19 18 17 16

000000000000

31 30 29 28

0000

L4EN
LBUF4 Enable

L4DEN
LBUF4 DMA Enable

L4CHEN
LBUF4 Chained DMA Enable

L4TRAN
LBUF4 Direction
1=Transmit, 0=Receive

L5EN
LBUF5 Enable

L5DEN
LBUF5 DMA Enable

L5CHEN
LBUF5 Chained DMA Enable

L5TRAN
LBUF5 Direction
1=Transmit, 0=ReceiveLEXT0

LBUF0 Extended Word Size
1=48-bit transfers
0=32-bit transfers

LEXT1
LBUF1 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT2
LBUF2 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT3
LBUF3 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT4
LBUF4 Extended Word Size

1=48-bit transfers
0=32-bit transfers

LEXT5
LBUF5 Extended Word Size

1=48-bit transfers
0=32-bit transfers

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

LCTL
0x00C6
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E.15 LINK BUFFER COMMON CONTROL (LCOM)
The LCOM register contains status bits for each buffer, functions
common to all links, and mesh multiprocessing functions. [This
register is not available on the ADSP-21061.] LCOM is memory-
mapped at address 0x00C7. After reset, LCOM is cleared (initialized to
0x0000 0000). All status bits are read-only.

Bit(s) Name Definition
0-1 L0STAT Link Buffer 0 status. 11=full, 00=empty,10=one word *
2-3 L1STAT Link Buffer 1 status. 11=full, 00=empty,10=one word *
4-5 L2STAT Link Buffer 2 status. 11=full, 00=empty,10=one word *
6-7 L3STAT Link Buffer 3 status. 11=full, 00=empty,10=one word *
8-9 L4STAT Link Buffer 4 status. 11=full, 00=empty,10=one word *
10-11 L5STAT Link Buffer 5 status. 11=full, 00=empty,10=one word *
12 LCLKX20 Transfer data at 2x clock rate on Link Buffer 0
13 LCLKX21 Transfer data at 2x clock rate on Link Buffer 1
14 LCLKX22 Transfer data at 2x clock rate on Link Buffer 2
15 LCLKX23 Transfer data at 2x clock rate on Link Buffer 3
16 LCLKX24 Transfer data at 2x clock rate on Link Buffer 4
17 LCLKX25 Transfer data at 2x clock rate on Link Buffer 5
18 L2DDMA** Enable 2-dimensional DMA
19 LPDRD** Disable internal pulldown resistor for LxCLK and LxACK
20 LMSP** Mesh multiprocessing coupled transmission
21-22 LPATHD** Mesh multiprocessing LPATH change-over delay:

00=no additional delay, 01=1 additional delay,
10=2 additional delays, 11=3 additional delays

23-25 reserved
26 LRERR0 Receive pack error status for Link Buffer 0:

1=incomplete, 0=complete
27 LRERR1 Receive pack error status for Link Buffer 1:

1=incomplete, 0=complete
28 LRERR2 Receive pack error status for Link Buffer 2:

1=incomplete, 0=complete
29 LRERR3 Receive pack error status for Link Buffer 3:

1=incomplete, 0=complete
30 LRERR4 Receive pack error status for Link Buffer 4:

1=incomplete, 0=complete
31 LRERR5 Receive pack error status for Link Buffer 5:

1=incomplete, 0=complete

* The code 01 does not appear as a valid status.
** Common to all link ports.
Status bits are read-only.
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All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

L0STAT
Link Buffer 0 Status (read-only)
11=full, 00=empty, 10=one word

L1STAT
Link Buffer 1 Status (read-only)
11=full, 00=empty, 10=one word

L2STAT
Link Buffer 2 Status (read-only)
11=full, 00=empty, 10=one word

L3STAT
Link Buffer 3 Status (read-only)
11=full, 00=empty, 10=one word

L4STAT
Link Buffer 4 Status (read-only)
11=full, 00=empty, 10=one word

L5STAT
Link Buffer 5 Status (read-only)
11=full, 00=empty, 10=one word

LCLKX23
Transfer at 2x Clock Rate 

on Link Buffer 3

LCLKX22
Transfer at 2x Clock Rate 

on Link Buffer 2

LCLKX21
Transfer at 2x Clock Rate 

on Link Buffer 1

LCLKX20
Transfer at 2x Clock Rate 

on Link Buffer 0

LPATHD
Mesh Multiproc. LPATH Changeover Delay
00=no additional delay, 01=one additional delay
10=two additional delays, 11=three additional delays

LCLKX24
Transfer at 2x Clock Rate 
on Link Buffer 4

LCLKX25
Transfer at 2x Clock Rate 
on Link Buffer 5

L2DDMA
Enable 2-D DMA

LPDRD
Link Pull-Down Resistor Disable
1=disable, 0=enable

LMSP
Mesh Multiproc.-Coupled Transmission

LRERR5
Rcv. Pack Error Status for Link Buffer 5

1=incomplete, 0=complete
LRERR4

Rcv. Pack Error Status for Link Buffer 4
1=incomplete, 0=complete

LRERR3
Rcv. Pack Error Status for Link Buffer 3

1=incomplete, 0=complete
LRERR2

Rcv. Pack Error Status for Link Buffer 2
1=incomplete, 0=complete

LRERR1
Rcv. Pack Error Status for Link Buffer 1

1=incomplete, 0=complete
LRERR0

Rcv. Pack Error Status for Link Buffer 0
1=incomplete, 0=complete

LCOM
0x00C7
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LxSTAT(0:1) Link Buffer Status—When transmitting, these status bits
indicate whether there is room in the buffer for more data. When
receiving, these status bits indicate whether new (unread) data is
available in the receive buffer.  LxSTAT(1)=1 if there is data in
the buffer. LxSTAT(0)=0 if there is room in the buffer. These bits
are cleared when LxEN changes from 1 to 0. They may
subsequently change state when the data buffer is read or
written.

LCLKX2x 2x Clock Rate—This specifies link transfers to operate at twice
the ADSP-2106x clock rate. If LCLKX2x=0, transmit transfers
occur at the ADSP-2106x clock frequency, and receive transfers
occur at (up to) the ADSP-2106x clock frequency. Set LCLKX2x=1
for receive transfers occurring at greater than the ADSP-2106x
clock frequency.

L2DDMA 2-D DMA Enable—This directs the DMA controller to address
memory as a two-dimensional array as specified in the DMA
address registers. Only DMA channels 0-5 support 2D DMA.
Link ports 4 and 5 on DMA channels 6 and 7 do not have 2D
DMA support.

LPDRD Disable Pulldown Resistors—This disables the internal 50 kΩ
pulldown resistors on the LxACK, LxCLK, and LxDAT3-0 pins
for disabled link ports. When this bit is clear, the pulldown
resistors are enabled.

LMSP Mesh Multiprocessing Enable—Enables link port mesh
multiprocessing. In non-mesh-multiprocessing operation
(LMSP=0), all six link buffers operate independently and the
LPATH registers are not part of the chaining.

LPATHD Mesh Multiprocessing LPATH Changeover Delay—In a mesh
multiprocessing application, this selection allows 1, 2 or 3
additional clock delays to be inserted before changing to the next
LPATH register.

LRERRx Receive Pack Error Status—These bits reflects the status of the
receive nibble packer for each link buffer. LRERRx will equal 0
when the nibble packer is set to start receiving a new word.
Otherwise it will be 1. If this bit is equal to 1 after a word is
received, then an error has occurred (e.g. clock glitch). The
LRERRx bits are cleared when LxEN changes from 1 to 0. They
may subsequently change state when the link buffer is read or
written or while a word is being received.

eover Delay
additional delay
ree additional delays

e

mission
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E.16 LINK ASSIGNMENT REGISTER (LAR)
The LAR register is used to select link port to link buffer connections.
LAR is memory-mapped at address 0x00C8. [This register is not available
on the ADSP-21061.] After reset LAR is initialized to 0x0002 C688,
assigning Link Port 0 to Link Buffer 0, Link Port 1 to    Link Buffer 1, Link
Port 2 to Link Buffer 2, Link Port 3 to Link Buffer 3, Link Port 4 to Link
Buffer 4, and Link Port 5 to Link Buffer 5.

Bits Name Description
0-2 A0LB* Link port assignment for LBUF0
3-5 A1LB* Link port assignment for LBUF1
6-8 A2LB* Link port assignment for LBUF2
9-11 A3LB* Link port assignment for LBUF3
12-14 A4LB* Link port assignment for LBUF4
15-17 A5LB* Link port assignment for LBUF5
18-31 reserved

* AxLB Link Port #
000 Link Port 0
001 Link Port 1
010 Link Port 2
011 Link Port 3
100 Link Port 4
101 Link Port 5
110 reserved
111 inactive buffer

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

11 10 9 8 7 6 5 4 3 2 1 0

000100010110

15 14 13 12

0011

26 25 24 23 22 21 20 19 18

0000000000

31 30 29 28 27

0000

A0LB
Link Port Assigned to LBUF0

17 16

01

A1LB
Link Port Assigned to LBUF1

A2LB
Link Port Assigned to LBUF2

A5LB
Link Port Assigned to LBUF5

A4LB
Link Port Assigned to LBUF4

A3LB
Link Port Assigned to LBUF3

LAR
0x00C8



EControl/Status Registers

E – 47

E.17 LINK SERVICE REQUEST (LSRQ)
The LSRQ register indicates when a disabled link port is accessed from
an external source. It also contains mask bits for these interrupts. [This
register is not available on the ADSP-21061.] LSRQ is memory-mapped
at address 0x00C9. After reset LSRQ is initialized to 0x0000 0000.

Bit Name Description
0-3 reserved
4 L0TM Link Port 0 transmit mask
5 L0RM Link Port 0 receive mask
6 L1TM Link Port 1 transmit mask
7 L1RM Link Port 1 receive mask
8 L2TM Link Port 2 transmit mask
9 L2RM Link Port 2 receive mask
10 L3TM Link Port 3 transmit mask
11 L3RM Link Port 3 receive mask
12 L4TM Link Port 4 transmit mask
13 L4RM Link Port 4 receive mask
14 L5TM Link Port 5 transmit mask
15 L5RM Link Port 5 receive mask
16-19 reserved
20 L0TRQ Link Port 0 transmit request status   (read-only)
21 L0RRQ Link Port 0 receive request status  (read-only)
22 L1TRQ Link Port 1 transmit request status   (read-only)
23 L1RRQ Link Port 1 receive request status  (read-only)
24 L2TRQ Link Port 2 transmit request status   (read-only)
25 L2RRQ Link Port 2 receive request status  (read-only)
26 L3TRQ Link Port 3 transmit request status   (read-only)
27 L3RRQ Link Port 3 receive request status  (read-only)
28 L4TRQ Link Port 4 transmit request status   (read-only)
29 L4RRQ Link Port 4 receive request status  (read-only)
30 L5TRQ Link Port 5 transmit request status   (read-only)
31 L5RRQ Link Port 5 receive request status  (read-only)

For transmit request status bits, LxTRQ=1 means LxACK=1.
For receive request status bits, LxRRQ=1 means LxCLK=1.

igned to LBUF0

igned to LBUF1

igned to LBUF2
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All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

27 26 25 24 23 22 21 20 19 18 17 1631 30 29 28

11 10 9 8 7 6 5 4 3 2 1 0

000000000000

15 14 13 12

0000

L0TM
Link Port 0 Transmit Mask

L0RM
Link Port 0 Receive Mask

L1TM
Link Port 1 Transmit Mask

L1RM
Link Port 1 Receive Mask

L2TM
Link Port 2 Transmit Mask

L2RM
Link Port 2 Receive Mask

L3RM
Link Port 3 Receive Mask

L3TM
Link Port 3 Transmit Mask

L4RM
Link Port 4 Receive Mask

L4TM
Link Port 4 Transmit Mask

L5RM
Link Port 5 Receive Mask

L5TM
Link Port 5 Transmit Mask

0000000000000000

L0TRQ
Link Port 0 Transmit Request

L0RRQ
Link Port 0 Receive Request

L1TRQ
Link Port 1 Transmit Request

L1RRQ
Link Port 1 Receive Request

L2TRQ
Link Port 2 Transmit Request

L2RRQ
Link Port 2 Receive Request

L3RRQ
Link Port 3 Receive Request

L3TRQ
Link Port 3 Transmit Request

L4RRQ
Link Port 4 Receive Request

L4TRQ
Link Port 4 Transmit Request

L5RRQ
Link Port 5 Receive Request

L5TRQ
Link Port 5 Transmit Request

Request Bits are Read-Only Status

LSRQ
0x00C9
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E.18 SPORT TRANSMIT CONTROL (STCTL0, STCTL1)
STCTL0 and STCTL1 are the transmit control registers for SPORT0 and
SPORT1 respectively. STCTL0 is memory-mapped at address 0x00E0,
and STCTL1 is memory-mapped at address 0x00F0. After reset, these
registers are cleared (initialized to 0x0000 0000). When changing
operating modes, a serial port control register should be cleared
(i.e. written with all zeros) before the new mode is written to the
register.

Bit(s) Name Definition
0 SPEN* SPORT Enable (1=enable, 0=disable)
1-2 DTYPE Data Type
3 SENDN Serial Word Endian (0=MSB-first, 1=LSB-first)
4-8 SLEN Serial Word Length – 1
9 PACK 16-bit to 32-bit Word Packing (1=packing, 0=no packing)
10 ICLK* Internally Generated Transmit Clock (1=int. clock, 0=ext. clock)
11  – reserved
12 CKRE Clock Edge for Data, Frame Sync Sampling  (1=rising edge,

0=falling edge)
13 TFSR* Transmit Frame Sync Required (1=required, 0=not required)
14 ITFS* Internally Generated TFS (1=internal TFS, 0=external TFS)
15 DITFS Data-Independent TFS (1=continuous, data-independent TFS,

0=data-dependent TFS)
16 LTFS Active Low TFS (1=active low, 0=active high)
17 LAFS* Late TFS (1=late TFS, 0=early TFS)
18 SDEN SPORT Transmit DMA Enable (1=enable, 0=disable)
19 SCHEN SPORT Transmit DMA Chaining Enable (1=enable, 0=disable)
20-23 MFD Multichannel Frame Delay
24-28 CHNL Current Channel Selected (read-only)
29 TUVF Transmit Underflow Status (sticky, read-only)
30-31 TXS TX Data Buffer Status (read-only)

(11=full, 00=empty, 10=partially full)

*  Must be cleared for multichannel operation.
** Status bits are read-only. They are cleared by disabling the serial port (setting
SPEN=0). TXS may subsequently change state if the data is read or written by the
ADSP-2106x core while the SPORT is disabled.

Multichan

Current Channel S

Transmit Underflow Status (s

TX Data Buffer S
11=full, 00=empty

Data-
1=data-independent, 0

Tranmsit Fram
1=TFS required, 0=

Clock Edge for Data, Fram
1=rising edg

Internal
1=internal TDFS
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All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

STCTL0
STCTL1

0x00E0
0x00F0

DTYPE:  Normal Operation (Non-Multichannel) DTYPE:  Multichannel Operation

DTYPE Data Formatting DTYPE Data Formatting
00 Right-justify, zero-fill unused MSBs x0 Right-justify, zero-fill unused MSBs
01 Right-justify, sign-extend into unused MSBs x1 Right-justify, sign-extend into unused MSBs
10 Compand using µ-law 0x Compand using µ-law
11 Compand using A-law 1x Compand using A-law

MCE
Multichannel Enable
1=enable, 0=disable

NCH
Number of Channels – 1

SPL*
SPORT Loopback

1=enable, 0=disable
D2DMA*
2-Dimensional DMA Array Enable

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

LRFS
Active Low RFS
1=active low, 0=active high

LAFS*
Late RFS
1=late RFS, 0=early RFS

ROVF
Receive Overflow Status (sticky, read-only)

SDEN
SPORT Receive DMA Enable
1=enable DMA, 0=disable DMA

SCHEN
SPORT Receive DMA Chaining Enable
1=enable chaining, 0=disable chaining

RXS
RX Data Buffer Status (read-only)

11=full, 00=empty, 10=partially full

11 10 9 8 7 6 5 4 3 2 1 0

00000000000

15 14 13 12

000

SPEN*
SPORT Enable
1=enable, 0=disable

DTYPE
Data Type

SENDN
Serial Word Endian
0=MSB-first, 1=LSB-first

SLEN
Serial Word Length – 1

PACK
16-bit to 32-bit Word Packing
1=packing, 0=no packing

IRFS
Internally Generated RFS

1=internal RFS, 0=external RFS

RFSR*
Receive Frame Sync Required

1=RFS required, 0=RFS not required

CKRE
Clock Edge for Data, Frame Sync Sampling

1=rising edge, 0=falling edge

ICLK
Internally Generated Receive Clock
1=internal clock, 0=external clock* Must be cleared for multichannel operation.

0 0
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E.19 SPORT RECEIVE CONTROL (SRCTL0, SRCTL1)
SRCTL0 and SRCTL1 are the transmit control registers for SPORT0 and
SPORT1 respectively. SRCTL0 is memory-mapped at address 0x00E1
and SRCTL1 is memory-mapped at address 0x00F1. After reset, these
registers are cleared (initialized to 0x0000 0000). When changing
operating modes, a serial port control register should be cleared
(i.e. written with all zeros) before the new mode is written to the
register.

Bit(s) Name Definition
0 SPEN* SPORT Enable (1=enable, 0=disable)
1-2 DTYPE Data Type
3 SENDN Serial Word Endian (0=MSB-first, 1=LSB-first)
4-8 SLEN Serial Word Length – 1
9 PACK 16-bit to 32-bit Word Packing (1=packing, 0=no packing)
10 ICLK Internally Generated Receive Clock (1=int. clock, 0=ext. clock)
11 – reserved
12 CKRE Clock Edge for Data, Frame Sync Sampling  (1=rising edge,

0=falling edge)
13 RFSR* Receive Frame Sync Required (1=required, 0=not required)
14 IRFS Internally Generated RFS (1=internal RFS, 0=external RFS)
15  – reserved
16 LRFS Active Low RFS (1=active low, 0=active high)
17 LAFS* Late RFS (1=late RFS, 0=early RFS)
18 SDEN SPORT Receive DMA Enable (1=enable, 0=disable)
19 SCHEN SPORT Receive DMA Chaining Enable (1=enable, 0=disable)
20  – reserved
21 D2DMA* 2-Dimensional DMA Array Enable
22 SPL* SPORT Loopback (1=enable, 0=disable)
23 MCE Multichannel Enable (1=enable, 0=disable)
24-28 NCH Number of Channels – 1
29 ROVF Receive Overflow Status (sticky, read-only)
30-31 RXS RX Data Buffer Status (read-only)

(11=full, 00=empty, 10=partially full)

*  Must be cleared for multichannel operation.
** Status bits are read-only. They are cleared by disabling the serial port (setting
SPEN=0). RXS may subsequently change state if the data is read or written by the
ADSP-2106x core while the SPORT is disabled.
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SRCTL0
SRCTL1

0x00E1
0x00F1

All control and status bits are active high unless otherwise
noted. Default bit values after reset are shown; if no value
is shown, the bit is undefined at reset or depends upon
processor inputs. Reserved bits are shown with a gray
background. Reserved bits should always be written with zeros.

DTYPE:  Normal Operation (Non-Multichannel) DTYPE:  Multichannel Operation

DTYPE Data Formatting DTYPE Data Formatting
00 Right-justify, zero-fill unused MSBs x0 Right-justify, zero-fill unused MSBs
01 Right-justify, sign-extend into unused MSBs x1 Right-justify, sign-extend into unused MSBs
10 Compand using µ-law 0x Compand using µ-law
11 Compand using A-law 1x Compand using A-law

MCE
Multichannel Enable
1=enable, 0=disable

NCH
Number of Channels – 1

SPL*
SPORT Loopback

1=enable, 0=disable
IMAT**
Receive Comparison Accept
1=accept on true, 0=accept on false

26 25 24 23 22 21 20 19 18 17

000000000000

31 30 29 28 27

0000

16

LRFS
Active Low RFS
1=active low, 0=active high

LAFS*
Late RFS
1=late RFS, 0=early RFS

ROVF
Receive Overflow Status (sticky, read-only)

SDEN
SPORT Receive DMA Enable
1=enable DMA, 0=disable DMA

SCHEN
SPORT Receive DMA Chaining Enable
1=enable chaining, 0=disable chaining

RXS
RX Data Buffer Status (read-only)

11=full, 00=empty, 10=partially full

11 10 9 8 7 6 5 4 3 2 1 0

00000000000

15 14 13 12

000

SPEN*
SPORT Enable
1=enable, 0=disable

DTYPE
Data Type

SENDN
Serial Word Endian
0=MSB-first, 1=LSB-first

SLEN
Serial Word Length – 1

PACK
16-bit to 32-bit Word Packing
1=packing, 0=no packing

IRFS
Internally Generated RFS

1=internal RFS, 0=external RFS

RFSR*
Receive Frame Sync Required

1=RFS required, 0=RFS not required

CKRE
Clock Edge for Data, Frame Sync Sampling

1=rising edge, 0=falling edge

ICLK
Internally Generated Receive Clock
1=internal clock, 0=external clock

*  Must be cleared for multichannel operation.
** ADSP-21061 only

0 0

D2DMA*
2-Dimensional DMA Array Enable

IMODE**
Receive Comparison Enable

1=enable, 0=disable
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E.20 SPORT DIVISORS (TDIV, RDIV)
The TDIV0, TDIV1, RDIV0, and RDIV1 registers contain divisor values
that determine the frequencies for internally generated serial port
clocks and frame syncs. These four registers are memory-mapped at
addresses 0x00E4, 0x00F4, 0x00E6, and 0x00F6 respectively. These
registers are not initialized after reset.

TDIVx
Bits Name Definition
15-0 TCLKDIV Transmit Clock Divisor
31-16 TFSDIV Transmit Frame Sync Divisor

RDIVx
Bits Name Definition
15-0 RCLKDIV Receive Clock Divisor
31-16 RFSDIV Receive Frame Sync Divisor

serial clock frequency
xFSDIV  = –  1

frame sync frequency

fCLKIN
xCLKDIV  = –  1

serial clock frequency

0x00E1
0x00F1

RDIV0 0x00E6
RDIV1 0x00F6

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

TCLKDIV
Transmit Clock Divisor

TFSDIV
Transmit Frame Sync Divisor

TDIV0 0x00E4
TDIV1 0x00F4

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

RCLKDIV
Receive Clock Divisor

RFSDIV
Receive Frame Sync Divisor
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E.21 SYMBOL DEFINITIONS FILE (def21060.h)
The IOP registers are programmed by writing to the appropriate address
in memory. The symbolic names of the registers and individual bits can be
used in ADSP-2106x programs—the  #define definitions for these
symbols are contained in the file def21060.h which is provided in the
INCLUDE directory of the ADSP-21000 Family Development Software.
The def21060.h file is shown here for reference.

/* —————————————————————————————————————————————————————————————————————————
def21060.h - SYSTEM & IOP REGISTER BIT & ADDRESS DEFINITIONS FOR ADSP-2106x

Last Modification on: Feb-15-95

This include file contains a list of macro defines to enable the programmer
to use symbolic names for all of the system register bits for the ADSP-2106x.
It also contains macros for the IOP register addresses and some bit fields.
Here are some example uses:

bit set mode1 BR0|IRPTEN|ALUSTAT;

ustat1=BSO|HPM01|HMSWF;
dm(SYSCON)=ustat1;

————————————————————————————————————————————————————————————————————————— */

/* MODE1 register */
#define BR8 0x00000001 /* Bit  0: Bit-reverse for I8                      */
#define BR0 0x00000002 /* Bit  1: Bit-reverse for I0 (uses DMS0- only )   */
#define SRCU 0x00000004 /* Bit  2: Alt. register select for comp. units    */
#define SRD1H 0x00000008 /* Bit  3: DAG1 alt. register select (7-4)         */
#define SRD1L 0x00000010 /* Bit  4: DAG1 alt. register select (3-0)         */
#define SRD2H 0x00000020 /* Bit  5: DAG2 alt. register select (15-12)       */
#define SRD2L 0x00000040 /* Bit  6: DAG2 alt. register select (11-8)        */
#define SRRFH 0x00000080 /* Bit  7: Register file alt. select for R(15-8)   */
#define SRRFL 0x00000400 /* Bit 10: Register file alt. select for R(7-0)    */
#define NESTM 0x00000800 /* Bit 11: Interrupt nesting enable                */
#define IRPTEN 0x00001000 /* Bit 12: Global interrupt enable                 */
#define ALUSAT 0x00002000 /* Bit 13: Enable ALU fixed-pt. saturation         */
#define SSE 0x00004000 /* Bit 14: Enable short word sign extension        */
#define TRUNCATE 0x00008000 /* Bit 15: 1=fltg-pt. truncation 0=Rnd to nearest  */
#define RND32 0x00010000 /* Bit 16: 1=32-bit fltg-pt.rounding 0=40-bit rnd  */
#define CSEL 0x00060000 /* Bit 17-18: CSelect: Bus Mastership             */
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/* MODE2 register */
#define IRQ0E   0x00000001 /* Bit  0: IRQ0- 1=edge sens. 0=level sens. */
#define IRQ1E   0x00000002 /* Bit  1: IRQ1- 1=edge sens. 0=level sens. */
#define IRQ2E   0x00000004 /* Bit  2: IRQ2- 1=edge sens. 0=level sens. */
#define CADIS   0x00000010 /* Bit  4: Cache disable                    */
#define TIMEN   0x00000020 /* Bit  5: Timer enable                     */
#define BUSLK   0x00000040 /* Bit  6: External bus lock                */
#define FLG0O   0x00008000 /* Bit 15: FLAG0 1=output 0=input           */
#define FLG1O   0x00010000 /* Bit 16: FLAG1 1=output 0=input           */
#define FLG2O   0x00020000 /* Bit 17: FLAG2 1=output 0=input           */
#define FLG3O   0x00040000 /* Bit 18: FLAG3 1=output 0=input           */
#define CAFRZ   0x00080000 /* Bit 19: Cache freeze                     */

/* ASTAT register */
#define AZ     0x00000001 /* Bit  0: ALU result zero or fltg-pt underflow */
#define AV     0x00000002 /* Bit  1: ALU overflow                         */
#define AN     0x00000004 /* Bit  2: ALU result negative                  */
#define AC     0x00000008 /* Bit  3: ALU fixed-pt. carry                  */
#define AS     0x00000010 /* Bit  4: ALU X input sign (ABS and MANT ops)  */
#define AI     0x00000020 /* Bit  5: ALU fltg-pt. invalid operation       */
#define MN     0x00000040 /* Bit  6: Multiplier result negative           */
#define MV     0x00000080 /* Bit  7: Multiplier overflow                  */
#define MU     0x00000100 /* Bit  8: Multiplier fltg-pt. underflow        */
#define MI     0x00000200 /* Bit  9: Multiplier fltg-pt. invalid operation*/
#define AF     0x00000400 /* Bit 10: ALU fltg-pt. operation               */
#define SV     0x00000800 /* Bit 11: Shifter overflow                     */
#define SZ     0x00001000 /* Bit 12: Shifter result zero                  */
#define SS     0x00002000 /* Bit 13: Shifter input sign                   */
#define BTF     0x00040000 /* Bit 18: Bit test flag for system registers   */
#define FLG0    0x00080000 /* Bit 19: FLAG0 value                          */
#define FLG1    0x00100000 /* Bit 20: FLAG1 value                          */
#define FLG2    0x00200000 /* Bit 21: FLAG2 value                          */
#define FLG3    0x00400000 /* Bit 22: FLAG3 value                          */
#define CACC0   0x01000000 /* Bit 24: Compare Accumulation Bit 0           */
#define CACC1   0x02000000 /* Bit 25: Compare Accumulation Bit 1           */
#define CACC2   0x04000000 /* Bit 26: Compare Accumulation Bit 2           */
#define CACC3   0x08000000 /* Bit 27: Compare Accumulation Bit 3           */
#define CACC4   0x10000000 /* Bit 28: Compare Accumulation Bit 4           */
#define CACC5   0x20000000 /* Bit 29: Compare Accumulation Bit 5           */
#define CACC6   0x40000000 /* Bit 30: Compare Accumulation Bit 6           */
#define CACC7   0x80000000 /* Bit 31: Compare Accumulation Bit 7           */

       */
nly )   */
nits    */
       */
       */

)       */
       */
15-8)   */
7-0)    */
       */
       */
       */
       */
earest  */
it rnd  */
       */
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/* STKY register */
#define AUS     0x00000001 /* Bit  0: ALU fltg-pt. underflow                  */
#define AVS     0x00000002 /* Bit  1: ALU fltg-pt. overflow                   */
#define AOS     0x00000004 /* Bit  2: ALU fixed-pt. overflow                  */
#define AIS     0x00000020 /* Bit  5: ALU fltg-pt. invalid operation          */
#define MOS     0x00000040 /* Bit  6: Multiplier fixed-pt. overflow           */
#define MVS     0x00000080 /* Bit  7: Multiplier fltg-pt. overflow            */
#define MUS     0x00000100 /* Bit  8: Multiplier fltg-pt. underflow           */
#define MIS     0x00000200 /* Bit  9: Multiplier fltg-pt. invalid operation   */
#define CB7S    0x00020000 /* Bit 17: DAG1 circular buffer 7 overflow         */
#define CB15S   0x00040000 /* Bit 18: DAG2 circular buffer 15 overflow        */
#define PCFL    0x00200000 /* Bit 21: PC stack full                           */
#define PCEM    0x00400000 /* Bit 22: PC stack empty                          */
#define SSOV    0x00800000 /* Bit 23: Status stack overflow (MODE1 and ASTAT) */
#define SSEM    0x01000000 /* Bit 24: Status stack empty                      */
#define LSOV    0x02000000 /* Bit 25: Loop stack overflow                     */
#define LSEM    0x04000000 /* Bit 26: Loop stack empty                        */

/* IRPTL and IMASK and IMASKP registers */
#define RSTI    0x00000002 /* Bit  1: Offset: 04: Reset                       */
#define SOVFI   0x00000008 /* Bit  3: Offset: 0c: Stack overflow              */
#define TMZHI   0x00000010 /* Bit  4: Offset: 10: Timer = 0 (high priority)   */
#define VIRPTI  0x00000020 /* Bit  5: Offset: 14: Vector interrupt            */
#define IRQ2I   0x00000040 /* Bit  6: Offset: 18: IRQ2- asserted              */
#define IRQ1I   0x00000080 /* Bit  7: Offset: 1c: IRQ1- asserted              */
#define IRQ0I   0x00000100 /* Bit  8: Offset: 20: IRQ0- asserted              */
#define SPR0I   0x00000400 /* Bit 10: Offset: 28: SPORT0 receive DMA channel  */
#define SPR1I   0x00000800 /* Bit 11: Offset: 2c: SPORT1 receive (or LBUF0)   */
#define SPT0I   0x00001000 /* Bit 12: Offset: 30: SPORT0 transmit DMA channel */
#define SPT1I   0x00002000 /* Bit 13: Offset: 34: SPORT1 transmit (or LBUF0)  */
#define LP2I    0x00004000 /* Bit 14: Offset: 38: Link buffer 2 DMA channel   */
#define LP3I    0x00008000 /* Bit 15: Offset: 3c: Link buffer 3 DMA channel   */
#define EP0I    0x00010000 /* Bit 16: Offset: 40: External port channel 0 DMA */
#define EP1I    0x00020000 /* Bit 17: Offset: 44: External port channel 1 DMA */
#define EP2I    0x00040000 /* Bit 18: Offset: 48: External port channel 2 DMA */
#define EP3I    0x00080000 /* Bit 19: Offset: 4c: External port channel 3 DMA */
#define LSRQI   0x00100000 /* Bit 20: Offset: 50: Link service request       */
#define CB7I    0x00200000 /* Bit 21: Offset: 54: Circ. buffer 7 overflow     */
#define CB15I   0x00400000 /* Bit 22: Offset: 58: Circ. buffer 15 overflow    */
#define TMZLI   0x00800000 /* Bit 23: Offset: 5c: Timer = 0 (low priority)    */
#define FIXI    0x01000000 /* Bit 24: Offset: 60: Fixed-pt. overflow          */
#define FLTOI   0x02000000 /* Bit 25: Offset: 64: fltg-pt. overflow           */
#define FLTUI   0x04000000 /* Bit 26: Offset: 68: fltg-pt. underflow          */
#define FLTII   0x08000000 /* Bit 27: Offset: 6c: fltg-pt. invalid            */
#define SFT0I   0x10000000 /* Bit 28: Offset: 70: user software int 0         */
#define SFT1I   0x20000000 /* Bit 29: Offset: 74: user software int 1         */
#define SFT2I   0x40000000 /* Bit 30: Offset: 78: user software int 2         */
#define SFT3I   0x80000000 /* Bit 31: Offset: 7c: user software int 3         */
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/* I/O Processor Registers */
#define SYSCON 0x00 /* System configuration register   */
#define VIRPT  0x01 /* Vector interrupt register   */
#define WAIT   0x02 /* Wait state configuration for ext. memory */
#define SYSTAT 0x03 /* System status register   */
#define EPB0   0x04 /* External port DMA buffer 0   */
#define EPB1   0x05 /* External port DMA buffer 1   */
#define EPB2   0x06 /* External port DMA buffer 2, not on 21061 */
#define EPB3   0x07 /* External port DMA buffer 3, not on 21061 */
#define MSGR0  0x08 /* Message register 0         */
#define MSGR1  0x09 /* Message register 1         */
#define MSGR2  0x0a /* Message register 2         */
#define MSGR3  0x0b /* Message register 3               */
#define MSGR4  0x0c /* Message register 4               */
#define MSGR5  0x0d /* Message register 5               */
#define MSGR6  0x0e /* Message register 6               */
#define MSGR7  0x0f /* Message register 7               */
#define BMAX   0x18 /* Bus time-out maximum               */
#define BCNT   0x19 /* Bus time-out counter               */
#define ELAST  0x1b /* Address of last external access          */
#define DMAC6  0x1c /* DMA6 control register         */
#define DMAC7  0x1d /* DMA7 control register         */
#define DMAC8  0x1e     /* DMA8 control register, not on 21061      */
#define DMAC9  0x1f     /* DMA9 control register, not on 21061      */

/* II4, IM4, C4, CP4, Gp4, DB4, & DA4 reg’s are not on the ADSP-21061  */
#define II4    0x30 /* Internal DMA4 memory address            */
#define IM4    0x31 /* Internal DMA4 memory access modifier      */
#define C4     0x32 /* Contains number of DMA4 transfers remaining */
#define CP4    0x33 /* Points to next DMA4 parameters            */
#define GP4    0x34 /* DMA4 General purpose / 2-D DMA            */
#define DB4    0x35 /* DMA4 General purpose / 2-D DMA            */
#define DA4    0x36 /* DMA4 General purpose / 2-D DMA            */

#define DMASTAT 0x37 /* DMA channel status register            */

/* II5, IM5, C5, CP5, Gp5, DB5, & DA5 reg’s are not on the ADSP-21061  */
#define II5    0x38 /* Internal DMA5 memory address            */
#define IM5    0x39 /* Internal DMA5 memory access modifier      */
#define C5     0x3a /* Contains number of DMA5 transfers remaining */
#define CP5    0x3b /* Points to next DMA5 parameters            */
#define GP5    0x3c /* DMA5 General purpose / 2-D DMA            */
#define DB5    0x3d /* DMA5 General purpose / 2-D DMA            */
#define DA5    0x3e /* DMA5 General purpose / 2-D DMA            */

#define II6    0x40 /* Internal DMA6 memory address            */
#define IM6    0x41 /* Internal DMA6 memory access modifier      */
#define C6     0x42 /* Contains number of DMA6 transfers remaining */
#define CP6    0x43 /* Points to next DMA6 parameters            */
#define GP6    0x44 /* DMA6 General purpose                  */
#define EI6    0x45 /* External DMA6 address            */
#define EM6    0x46 /* External DMA6 address modifier            */
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#define EC6    0x47 /* External DMA6 counter            */

#define II7 0x48 /* Internal DMA7 memory address */
#define IM7 0x49 /* Internal DMA7 memory access modifier */
#define C7 0x4a /* Contains number of DMA7 transfers remaining */
#define CP7 0x4b /* Points to next DMA7 parameters */
#define GP7 0x4c /* DMA7 General purpose */
#define EI7 0x4d /* External DMA7 address */
#define EM7 0x4e /* External DMA7 address modifier */
#define EC7 0x4f /* External DMA7 counter */

/* II8, IM8, C8, CP8, Gp8, EI8, EM8, & EC8 reg’s are not on the 21061  */
#define II8 0x50 /* Internal DMA8 memory address */
#define IM8 0x51 /* Internal DMA8 memory access modifier */
#define C8 0x52 /* Contains number of DMA8 transfers remaining */
#define CP8 0x53 /* Points to next DMA8 parameters */
#define GP8 0x54 /* DMA8 General purpose */
#define EI8 0x55 /* External DMA8 address */
#define EM8 0x56 /* External DMA8 address modifier */
#define EC8 0x57 /* External DMA8 counter */

/* II9, IM9, C9, CP9, Gp9, EI9, EM9, & EC9 reg’s are not on the 21061  */
#define II9 0x58 /* Internal DMA9 memory address */
#define IM9 0x59 /* Internal DMA9 memory access modifier */
#define C9 0x5a /* Contains number of DMA9 transfers remaining */
#define CP9 0x5b /* Points to next DMA9 parameters */
#define GP9 0x5c /* DMA9 General purpose */
#define EI9 0x5d /* External DMA9 address */
#define EM9 0x5e /* External DMA9 address modifier */
#define EC9 0x5f /* External DMA9 counter */

#define II0 0x60 /* Internal DMA0 memory address */
#define IM0 0x61 /* Internal DMA0 memory access modifier */
#define C0 0x62 /* Contains number of DMA0 transfers remaining */
#define CP0 0x63 /* Points to next DMA0 parameters */
#define GP0 0x64 /* DMA0 General purpose / 2-D DMA */
#define DB0 0x65 /* DMA0 General purpose / 2-D DMA, not on 21061 */
#define DA0 0x66 /* DMA0 General purpose / 2-D DMA, not on 21061 */

#define II2 0x70 /* Internal DMA2 memory address */
#define IM2 0x71 /* Internal DMA2 memory access modifier */
#define C2 0x72 /* Contains number of DMA2 transfers remaining */
#define CP2 0x73 /* Points to next DMA2 parameters */
#define GP2 0x74 /* DMA2 General purpose / 2-D DMA */
#define DB2 0x75 /* DMA2 General purpose / 2-D DMA, not on 21061 */
#define DA2 0x76 /* DMA2 General purpose / 2-D DMA, not on 21061 */

#define II1 0x68 /* Internal DMA1 memory address */
#define IM1 0x69 /* Internal DMA1 memory access modifier */
#define C1 0x6a /* Contains number of DMA1 transfers remaining */
#define CP1 0x6b /* Points to next DMA1 parameters */
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#define GP1 0x6c /* DMA1 General purpose / 2-D DMA */
#define DB1 0x6d /* DMA1 General purpose / 2-D DMA, not on 21061 */
#define DA1 0x6e /* DMA1 General purpose / 2-D DMA, not on 21061 */

#define II3 0x78 /* Internal DMA3 memory address */
#define IM3 0x79 /* Internal DMA3 memory access modifier */
#define C3 0x7a /* Contains number of DMA3 transfers remaining */
#define CP3 0x7b /* Points to next DMA3 parameters */
#define GP3 0x7c /* DMA3 General purpose / 2-D DMA */
#define DB3 0x7d /* DMA3 General purpose / 2-D DMA, not on 21061 */
#define DA3 0x7e /* DMA3 General purpose / 2-D DMA, not on 21061 */

/* LBUF0, LBUF1, LBUF2, LBUF4, LBUF5, LCTL, LCOM, LAR, LSRQ, LPATH1,
   LPATH2, LPATH3, LPCNT, CNST1, and CNST2 reg’s are not on the 21061 */
#define LBUF0  0xc0 /* Link buffer 0 */
#define LBUF1  0xc1 /* Link buffer 1 */
#define LBUF2  0xc2 /* Link buffer 2 */
#define LBUF3  0xc3 /* Link buffer 3 */
#define LBUF4  0xc4 /* Link buffer 4 */
#define LBUF5  0xc5 /* Link buffer 5 */
#define LCTL   0xc6 /* Link buffer control */
#define LCOM   0xc7 /* Link common control */
#define LAR    0xc8 /* Link assignment register */
#define LSRQ   0xc9 /* Link service request and mask register */
#define LPATH1 0xca /* Link path register 1 */
#define LPATH2 0xcb /* Link path register 2 */
#define LPATH3 0xcc /* Link path register 3 */
#define LPCNT  0xcd /* Link path counter */
#define CNST1  0xce /* Link port constant 1 register */
#define CNST2  0xcf /* Link port constant 2 register */

#define STCTL0 0xe0 /*SPORT0 Transmit Control Register */
#define SRCTL0 0xe1 /*SPORT0 Receive  Control Register */
#define TX0 0xe2 /*SPORT0 Transmit Data Buffer */
#define RX0 0xe3 /*SPORT0 Receive Data Buffer */
#define TDIV0 0xe4 /*SPORT0 Transmit Divisor */
#define TCNT0 0xe5 /*SPORT0 Transmit Count Reg */
#define RDIV0 0xe6 /*SPORT0 Receive Divisor */
#define RCNT0 0xe7 /*SPORT0 Receive Count Reg */
#define MTCS0 0xe8 /*SPORT0 Multichannel Transmit Selector */
#define MRCS0 0xe9 /*SPORT0 Multichannel Receive Selector */
#define MTCCS0 0xea /*SPORT0 Multichannel Transmit Selector */
#define MRCCS0 0xeb /*SPORT0 Multichannel Receive Selector */
#define KEYWD0 0xec /*SPORT0 Receive Comparison, 21061 only    */
#define KEYMASK0 0xed /*SPORT0 Receive Comparison Mask, 21061 only */
#define SPATH0 0xee /*SPORT0 Path Length (MMP), not on 21061   */
#define SPCNT0 0xef /*SPORT0 Path Counter (MMP), not on 21061  */
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#define STCTL1 0xf0 /*SPORT1 Transmit Control Register */
#define SRCTL1 0xf1 /*SPORT1 Receive  Control Register */
#define TX1 0xf2 /*SPORT1 Transmit Data Buffer */
#define RX1 0xf3 /*SPORT1 Receive Data Buffer */
#define TDIV1 0xf4 /*SPORT1 Transmit Divisor */
#define TCNT1 0xf5 /*SPORT1 Transmit Count Reg */
#define RDIV1 0xf6 /*SPORT1 Receive Divisor */
#define RCNT1 0xf7 /*SPORT1 Receive Count Reg */
#define MTCS1 0xf8 /*SPORT1 Multichannel Transmit Selector   */
#define MRCS1 0xf9 /*SPORT1 Multichannel Receive Selector    */
#define MTCCS1 0xfa /*SPORT1 Multichannel Transmit Selector   */
#define MRCCS1 0xfb /*SPORT1 Multichannel Receive Selector*/
#define KEYWD1 0xfc /*SPORT1 Receive Comparison, 21061 only    */
#define KEYMASK1 0xfd /*SPORT1 Receive Comparison Mask, 21061 only */
#define SPATH1 0xfe /*SPORT1 Path Length (MMP), not on 21061   */
#define SPCNT1 0xff /*SPORT1 Path Counter (MMP), not on 21061  */

/* SYSCON Register */
#define SYSCON 0x00        /* System Configuration Register */
#define SRST   0x00000001  /* Soft Reset */
#define BSO    0x00000002  /* Boot Select Override */
#define IIVT   0x00000004  /* Internal Interrupt Vector Table */
#define IWT    0x00000008  /* Instruction word transfer (0=data,1=instr) */
#define HPM00  0x00000000  /* Host packing mode: None */
#define HPM01  0x00000010  /* Host packing mode: 16/32 */
#define HPM10  0x00000020  /* Host packing mode: 16/48 */
#define HPM11  0x00000030  /* Host packing mode: 32/48 */
#define HMSWF  0x00000040  /* Host packing order (0=LSW-first, 1=MSW-first) */
#define HPFLSH 0x00000080  /* Host pack flush */
#define IMDW0X 0x00000100  /* Internal memory block 0, extended data (40-bit) */
#define IMDW1X 0x00000200  /* Internal memory block 1, extended data (40-bit) */
#define EBPR00 0x00000000  /* External bus priority: Even */
#define EBPR01 0x00010000  /* External bus priority: Core has priority */
#define EBPR10 0x00020000  /* External bus priority: IO has priority */
#define DCPR   0x00040000  /* Select rotating access priority on DMA6 - DMA9 */
#define IMGR   0x10000000  /* Internal memory block grouping (mesh multiproc) */

/* SYSTAT Register */
#define SYSTAT 0x03        /* System Status Register */
#define HSTM   0x00000001  /* Host is the Bus Master */
#define BSYN   0x00000002  /* Bus arbitration logic is synchronized */
#define CRBM   0x00000070  /* Current ADSP2106x Bus Master */
#define IDC    0x00000700  /* ADSP2106x ID Code */
#define DWPD   0x00001000  /* Direct write pending (0=none, 1=pending) */
#define VIPD   0x00002000  /* Vector interrupt pending (1=pending) */
#define HPS    0x0000c000  /* Host packing status */
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Interrupt Vector Addresses

IRPTL/
IMASK Vector Interrupt
Bit # Address* Name** Function
0 0x00 – reserved
1 0x04 RSTI Reset (read-only, non-maskable) HIGHEST PRIORITY
2 0x08 – reserved
3 0x0C SOVFI Status stack or loop stack overflow or PC stack full
4 0x10 TMZHI Timer=0 (high priority option)
5 0x14 VIRPTI Vector Interrupt
6 0x18 IRQ2I IRQ2 asserted
7 0x1C IRQ1I IRQ1 asserted
8 0x20 IRQ0I IRQ0 asserted
9 0x24 – reserved
10 0x28 SPR0I DMA Channel 0 – SPORT0 Receive
11 0x2C SPR1I DMA Channel 1 –  SPORT1 Receive (or Link Buffer 0)
12 0x30 SPT0I DMA Channel 2 –  SPORT0 Transmit
13 0x34 SPT1I DMA Channel 3 –  SPORT1 Transmit (or Link Buffer 1)
14 0x38 LP2I DMA Channel 4 –  Link Buffer 2
15 0x3C LP3I DMA Channel 5 –  Link Buffer 3
16 0x40 EP0I DMA Channel 6 –  Ext. Port Buffer 0 (or Link Buffer 4)
17 0x44 EP1I DMA Channel 7 –  Ext. Port Buffer 1 (or Link Buffer 5)
18 0x48 EP2I DMA Channel 8 –  Ext. Port Buffer 2
19 0x4C EP3I DMA Channel 9 –  Ext. Port Buffer 3
20 0x50 LSRQ Link Port Service Request
21 0x54 CB7I Circular Buffer 7 overflow
22 0x58 CB15I Circular Buffer 15 overflow
23 0x5C TMZLI Timer=0 (low priority option)
24 0x60 FIXI Fixed-point overflow
25 0x64 FLTOI Floating-point overflow exception
26 0x68 FLTUI Floating-point underflow exception
27 0x6C FLTII Floating-point invalid exception
28 0x70 SFT0I User software interrupt 0
29 0x74 SFT1I User software interrupt 1
30 0x78 SFT2I User software interrupt 2
31 0x7C SFT3I User software interrupt 3 LOWEST PRIORITY

Table F.1  Interrupt Vectors & Priority

* Offset from base address: 0x0002 0000 for interrupt vector table in internal memory,
0x0040 0000 for interrupt vector table in external memory
** These IRPTL/IMASK bit names are defined in the def21060.h include file
supplied with the ADSP-21000 Family Development Software.
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Table F.1 shows all ADSP-2106x interrupts, listed according their bit
position in the IRPTL and IMASK registers. Also shown is the address
of the interrupt vector; each vector is separated by eight memory
locations. The addresses in the vector table represent offsets from a
base address. For an interrupt vector table in internal memory, the
base address is 0x0002 0000; for an interrupt vector table in external
memory, the base address is 0x0040 0000. The third column in Table
F.1 lists a mnemonic name for each interrupt. These names are
provided for convenience, and are not required by the assembler.

The interrupt vector table may be located in internal memory, at
address 0x0002 0000 (the beginning of Block 0), or in external memory
at address 0x0040 0000. If the ADSP-2106x’s on-chip memory is booted
from an external source, the interrupt vector table will be located in
internal memory. If, however, the ADSP-2106x is not booted (because
it will execute from off-chip memory), the vector table must be located
in the off-chip memory. See “Booting” in the System Design chapter for
details on booting mode selection. Also, if booting is from an external
EPROM or host processor, bit 16 of IMASK (the EP0I interrupt for
DMA Channel 6) will automatically be set to 1 following reset—this
enables the DMA done interrupt for Channel 6. IRPTL is initialized to
all zeros following reset.

The IIVT bit in the SYSCON control register can be used to override
the booting mode in determining where the interrupt vector table is
located. If the ADSP-2106x is not booted (no boot mode), setting IIVT to
1 selects an internal vector table while IIVT=0 selects an external vector
table. If the ADSP-2106x is booted from an external source (any mode
other than no boot mode), then IIVT has no effect.
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Default values for IMASK only; IRPTL is cleared after reset.
For IMASK:  1=unmasked (enabled),  0=masked (disabled)

IRPTL & IMASK

11 10 9 8 7 6 5 4 3 2 1 015 14 13 12

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

SPR0I
SPORT0 Receive DMA

RSTI
RESET (non-maskable, read-only)

SOVFI
Stack Full/Overflow

TMZHI
Timer Expired (High Priority)

VIRPTI
Multiprocessor Vector Interrupt

IRQ2I
IRQ2 Asserted

IRQ1I
IRQ1 Asserted

IRQ0I
IRQ0 Asserted

SPR1I
SPORT1 Receive (or Link Buffer 0) DMA

SPT0I
SPORT0 Transmit DMA

SPT1I
SPORT1 Transmit  (or Link Buffer 1) DMA

LP2I
Link Buffer 2 DMA

LP3I
Link Buffer 3 DMA

26 25 24 23 22 21 20 19 18 1731 30 29 28 27 16

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

EP0I
Ext. Port Buffer 0 (or Link Buffer 4) DMA

LSRQI
Link Port Service Request

CB7I
DAG1 Circular Buffer 7 Overflow

CB15I
DAG2 Circular Buffer 15 Overflow

TMZLI
Timer Expired (Low Priority)

EP1I
Ext. Port Buffer 1 (or Link Buffer 5) DMA

EP2I
Ext. Port Buffer 2 DMA

EP3I
Ext. Port Buffer 3 DMA

FLTUI
Floating-Point Underflow

FLTII
Floating-Point Invalid Operation

FLTOI
Floating-Point Overflow

FIXI
Fixed-Point Overflow

SFT0I
User Software Interrupt 0

SFT1I
User Software Interrupt 1

SFT2I
User Software Interrupt 2

SFT3I
User Software Interrupt 3
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SHARC Glossary

Term Definition

core processor or processor core ADSP-21000 core DSP processor—program
sequencer, instruction cache, timer, DAG1,
DAG2, register file (R15-0), computation
units. Does not include ADSP-2106x’s internal
memory, external port, and I/O processor.

An “action performed by the core processor”
implies an action caused by the program
executing on the ADSP-2106x. This is in
contrast to an action performed by the
on-chip DMA controller or by an external bus
master, either host processor or another
ADSP-2106x.

external bus DATA47-0 , ADDR31-0 , RD, WR, MS3-0, BMS,
ADRCLK, PAGE, SW, ACK, and SBTS signals

multiprocessor system a system with multiple ADSP-2106xs, with or
without a host processor; the ADSP-2106xs
are connected by the external bus and/or link
ports

multiprocessor memory space portion of the ADSP-2106x’s memory map
that includes the internal memory and IOP
registers of each ADSP-2106x in a
multiprocessing system; this address space is
mapped into the unified address space of the
ADSP-2106x

IOP register one of the control, status, or data buffer
registers of the ADSP-2106x’s on-chip I/O
processor

bus slave or slave mode an ADSP-2106x can be a bus slave to another
ADSP-2106x or to a host processor (the
ADSP-2106x becomes a host slave when the
HBG signal is returned)
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bus transition cycle (BTC) a cycle in which control of the external bus is
passed from one ADSP-2106x to another (in a
multiprocessor system)

host transition cycle (HTC) a cycle in which control of the external bus is
passed from the ADSP-2106x to the host
processor—during this cycle the ADSP-2106x
stops driving the RD, WR, ADDR31-0, MS3-0,
ADRCLK, PAGE, SW, and DMAGx signals,
which must then be driven by the host

asynchronous transfers asynchronous host accesses of the ADSP-2106x;
after acquiring control of the ADSP-2106x’s
external bus, the host must assert the CS pin of
the ADSP-2106x it wants to access; the
ADSP-2106x uses the REDY output to add wait
states to an asynchronous access

synchronous transfers synchronous host accesses of the ADSP-2106x;
CS is not asserted and the host must act like
another ADSP-2106x in a multiprocessor
system, by generating an address in
multiprocessor memory space, asserting WR or
RD, and driving out or latching in the data; the
ADSP-2106x uses ACK to add wait states to a
synchronous access

direct reads & writes a direct access of the ADSP-2106x’s internal
memory or IOP registers by another
ADSP-2106x or by a host processor

external port FIFO buffers EPB0, EPB1, EPB2, and EPB3—the IOP
registers used for external port DMA transfers
and single-word data transfers (from other
ADSP-2106xs or from a host processor); these
buffers are 6-deep FIFOs

single-word data transfers reads and writes to the EPBx external port
buffers, performed externally by the
ADSP-2106x bus master or internally by the
ADSP-2106x slave’s core; these occur when
DMA is disabled in the DMACx control
register
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single-word data transfers (host processor) reads and writes to the EPBx external
port buffers, performed externally by the host or
internally by the ADSP-2106x core; these occur when
DMA is disabled in the DMACx control register

link port vs. link buffer the link ports receive and transmit data on their
LxDAT3-0 data pins; the six independent link buffers
may be connected to any of the six link ports

48-bit word usually implies instruction word, but may also imply
48-bit instructions and 40-bit extended-precision data
values that are transferred within 48-bit words; 48-bit
words use three 16-bit memory columns

32-bit word standard 32-bit data word; uses two 16-bit memory
columns

16-bit word 16-bit short data word; uses one 16-bit memory column

data memory region of memory in which 32-bit data words and
16-bit short words are stored; implies that the DM bus is
used for accesses (see the following sections in the
Memory chapter of this manual for details: “Overview,”
“Dual Data Accesses,” and “On-Chip Memory Buses &
Address Generation”)

program memory region of memory in which 48-bit instruction words
and (optionally) 32-bit or 40-bit data words are stored;
implies that the PM bus is used for accesses (see the
following sections in the Memory chapter of this manual
for details: “Overview,” “Dual Data Accesses,”
“Instruction Cache & PM Bus Data Accesses,” and
“On-Chip Memory Buses & Address Generation”)

program memory data access when an ADSP-2106x instruction reads or writes data
over the PM Data Bus; the address is generated by
DAG2 on the PM Address Bus

DMACx control registers the DMA control registers for the EPBx external port
buffers: DMAC6, DMAC7, DMAC8, and DMAC9
(corresponding respectively to EPB0, EPB1, EPB2,
and EPB3)

DMA control registers see “DMACx control registers”
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DMA parameter registers the address (II), modifier (IM), count (C),
chain pointer (CP), etc., registers used to set
up a DMA transfer

transfer control block (TCB) a set of DMA parameter register values
stored in memory that are downloaded by
the ADSP-2106x’s DMA controller for
chained DMA operations

TCB chain loading the process in which the ADSP-2106x’s
DMA controller downloads a TCB from
memory and autoinitializes the DMA
parameter registers

cycle or processor cycle one cycle of the ADSP-2106x’s CLKIN input

extra cycle a cycle generated by the ADSP-2106x when
an instruction cannot be completed in a
single CLKIN cycle (e.g. to allow an
additional access of internal or external
memory); see “Execution Stalls” in the
System Design chapter of this manual

sticky status bit (in STKY status register) a “sticky” status bit,
once set, remains set until it is explicitly
cleared (with the status bit manipulation
instruction)

Equivalent Terms
multiprocessor system = multiprocessing system = multiprocessor cluster
core processor = processor core = ADSP-2106x core
DMA operation = DMA sequence
cycle = clock cycle = processor cycle = CLKIN cycle

Acronym Definition
IOP I/O Processor
DAG Data Address Generator
SPORT Serial Port
PMA Program Memory Address
DMA Data Memory Address
PMD Program Memory Data
DMD Data Memory Data
EPA External Port Address
EPD External Port Data
IOA I/O Address
IOD I/O Data



 
 

H DOCUMENTATION ERRATA

This revision of the ADSP-2106x SHARC Processor User’s Manual con-
tains corrections to errata in the previous, Second Edition, published 
May 1997. All of the pertinent corrections reported in the second edi-
tion’s documentation errata on the Analog Devices Web site, 
www.analog.com/dsp, are reproduced below. 

Errata and Corrections
Chapter: 3 Page: 12 

Revision Needed:
Replace the five bulleted points at the top of the page with the following:

• Other Jumps, Calls, or Returns

These instructions cannot be provided following a delayed branch 
instruction. This can be demonstrated with an example, using the 
JUMP instruction.

jump foo(db);

jump my(db)

r0=r0+r1

r1=r1+r2
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In this case, the delayed branch instruction R0=R0+R1; is executed 
but the instruction R1=R1+R2 is not executed. Also, the control  
jumps to my instead of foo, with the delayed branch instruction 
being the execution of foo.

The exception is for JUMP, which can be done for mutually-exclu-
sive conditions for both (EQ, NE). If the first EQ condition works, 
then the NE conditional jump has no meaning; it is as good as a 
NOP. Code for these exceptions is shown below:

if eq jump label1 (db);

if ne jump label2 (db);

nop;

nop;

• Pushes or Pops of the PC stack

Push of the PC stack in the delayed branch is followed by a pop. If 
a value is pushed in the delayed branch of call, it is popped first in 
the called subroutine, which is followed by return to subroutine 
RTS.

For example: 

20119 call foo (db);

2011A push PCSTK;

2011B nop;

2011C foo;

PCSTK 2011B: second push due to PCSTK
2011C: first push due to call

This demonstrates that when the user pushes the PCSTK during a 
delayed slot, the PC stack pointer is pushed onto the PCSTK.
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Next, execute the following instruction before doing an RTS:

pop PCSTK;

rts(db);

nop;

nop;

If pushing a PC stack, do a pop first and then an RTS. If a value is 
popped inside the delayed branch, whatever subroutine return 
address is pushed is popped back and this is restricted. 

• Writes to the PC stack or PC stack pointer

If writing to a PC stack inside the delayed branch, there can be two 
instances, as follows:

1. Write to a PC stack inside a jump

If the user writes onto the PC stack inside the delayed 
branch of a jump, two situations can occur:

a. PC stack having a value already pushed onto the PC 
stack 

When the PC stack has a value and the user writes a 
value onto the PC stack, the value in the PC stack is 
overwritten by the value written onto the PC stack. 
Therefore, the value in the PC stack is corrupted, 
hence this is restricted.

b. PC stack is empty

When the PC stack is empty and a value is written 
onto the PC stack, the PC stack is empty, because 
there is no value in the PC stack, even after writing 
the value onto the PC stack.
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2. Write to a PC stack inside a call

If the user writes to the PC stack inside a call, the value 
pushed onto the PC stack due to a call is overwritten by the 
value written onto the PC stack. Hence, when the user does 
an RTS, the user returns to the address pushed onto the PC 
stack and not to the address pushed while branching to the 
subroutine. 

For example: 

[20111] call foo3(db);

[20112] PCSTK=0x2011C;

[20113] nop;

[20114]

The value 20114 is pushed onto the PC stack, while the 
value 2011C is written to the PC stack. Accordingly, the 
value 20114 is overwritten by 2011C in the PC stack. Thus, 
when the user comes back by doing an RTS, the return is to 
the address 2011C and not to 20114. Consequently, this is 
restricted. 

• DO UNTIL instruction 

If a loop is present inside the delayed branch, it performs a sequen-
tial operation after executing the loop and does not jump to the 
label. This happens because the address of the destination of the 
jump is flushed out of the pipeline. Instead, in the pipeline (Fetch, 
Decode, and Execute) are the instructions of the loop, which causes 
sequential operation.
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For example:

20118 LCNTR=10;

20119 jump my(db); 2012C my:

2011A do my until LCE;

2011B my: r0=r0+r1;

2011C r2=r2+r3;

2011D r1=r1+r2;

In the example, there is a loop inside a delayed branch. Because the 
loop executes the instructions inside the loop ten times, the address 
of the destination of the jump (2012C) is flushed. After that, instead 
of going to label my (2012C), the processor executes the next 
sequential instruction at address 2011C and then continues the 
sequential execution. This is the reason why loop is restricted 
inside the delayed branch.

• IDLE instruction

To come out of the idle instruction, an interrupt is needed. If the 
user puts an IDLE instruction inside the delayed branch, the pro-
cessor is always in the idle state, unless there is an interrupt, hence 
this instruction is restricted.

Chapter: 3 Page: 21

Revision Needed:
In the third paragraph, third sentence, the segment “8-instruction
intervals” should be replaced with “4-instruction intervals.” 
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Chapter: 3 Page: 24

Revision Needed:
In paragraph 3.6.2 at the bottom of the page, second sentence, the seg-
ment “eight memory locations” shou ld be replaced with “four memory 
locations.” 

Chapter: 3 Page: 41 

Revision Needed:
Add the following paragraph and note to the end of section 3.10.3 Cache 
Disable & Cache Freeze:

The CADIS bit directs the sequencer to disable the cache (if 1) or enable 
the cache (if 0). Disabling the cache does not mark the current content of 
the cache as invalid. When the cache is enabled again, the existing content 
is used again. To clear the cache use the FLUSH CACHE instruction.

Note: If self-modifying code (for example, software loader kernel) or soft-
ware overlays are used, execute a FLUSH CACHE instruction followed by 
a NOP before executing the new code. Otherwise, old content from the 
cache could still be used, although the code has changed.

Chapter: 7 Page: 31

Revision Needed:
A NOP instruction should be inserted as follows:

BIT SET MODE2 BUSLK;

NOP;

/* NOP accommodates one cycle effect latency when writing to 

Mode2 */

IF NOT BM JUMP (PC,0);
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Chapter: 7 Page: 31

Revision Needed:
The instruction IF NE JUMP (PC,-2); should be replaced with 
IF TF JUMP (PC,-2);

Chapter: 8 Page: 8 

Revision Needed: 
The last paragraph on this page is confusing. It should be changed to:

Table 8.2 covers all cases including various multiprocessing systems. 
There is a special case for a single ADSP-2106x system where id=0. In this 
scenario, the host needs to drive only the ADDR18–0  pins.

Chapter: 10 Page: 18 

Revision Needed:
Add the following statement to the third paragraph of the Companding 
section: 

Program the SPORT registers prior to loading data values into the 
SPORT buffers for companding to execute properly.

Chapter: A Page: 5

Revision Needed:
The condition labeled NBM is incorrect syntax. The correct syntax for the 
condition is NOT BM.
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Chapter: A Page: 20

Revision Needed:
There is a typographical error in the first compute/immediate modify 
example. Change as follows:

From: IF FLAG0_IN F1=F5*F12, F11=PM(I10,40);

To: IF FLAG0_IN F1=F5*F12, F11=PM(I10,4);

Chapter: A Page: 24

Revision Needed:
There is a typographical error in the first line of the immediate shift exam-
ple. Change as follows:

From: IF GT R2=R6 LSHIFT BY 30, DM(I4,M4)=R0;

To: IF GT LSHIFT BY 30, DM(I4,M4)=R0;

Chapter: B Page: 81

Revision Needed:
The fifth instruction from the bottom of the page should read:

Fm=F3-0 * F7-4, Ra=FIX F11-8 by R15-12
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Chapter: E Page: 50 

Revision Needed: 
The bit fields shown are for the SPORT Receive Control register, not the 
Transmit Control register. See Figure 10.2 on page 10-10 for the correct 
bit fields of the Transmit Control register.

Chapter: E Page: 51

Revision Needed:
Bit 20 of the SRCTLx register is incorrectly marked as being reserved. See 
page E-52 for the correct bit description.

Chapter: F Page: 2

Revision Needed:
In the first paragraph, second sentence, the segment “eight memory loca-
tions” should be replaced with “four memory locations.” 
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