Browse Source

ok

master
Your Name 1 year ago
parent
commit
9f8c8ab393
74 changed files with 352162 additions and 2 deletions
  1. +1
    -1
      Attiny_Solar_Energy_Harvest/docs/10.log
  2. BIN
      Attiny_Solar_Energy_Harvest/docs/10.pdf
  3. +18
    -0
      Attiny_Solar_Energy_Harvest/docs/17.aux
  4. +345
    -0
      Attiny_Solar_Energy_Harvest/docs/17.log
  5. BIN
      Attiny_Solar_Energy_Harvest/docs/17.pdf
  6. +253
    -0
      Attiny_Solar_Energy_Harvest/docs/17.tex
  7. +211
    -0
      Attiny_Solar_Energy_Harvest/docs/17.tex~
  8. +19
    -0
      Attiny_Solar_Energy_Harvest/docs/18.aux
  9. +345
    -0
      Attiny_Solar_Energy_Harvest/docs/18.log
  10. BIN
      Attiny_Solar_Energy_Harvest/docs/18.pdf
  11. +270
    -0
      Attiny_Solar_Energy_Harvest/docs/18.tex
  12. +256
    -0
      Attiny_Solar_Energy_Harvest/docs/18.tex~
  13. +20
    -0
      Attiny_Solar_Energy_Harvest/docs/19.aux
  14. +345
    -0
      Attiny_Solar_Energy_Harvest/docs/19.log
  15. BIN
      Attiny_Solar_Energy_Harvest/docs/19.pdf
  16. +273
    -0
      Attiny_Solar_Energy_Harvest/docs/19.tex
  17. +270
    -0
      Attiny_Solar_Energy_Harvest/docs/19.tex~
  18. +27
    -0
      OV7670_Image_Sensor/footprints/PinHeader_1x01_EDIT.kicad_mod
  19. +23
    -0
      OV7670_Image_Sensor/footprints/PinHeader_1x05_P2.54mm_ProtoBoard_Rev.kicad_mod
  20. +44
    -0
      OV7670_Image_Sensor/footprints/PinHeader_1x20_P1.27mm_ProtoBoard_Rev.kicad_mod
  21. +3
    -0
      OV7670_Image_Sensor/pcb/fp-lib-table
  22. BIN
      OV7670_Image_Sensor/pcb/gerbers/ov7670.zip
  23. +2523
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-B.Cu.gbl
  24. +14
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-B.Fab.gbr
  25. +6697
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-B.Mask.gbs
  26. +15
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-B.Paste.gbp
  27. +817
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-B.SilkS.gbo
  28. +38
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-Edge.Cuts.gm1
  29. +3378
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-F.Cu.gtl
  30. +6140
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-F.Fab.gbr
  31. +6999
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-F.Mask.gts
  32. +625
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-F.Paste.gtp
  33. +305
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb-F.SilkS.gto
  34. +153
    -0
      OV7670_Image_Sensor/pcb/gerbers/pcb.drl
  35. +163
    -0
      OV7670_Image_Sensor/pcb/pcb-cache.lib
  36. +273
    -0
      OV7670_Image_Sensor/pcb/pcb.bak
  37. +1467
    -0
      OV7670_Image_Sensor/pcb/pcb.kicad_pcb
  38. +1467
    -0
      OV7670_Image_Sensor/pcb/pcb.kicad_pcb-bak
  39. +238
    -0
      OV7670_Image_Sensor/pcb/pcb.net
  40. +41
    -0
      OV7670_Image_Sensor/pcb/pcb.pro
  41. +273
    -0
      OV7670_Image_Sensor/pcb/pcb.sch
  42. +838
    -0
      OV7670_Image_Sensor/resources/arduino-ov7670-10fps
  43. +1
    -1
      Prototyping_Board/docs/1.log
  44. BIN
      Prototyping_Board/docs/1.pdf
  45. +3
    -0
      Prototyping_Board/docs/2.aux
  46. +274
    -0
      Prototyping_Board/docs/2.log
  47. BIN
      Prototyping_Board/docs/2.pdf
  48. +49
    -0
      Prototyping_Board/docs/2.tex
  49. +42
    -0
      Prototyping_Board/docs/2.tex~
  50. +2
    -0
      Prototyping_Board/docs/2.toc
  51. +3
    -0
      Prototyping_Board/docs/3.aux
  52. +270
    -0
      Prototyping_Board/docs/3.log
  53. BIN
      Prototyping_Board/docs/3.pdf
  54. +49
    -0
      Prototyping_Board/docs/3.tex
  55. +2
    -0
      Prototyping_Board/docs/3.toc
  56. +16
    -0
      Prototyping_Board/footprints/PinHeader_1x01_P1.27mm_Vertical_EDIT.kicad_mod
  57. +9149
    -0
      Prototyping_Board/footprints/giant_otter_araisan_mansion.kicad_mod
  58. +40028
    -0
      Prototyping_Board/pcb_perf/EDIT_C.kicad_pcb
  59. +25894
    -0
      Prototyping_Board/pcb_perf/EDIT_C.kicad_pcb-bak
  60. +33
    -0
      Prototyping_Board/pcb_perf/EDIT_C.pro
  61. +3
    -0
      Prototyping_Board/pcb_perf/fp-lib-table
  62. +52733
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-B.Mask.gbs
  63. +5323
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-B.SilkS.gbo
  64. +7177
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-Back.gbl
  65. +40
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-Edge.Cuts.gm1
  66. +52733
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-F.Mask.gts
  67. +115270
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-F.SilkS.gto
  68. +6005
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C-Front.gtl
  69. +1876
    -0
      Prototyping_Board/pcb_perf/gerbers/EDIT_C.drl
  70. BIN
      Prototyping_Board/pcb_perf/gerbers/proto_perf_board.zip
  71. BIN
      Prototyping_Board/pics/__giant_otter_kemono_friends_and_1_more_drawn_by_abubu__dc7e429ae15b76a2c8408b09143ad5e3.jpg
  72. BIN
      Prototyping_Board/pics/__giant_otter_kemono_friends_and_1_more_drawn_by_abubu__edit.xcf
  73. BIN
      Prototyping_Board/pics/__giant_otter_kemono_friends_and_1_more_drawn_by_abubu__edit2.bmp
  74. BIN
      Prototyping_Board/pics/__giant_otter_kemono_friends_and_1_more_drawn_by_abubu__edit2.xcf

+ 1
- 1
Attiny_Solar_Energy_Harvest/docs/10.log View File

@ -1,4 +1,4 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=pdflatex 2019.8.17) 28 MAR 2020 01:52
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=pdflatex 2019.8.17) 1 APR 2020 22:07
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.

BIN
Attiny_Solar_Energy_Harvest/docs/10.pdf View File


+ 18
- 0
Attiny_Solar_Energy_Harvest/docs/17.aux View File

@ -0,0 +1,18 @@
\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Attiny Solar Energy Harvest Tests}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Micro Considerations}{1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.1.1}Micro Notes}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Energy Storage}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Make parts, not scrap}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Programming}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.1}Testing Arduino Loader}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.2}Conclusion on Arduino Programming Attiny10}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.3}IO Port Switching Speed}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.4}VCC 1.8V}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.5}Application}{6}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.1}Magnetic Current Sensor}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.2}Accelerometers}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.3}Temperature Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.4}Gas Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.5}Supercap}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.6}Hall Effect Sensors - Push Pull vs Open Drain Outputs}{8}}

+ 345
- 0
Attiny_Solar_Energy_Harvest/docs/17.log View File

@ -0,0 +1,345 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=pdflatex 2019.8.17) 1 APR 2020 23:35
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/
Attiny_Solar_Energy_Harvest/docs/17.tex
(/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/A
ttiny_Solar_Energy_Harvest/docs/17.tex
LaTeX2e <2017/01/01> patch level 3
Babel <3.9r> and hyphenation patterns for 3 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size11.clo
File: size11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
)
\c@part=\count79
\c@section=\count80
\c@subsection=\count81
\c@subsubsection=\count82
\c@paragraph=\count83
\c@subparagraph=\count84
\c@figure=\count85
\c@table=\count86
\abovecaptionskip=\skip41
\belowcaptionskip=\skip42
\bibindent=\dimen102
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2014/10/28 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2016/10/09 v1.0u Standard LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 99.
(/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2017/01/12 v0.06k Graphics/color for pdfTeX
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count87
))
\Gin@req@height=\dimen103
\Gin@req@width=\dimen104
)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2016/02/21 v3.3-144 Customizing captions (AR)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2016/05/22 v1.7-166 caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 67.
\captionmargin=\dimen105
\captionmargin@=\dimen106
\captionwidth=\dimen107
\caption@tempdima=\dimen108
\caption@indent=\dimen109
\caption@parindent=\dimen110
\caption@hangindent=\dimen111
)
\c@ContinuedFloat=\count88
)
(/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package xcolor Info: Driver file: pdftex.def on input line 225.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
)
(/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
Package: geometry 2010/09/12 v5.6 Page Geometry
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2016/05/14 v3.1 Provides the ifpdf switch
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifvtex.sty
Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
\Gm@cnth=\count89
\Gm@cntv=\count90
\c@Gm@tempcnt=\count91
\Gm@bindingoffset=\dimen112
\Gm@wd@mp=\dimen113
\Gm@odd@mp=\dimen114
\Gm@even@mp=\dimen115
\Gm@layoutwidth=\dimen116
\Gm@layoutheight=\dimen117
\Gm@layouthoffset=\dimen118
\Gm@layoutvoffset=\dimen119
\Gm@dimlist=\toks15
) (./17.aux)
\openout1 = `17.aux'.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
(/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count92
\scratchdimen=\dimen120
\scratchbox=\box26
\nofMPsegments=\count93
\nofMParguments=\count94
\everyMPshowfont=\toks16
\MPscratchCnt=\count95
\MPscratchDim=\dimen121
\MPnumerator=\count96
\makeMPintoPDFobject=\count97
\everyMPtoPDFconversion=\toks17
) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/pdftexcmds.sty
Package: pdftexcmds 2016/05/21 v0.22 Utility functions of pdfTeX for LuaTeX (HO
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifluatex.sty
Package: ifluatex 2016/05/16 v1.4 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvdefinekeys.sty
Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvsetkeys.sty
Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/etexcmds.sty
Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
)))
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
38.
Package grfext Info: Graphics extension search list:
(grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext) \AppendGraphicsExtensions on input line 456.
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: End \AtBeginDocument code.
*geometry* detected driver: dvips
*geometry* verbose mode - [ preamble ] result:
* driver: dvips
* paper: custom
* layout: <same size as paper>
* layoutoffset:(h,v)=(0.0pt,0.0pt)
* vratio: 1:1
* modes:
* h-part:(L,W,R)=(54.2025pt, 325.215pt, 54.2025pt)
* v-part:(T,H,B)=(79.49689pt, 491.43622pt, 79.49689pt)
* \paperwidth=433.62pt
* \paperheight=650.43pt
* \textwidth=325.215pt
* \textheight=491.43622pt
* \oddsidemargin=-18.06749pt
* \evensidemargin=-18.06749pt
* \topmargin=-29.7731pt
* \headheight=12.0pt
* \headsep=25.0pt
* \topskip=11.0pt
* \footskip=30.0pt
* \marginparwidth=59.0pt
* \marginparsep=10.0pt
* \columnsep=10.0pt
* \skip\footins=10.0pt plus 4.0pt minus 2.0pt
* \hoffset=0.0pt
* \voffset=0.0pt
* \mag=1000
* \@twocolumnfalse
* \@twosidefalse
* \@mparswitchfalse
* \@reversemarginfalse
* (1in=72.27pt=25.4mm, 1cm=28.453pt)
LaTeX Font Info: Try loading font information for OMS+cmr on input line 22.
(/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
File: omscmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10.95> not available
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 22.
Underfull \hbox (badness 10000) in paragraph at lines 34--37
[]
Underfull \hbox (badness 10000) in paragraph at lines 34--37
[]
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <10.95> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <8> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <6> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <9> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <5> on input line 41.
[1
Non-PDF special ignored!
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
[2] [3] [4]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
[5]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
[6] [7]
Overfull \hbox (2319.18137pt too wide) in paragraph at lines 249--249
[]\OT1/cmtt/m/n/10.95 9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the
lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputd
riveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpu
llupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan
be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the v
oltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayo
fsensors
[]
[8] (./17.aux) )
Here is how much of TeX's memory you used:
3526 strings out of 494945
53602 string characters out of 6181032
120046 words of memory out of 5000000
6804 multiletter control sequences out of 15000+600000
8977 words of font info for 32 fonts, out of 8000000 for 9000
14 hyphenation exceptions out of 8191
39i,8n,38p,877b,250s stack positions out of 5000i,500n,10000p,200000b,80000s
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/c
mbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.
pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></u
sr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb></usr/share
/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texlive
/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/share/texlive/texmf-d
ist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fo
nts/type1/public/amsfonts/cm/cmtt10.pfb>
Output written on 17.pdf (8 pages, 125085 bytes).
PDF statistics:
63 PDF objects out of 1000 (max. 8388607)
44 compressed objects within 1 object stream
0 named destinations out of 1000 (max. 500000)
1 words of extra memory for PDF output out of 10000 (max. 10000000)

BIN
Attiny_Solar_Energy_Harvest/docs/17.pdf View File


+ 253
- 0
Attiny_Solar_Energy_Harvest/docs/17.tex View File

@ -0,0 +1,253 @@
\documentclass[11pt]{article}
%Gummi|065|=)
\usepackage{graphicx}
\usepackage{caption}
\usepackage{xcolor}
\usepackage[vcentering,dvips]{geometry}
\geometry{papersize={6in,9in},total={4.5in,6.8in}}
%\title{\textbf{Door Alarm}}
\author{Steak Electronics}
\date{}
\begin{document}
%\maketitle
%\tableofcontents
\textcolor{green!60!blue!70}{
\section{Attiny Solar Energy Harvest Tests}}
I have the following:
\begin{itemize}
\item Solar panels
\item Attiny 10
\end{itemize}
To this list, I will add a supercap, and an energy harvesting IC. The goal being to load the super cap during the day, and to run 24/7. I will need an exceptionally low power micro. The super cap will need to be about 3.3V or 5V.
\textcolor{green!60!blue!70}{
\subsection{Micro Considerations}}
The Arduino Atmega328P is not an option. I'm looking to have a current draw of only 1mA max, (ideally 500uA) when active. Moteino is also not an option for this. Those are made for batteries. I want to be battery free. A super cap, however can be used to store energy. I'll get to that shortly.
For micros, I have some Attiny10 on hand, and these have a reasonably low power pull in active mode. Let's build those up first. What will the micro do? No idea. I haven't a clue.
\textcolor{green!60!blue!70}{
\subsubsection{Micro Notes}}
Must run at 1.8V / 1MHz per front page of data sheet, for 200uA draw in active mode.
\\
\\
\textcolor{green!60!blue!70}{
\subsection{Energy Storage}}
I don't want a battery. Let's go with a super cap. The solar panels will only be active some of the time, so I will want to harvest energy with some kind of IC into the cap when the sun is out.\footnote{Reference: www.analog.com/media/en/technical-documentation/technical-articles/solarenergyharvesting.pdf is a start. I'll need to do more research.}
\textcolor{green!60!blue!70}{ \subsection{Make parts, not scrap}} I will
want to make sure that all parts I build are perf board parts, not
breadboard scrap (to be torn down and rebuilt again). This is an Attiny,
so no need to test much, yet.
\textcolor{green!60!blue!70}{
\subsection{Programming}}
To program the Attiny10, I'll use the Arduino adapter from the Junk + Arduino blog. I built it up\footnote{Had slight error where the Arduino + board wouldn't read - pins too short on headers, then the arduino wouldn't boot - due to bad connection on perf board shield. Thankfully, the USB port didn't try to run. Protection circuitry cut in on the laptop.}, and was able to Read the memory. In order to upload to the board, you will need a compiler setup. You can possibly do it in AVRGCC, but instead I opted for either Arduino IDE (via Attiny10Core which didn't work), and then went to Mplab. In order for mplab 5.25 to work, it will need XC8 compiler, and there is a pack that can be downloaded through the IDE to get Attiny10 support.
It appears the AVR Dragon (which I have) can not be used. However, other programmers can be used. Pickit 4, Mkavrii, stk600, I think.
\textcolor{green!60!blue!70}{ \subsubsection{Testing Arduino Loader}}
Tested this with the blink\_LED.c in code folder. The code is as simple as possible.
It is the following:
\begin{verbatim}
//#include <xc.h>
#include <avr/io.h>
#include <util/delay.h>
int main(void)
{
// PB2 output
DDRB = 1<<2;
while(1)
{
// Toggle PB2
PINB = 1<<2;
_delay_ms(500);
}
}
\end{verbatim}
When programmed in Mplab, with XC8 compiler, and Attiny10 support, I get the following
hex output:
\begin{verbatim}
:100000000AC020C01FC01EC01DC01CC01BC01AC01B
:1000100019C018C017C011271FBFCFE5D0E0DEBF41
:0A002000CDBF03D000C0F894FFCF5D
:10002A0044E041B940B95FE966E871E05150604087
:0A003A007040E1F700C00000F5CFB0
:02004400DDCF0E
:00000001FF
\end{verbatim}
The content of this hex isn't the focus of this passage. Instead, I want you to review the
results of a D for Dump Memory, by the Arduino Loader.
\begin{verbatim}
Current memory state:
registers, SRAM
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0000: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 03 00 00 79 00 03 00 00 00 00
0040: B7 AD AE FA 58 70 63 6B FB 5A B4 1B FF FF 35 3F
0050: 67 D7 33 43 DF 5F FB 72 C9 7D FE E9 9D C5 00 12
NVM lock
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F00: FF FF
configuration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F40: FF FF
calibration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F80: 79 FF
device ID
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3FC0: 1E 90 03 FF
program
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
4000: 0A C0 20 C0 1F C0 1E C0 1D C0 1C C0 1B C0 1A C0
4010: 19 C0 18 C0 17 C0 11 27 1F BF CF E5 D0 E0 DE BF
4020: CD BF 03 D0 00 C0 F8 94 FF CF 44 E0 41 B9 40 B9
4030: 5F E9 66 E8 71 E0 51 50 60 40 70 40 E1 F7 00 C0
4040: 00 00 F5 CF DD CF FF FF FF FF FF FF FF FF FF FF
4050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
4060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
(...some memory omitted here for brevity...)
43E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
43F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
\end{verbatim}
Notice that the "AC020C01F" is set. That is from the hex. But the 01000...
before it seems to be missing. Some deciphering of how the Arduino programs
the Attiny is in order here. It also doesn't end the same.
Regardless, when programming, the Arduino reports 70 bytes written, and
likewise in the Mplab project memorymap.xml file, it also notes 70 bytes
for the sketch. This lines up.\footnote{Although for an unknown reason, every command registers twice on the Arduino serial monitor, but this appears to be harmless.}
The blinking LED works. Let's move on.
\textcolor{green!60!blue!70}{\subsubsection{Conclusion on Arduino Programming Attiny10}}
It's possible, but you have to make a dedicated jig (almost), so it might be easier to use the official programming tools. However, based on this https://www.avrfreaks.net/forum/pickit-4-and-avr-mcu I might not have a choice. So I will use the Arduino for now. But will have to devise what on board parts are req'd for programming, and incorporate into proto board layout.
\textcolor{green!60!blue!70}{ \subsubsection{IO Port Switching Speed}}
Using the above code without any delay\_ms, I get the following results from a default clock
speed, and a 128KHz clock speed. This test was done to confirm that I could change the clock with
\begin{verbatim}
//Write CCP
CCP = 0xD8;
//change CLK to 128KHz
CLKMSR = 0b01;
\end{verbatim}
There was no issue.
\begin{verbatim}
Default CLK (8MHz? or 1MHz?): 160KHz IO Switch
128KHz CLK: 2.5KHz IO Switch
\end{verbatim}
I am going to pursue 128KHz for starters, for lower current dissipation. Note that with the Arduino loader, it is cumbersome to test and change code as you move along. It is
therefore going to be necessary to use a programmer, with a dedicated header on board.
\textcolor{green!60!blue!70}{ \subsubsection{VCC 1.8V}}
The lowest power supported: 1.8V can be applied, without any configuration
needed. It does not affect IO switching speed (although obviously amplitude is affected).
\begin{verbatim}
128KHz CLK (5.0V): 2.5256 KHz IO switch
128KHz CLK (3.3V): 2.5477 KHz IO switch
128KHz CLK (1.8V): 2.5849 KHz IO switch
\end{verbatim}
As voltage drops, IO increases.
\\
\\
\textbf{VCC Dropout voltage:}
\\
From 1.5, it drops out at 1.248V or so. Comes back at about 1.34V
\\
\\
Test size of 1.
\\
\\
Can't run this with one (AA) battery, but you could with 2.
\\
\\
Current Draw: 128KHz - IO test, 1.8V, 0.08mA (~78uA) (tested w/3478A)
\\
\\
\textcolor{green!60!blue!70}{\subsection{Application}}
First, I need a board for these and a programmer, to quickly program. Second, I need an application. I want extremely low power. Hopefully, solar with no batteries, to start. This is extremely low - that is the point. Let's keep this ridiculous.
Given the power requirements put me under 1mA (with my current panels), I'm considering the following: EEPROMs would require SPI protocol. Doable, but overcomplicated for now.
\\
\\
Eink (need to find a small and cheap enough option. So far, they have either too many pins, and/or use too much current. Something like what stores use to display prices would work, but that doesn't get the data out, only makes it readable.),
\\
\\
Third option would be RF. That is a viable path, but not today. Let's skip that for now.
\\
\\
Fourth option that comes to mind is IR. IR diodes, as in TV remotes, would work well here. I am choosing this as the first project. I will have dumb clients, that consist of - Attiny / IR / Sensor powered by solar. I will have a BBB that receives the IR data, and does all intelligent data gathering. To keep things simple, the IR will be binary ADC data, or otherwise sensor numbers. No SPI, no protocol complexity. That would require space on the Attiny.
\\
\\
Let's build some boards based on the above.
\\
\\
For sensors:
While building, I came across an option. Hall effect sensors. I think also capacitive sensors can be used. This may find a use in a gate sensor, for when a driveway gate is opened or closed. With a small battery, it would work for years.
Footprints: I had to make a footprint for this module on board package for one sensor. The solution to get footprints right? copy graphic image and make it into silkscreen on the board. Easy.
The sensor I looked at was a temp and humidity sensor SHT11 (SHT10 is obsolete). It is low power enough. However, it's \$20. So not in my price range. Otherwise, it would work here. Looks like communication is a shift register, or SPI.
\subsubsection{Magnetic Current Sensor}
There is this:
BM14270AMUV-LB
Which is low enough current here (<1mA). But \$7 in qty, and req's I2C. Not today.
\subsubsection{Accelerometers}
These are an option.
Best pinout (for deadbug) is LIS344ALHTR (but lacks vcc down to 1.8)
2nd Best pinout with full 1.8 -3.6 vcc is ADXL337BCPZ-RL7
(Keep in mind, these are low end options only)
(Analog output only. keep it simple for now.)
Runner up to all above, is KXTC9-2050-FR . But has worse pinout.
Going with AD part. \$5 in single qty.
Digital output Accelmeters are cheaper.
All have tiny package sizes.
Since I am grabbing 1 output only, will need to orient or choose correct output.
\subsubsection{Temperature Sensors}
Temperature can be boring, but why not. Let's throw one of these on: LMT84LP . Pin compatible with LM35. Supply current is maybe 8uA. Extremely low.
LM84 (1.5V starts, to 5.5), LM85 (1.8V to 5.5)
\subsubsection{Gas Sensors}
Lowest is 5mV as of writing on dkey. Skipping.
\subsubsection{Supercap}
For now, trying this:
FG0V155ZF
\subsubsection{Hall Effect Sensors - Push Pull vs Open Drain Outputs}
\begin{verbatim}9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputdriveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpullupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the voltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayofsensors \end{verbatim} From DRV5032 data sheet.
\end{document}

+ 211
- 0
Attiny_Solar_Energy_Harvest/docs/17.tex~ View File

@ -0,0 +1,211 @@
\documentclass[11pt]{article}
%Gummi|065|=)
\usepackage{graphicx}
\usepackage{caption}
\usepackage{xcolor}
\usepackage[vcentering,dvips]{geometry}
\geometry{papersize={6in,9in},total={4.5in,6.8in}}
%\title{\textbf{Door Alarm}}
\author{Steak Electronics}
\date{}
\begin{document}
%\maketitle
%\tableofcontents
\textcolor{green!60!blue!70}{
\section{Attiny Solar Energy Harvest Tests}}
I have the following:
\begin{itemize}
\item Solar panels
\item Attiny 10
\end{itemize}
To this list, I will add a supercap, and an energy harvesting IC. The goal being to load the super cap during the day, and to run 24/7. I will need an exceptionally low power micro. The super cap will need to be about 3.3V or 5V.
\textcolor{green!60!blue!70}{
\subsection{Micro Considerations}}
The Arduino Atmega328P is not an option. I'm looking to have a current draw of only 1mA max, (ideally 500uA) when active. Moteino is also not an option for this. Those are made for batteries. I want to be battery free. A super cap, however can be used to store energy. I'll get to that shortly.
For micros, I have some Attiny10 on hand, and these have a reasonably low power pull in active mode. Let's build those up first. What will the micro do? No idea. I haven't a clue.
\textcolor{green!60!blue!70}{
\subsubsection{Micro Notes}}
Must run at 1.8V / 1MHz per front page of data sheet, for 200uA draw in active mode.
\\
\\
\textcolor{green!60!blue!70}{
\subsection{Energy Storage}}
I don't want a battery. Let's go with a super cap. The solar panels will only be active some of the time, so I will want to harvest energy with some kind of IC into the cap when the sun is out.\footnote{Reference: www.analog.com/media/en/technical-documentation/technical-articles/solarenergyharvesting.pdf is a start. I'll need to do more research.}
\textcolor{green!60!blue!70}{ \subsection{Make parts, not scrap}} I will
want to make sure that all parts I build are perf board parts, not
breadboard scrap (to be torn down and rebuilt again). This is an Attiny,
so no need to test much, yet.
\textcolor{green!60!blue!70}{
\subsection{Programming}}
To program the Attiny10, I'll use the Arduino adapter from the Junk + Arduino blog. I built it up\footnote{Had slight error where the Arduino + board wouldn't read - pins too short on headers, then the arduino wouldn't boot - due to bad connection on perf board shield. Thankfully, the USB port didn't try to run. Protection circuitry cut in on the laptop.}, and was able to Read the memory. In order to upload to the board, you will need a compiler setup. You can possibly do it in AVRGCC, but instead I opted for either Arduino IDE (via Attiny10Core which didn't work), and then went to Mplab. In order for mplab 5.25 to work, it will need XC8 compiler, and there is a pack that can be downloaded through the IDE to get Attiny10 support.
It appears the AVR Dragon (which I have) can not be used. However, other programmers can be used. Pickit 4, Mkavrii, stk600, I think.
\textcolor{green!60!blue!70}{ \subsubsection{Testing Arduino Loader}}
Tested this with the blink\_LED.c in code folder. The code is as simple as possible.
It is the following:
\begin{verbatim}
//#include <xc.h>
#include <avr/io.h>
#include <util/delay.h>
int main(void)
{
// PB2 output
DDRB = 1<<2;
while(1)
{
// Toggle PB2
PINB = 1<<2;
_delay_ms(500);
}
}
\end{verbatim}
When programmed in Mplab, with XC8 compiler, and Attiny10 support, I get the following
hex output:
\begin{verbatim}
:100000000AC020C01FC01EC01DC01CC01BC01AC01B
:1000100019C018C017C011271FBFCFE5D0E0DEBF41
:0A002000CDBF03D000C0F894FFCF5D
:10002A0044E041B940B95FE966E871E05150604087
:0A003A007040E1F700C00000F5CFB0
:02004400DDCF0E
:00000001FF
\end{verbatim}
The content of this hex isn't the focus of this passage. Instead, I want you to review the
results of a D for Dump Memory, by the Arduino Loader.
\begin{verbatim}
Current memory state:
registers, SRAM
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0000: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 03 00 00 79 00 03 00 00 00 00
0040: B7 AD AE FA 58 70 63 6B FB 5A B4 1B FF FF 35 3F
0050: 67 D7 33 43 DF 5F FB 72 C9 7D FE E9 9D C5 00 12
NVM lock
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F00: FF FF
configuration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F40: FF FF
calibration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F80: 79 FF
device ID
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3FC0: 1E 90 03 FF
program
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
4000: 0A C0 20 C0 1F C0 1E C0 1D C0 1C C0 1B C0 1A C0
4010: 19 C0 18 C0 17 C0 11 27 1F BF CF E5 D0 E0 DE BF
4020: CD BF 03 D0 00 C0 F8 94 FF CF 44 E0 41 B9 40 B9
4030: 5F E9 66 E8 71 E0 51 50 60 40 70 40 E1 F7 00 C0
4040: 00 00 F5 CF DD CF FF FF FF FF FF FF FF FF FF FF
4050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
4060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
(...some memory omitted here for brevity...)
43E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
43F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
\end{verbatim}
Notice that the "AC020C01F" is set. That is from the hex. But the 01000...
before it seems to be missing. Some deciphering of how the Arduino programs
the Attiny is in order here. It also doesn't end the same.
Regardless, when programming, the Arduino reports 70 bytes written, and
likewise in the Mplab project memorymap.xml file, it also notes 70 bytes
for the sketch. This lines up.\footnote{Although for an unknown reason, every command registers twice on the Arduino serial monitor, but this appears to be harmless.}
The blinking LED works. Let's move on.
\textcolor{green!60!blue!70}{\subsubsection{Conclusion on Arduino Programming Attiny10}}
It's possible, but you have to make a dedicated jig (almost), so it might be easier to use the official programming tools. However, based on this https://www.avrfreaks.net/forum/pickit-4-and-avr-mcu I might not have a choice. So I will use the Arduino for now. But will have to devise what on board parts are req'd for programming, and incorporate into proto board layout.
\textcolor{green!60!blue!70}{ \subsubsection{IO Port Switching Speed}}
Using the above code without any delay\_ms, I get the following results from a default clock
speed, and a 128KHz clock speed. This test was done to confirm that I could change the clock with
\begin{verbatim}
//Write CCP
CCP = 0xD8;
//change CLK to 128KHz
CLKMSR = 0b01;
\end{verbatim}
There was no issue.
\begin{verbatim}
Default CLK (8MHz? or 1MHz?): 160KHz IO Switch
128KHz CLK: 2.5KHz IO Switch
\end{verbatim}
I am going to pursue 128KHz for starters, for lower current dissipation. Note that with the Arduino loader, it is cumbersome to test and change code as you move along. It is
therefore going to be necessary to use a programmer, with a dedicated header on board.
\textcolor{green!60!blue!70}{ \subsubsection{VCC 1.8V}}
The lowest power supported: 1.8V can be applied, without any configuration
needed. It does not affect IO switching speed (although obviously amplitude is affected).
\begin{verbatim}
128KHz CLK (5.0V): 2.5256 KHz IO switch
128KHz CLK (3.3V): 2.5477 KHz IO switch
128KHz CLK (1.8V): 2.5849 KHz IO switch
\end{verbatim}
As voltage drops, IO increases.
\\
\\
\textbf{VCC Dropout voltage:}
\\
From 1.5, it drops out at 1.248V or so. Comes back at about 1.34V
\\
\\
Test size of 1.
\\
\\
Can't run this with one (AA) battery, but you could with 2.
\\
\\
Current Draw: 128KHz - IO test, 1.8V, 0.08mA (~78uA) (tested w/3478A)
\\
\\
\textcolor{green!60!blue!70}{\subsection{Application}}
First, I need a board for these and a programmer, to quickly program. Second, I need an application. I want extremely low power. Hopefully, solar with no batteries, to start. This is extremely low - that is the point.
Given the power requirements put me under 1mA (with my current panels), I'm considering the following: EEPROMs would require SPI protocol. Doable, but overcomplicated for now.
\\
\\
Eink (need to find a small and cheap enough option. So far, they have either too many pins, and/or use too much current. Something like what stores use to display prices would work, but that doesn't get the data out, only makes it readable.),
\\
\\
Third option would be RF. That is a viable path, but not today. Let's skip that for now.
\\
\\
Fourth option that comes to mind is IR. IR diodes, as in TV remotes, would work well here. I am choosing this as the first project. I will have dumb clients, that consist of - Attiny / IR / Sensor powered by solar. I will have a BBB that receives the IR data, and does all intelligent data gathering. To keep things simple, the IR will be binary ADC data, or otherwise sensor numbers. No SPI, no protocol complexity. That would require space on the Attiny.
\\
\\
Let's build some boards based on the above.
\\
\\
For sensors:
While building, I came across an option. Hall effect sensors. I think also capacitive sensors can be used. This may find a use in a gate sensor, for when a driveway gate is opened or closed. With a small battery, it would work for years.
Footprints: I had to make a footprint for this module on board package for one sensor. The solution to get footprints right? copy graphic image and make it into silkscreen on the board. Easy.
\subsubsection{Hall Effect Sensors}
\begin{verbatim}9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputdriveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpullupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the voltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayofsensors \end{verbatim}
\end{document}

+ 19
- 0
Attiny_Solar_Energy_Harvest/docs/18.aux View File

@ -0,0 +1,19 @@
\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Attiny Solar Energy Harvest Tests}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Micro Considerations}{1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.1.1}Micro Notes}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Energy Storage}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Make parts, not scrap}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Programming}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.1}Testing Arduino Loader}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.2}Conclusion on Arduino Programming Attiny10}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.3}IO Port Switching Speed}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.4}VCC 1.8V}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.5}Application}{6}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.1}Magnetic Current Sensor}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.2}Accelerometers}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.3}Temperature Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.4}Gas Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.5}Supercap}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.6}Hall Effect Sensors - Push Pull vs Open Drain Outputs}{8}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6}Starting Sensors}{8}}

+ 345
- 0
Attiny_Solar_Energy_Harvest/docs/18.log View File

@ -0,0 +1,345 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=pdflatex 2019.8.17) 1 APR 2020 23:39
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/
Attiny_Solar_Energy_Harvest/docs/18.tex
(/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/A
ttiny_Solar_Energy_Harvest/docs/18.tex
LaTeX2e <2017/01/01> patch level 3
Babel <3.9r> and hyphenation patterns for 3 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size11.clo
File: size11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
)
\c@part=\count79
\c@section=\count80
\c@subsection=\count81
\c@subsubsection=\count82
\c@paragraph=\count83
\c@subparagraph=\count84
\c@figure=\count85
\c@table=\count86
\abovecaptionskip=\skip41
\belowcaptionskip=\skip42
\bibindent=\dimen102
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2014/10/28 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2016/10/09 v1.0u Standard LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 99.
(/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2017/01/12 v0.06k Graphics/color for pdfTeX
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count87
))
\Gin@req@height=\dimen103
\Gin@req@width=\dimen104
)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2016/02/21 v3.3-144 Customizing captions (AR)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2016/05/22 v1.7-166 caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 67.
\captionmargin=\dimen105
\captionmargin@=\dimen106
\captionwidth=\dimen107
\caption@tempdima=\dimen108
\caption@indent=\dimen109
\caption@parindent=\dimen110
\caption@hangindent=\dimen111
)
\c@ContinuedFloat=\count88
)
(/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package xcolor Info: Driver file: pdftex.def on input line 225.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
)
(/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
Package: geometry 2010/09/12 v5.6 Page Geometry
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2016/05/14 v3.1 Provides the ifpdf switch
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifvtex.sty
Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
\Gm@cnth=\count89
\Gm@cntv=\count90
\c@Gm@tempcnt=\count91
\Gm@bindingoffset=\dimen112
\Gm@wd@mp=\dimen113
\Gm@odd@mp=\dimen114
\Gm@even@mp=\dimen115
\Gm@layoutwidth=\dimen116
\Gm@layoutheight=\dimen117
\Gm@layouthoffset=\dimen118
\Gm@layoutvoffset=\dimen119
\Gm@dimlist=\toks15
) (./18.aux)
\openout1 = `18.aux'.
LaTeX Font Info: Checking defaults for OML/cmm/m/it on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for T1/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OT1/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OMS/cmsy/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for OMX/cmex/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
LaTeX Font Info: Checking defaults for U/cmr/m/n on input line 12.
LaTeX Font Info: ... okay on input line 12.
(/usr/share/texlive/texmf-dist/tex/context/base/mkii/supp-pdf.mkii
[Loading MPS to PDF converter (version 2006.09.02).]
\scratchcounter=\count92
\scratchdimen=\dimen120
\scratchbox=\box26
\nofMPsegments=\count93
\nofMParguments=\count94
\everyMPshowfont=\toks16
\MPscratchCnt=\count95
\MPscratchDim=\dimen121
\MPnumerator=\count96
\makeMPintoPDFobject=\count97
\everyMPtoPDFconversion=\toks17
) (/usr/share/texlive/texmf-dist/tex/generic/oberdiek/pdftexcmds.sty
Package: pdftexcmds 2016/05/21 v0.22 Utility functions of pdfTeX for LuaTeX (HO
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifluatex.sty
Package: ifluatex 2016/05/16 v1.4 Provides the ifluatex switch (HO)
Package ifluatex Info: LuaTeX not detected.
)
Package pdftexcmds Info: LuaTeX not detected.
Package pdftexcmds Info: \pdf@primitive is available.
Package pdftexcmds Info: \pdf@ifprimitive is available.
Package pdftexcmds Info: \pdfdraftmode found.
)
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/epstopdf-base.sty
Package: epstopdf-base 2016/05/15 v2.6 Base part for package epstopdf
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/grfext.sty
Package: grfext 2016/05/16 v1.2 Manage graphics extensions (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvdefinekeys.sty
Package: kvdefinekeys 2016/05/16 v1.4 Define keys (HO)
))
(/usr/share/texlive/texmf-dist/tex/latex/oberdiek/kvoptions.sty
Package: kvoptions 2016/05/16 v3.12 Key value format for package options (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/kvsetkeys.sty
Package: kvsetkeys 2016/05/16 v1.17 Key value parser (HO)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/etexcmds.sty
Package: etexcmds 2016/05/16 v1.6 Avoid name clashes with e-TeX commands (HO)
Package etexcmds Info: Could not find \expanded.
(etexcmds) That can mean that you are not using pdfTeX 1.50 or
(etexcmds) that some package has redefined \expanded.
(etexcmds) In the latter case, load this package earlier.
)))
Package epstopdf-base Info: Redefining graphics rule for `.eps' on input line 4
38.
Package grfext Info: Graphics extension search list:
(grfext) [.png,.pdf,.jpg,.mps,.jpeg,.jbig2,.jb2,.PNG,.PDF,.JPG,.JPE
G,.JBIG2,.JB2,.eps]
(grfext) \AppendGraphicsExtensions on input line 456.
(/usr/share/texlive/texmf-dist/tex/latex/latexconfig/epstopdf-sys.cfg
File: epstopdf-sys.cfg 2010/07/13 v1.3 Configuration of (r)epstopdf for TeX Liv
e
))
Package caption Info: Begin \AtBeginDocument code.
Package caption Info: End \AtBeginDocument code.
*geometry* detected driver: dvips
*geometry* verbose mode - [ preamble ] result:
* driver: dvips
* paper: custom
* layout: <same size as paper>
* layoutoffset:(h,v)=(0.0pt,0.0pt)
* vratio: 1:1
* modes:
* h-part:(L,W,R)=(54.2025pt, 325.215pt, 54.2025pt)
* v-part:(T,H,B)=(79.49689pt, 491.43622pt, 79.49689pt)
* \paperwidth=433.62pt
* \paperheight=650.43pt
* \textwidth=325.215pt
* \textheight=491.43622pt
* \oddsidemargin=-18.06749pt
* \evensidemargin=-18.06749pt
* \topmargin=-29.7731pt
* \headheight=12.0pt
* \headsep=25.0pt
* \topskip=11.0pt
* \footskip=30.0pt
* \marginparwidth=59.0pt
* \marginparsep=10.0pt
* \columnsep=10.0pt
* \skip\footins=10.0pt plus 4.0pt minus 2.0pt
* \hoffset=0.0pt
* \voffset=0.0pt
* \mag=1000
* \@twocolumnfalse
* \@twosidefalse
* \@mparswitchfalse
* \@reversemarginfalse
* (1in=72.27pt=25.4mm, 1cm=28.453pt)
LaTeX Font Info: Try loading font information for OMS+cmr on input line 22.
(/usr/share/texlive/texmf-dist/tex/latex/base/omscmr.fd
File: omscmr.fd 2014/09/29 v2.5h Standard LaTeX font definitions
)
LaTeX Font Info: Font shape `OMS/cmr/m/n' in size <10.95> not available
(Font) Font shape `OMS/cmsy/m/n' tried instead on input line 22.
Underfull \hbox (badness 10000) in paragraph at lines 34--37
[]
Underfull \hbox (badness 10000) in paragraph at lines 34--37
[]
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <10.95> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <8> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <6> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <9> on input line 41.
LaTeX Font Info: External font `cmex10' loaded for size
(Font) <5> on input line 41.
[1
Non-PDF special ignored!
{/var/lib/texmf/fonts/map/pdftex/updmap/pdftex.map}]
[2] [3] [4]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
Underfull \hbox (badness 10000) in paragraph at lines 164--181
[]
[5]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
Underfull \hbox (badness 10000) in paragraph at lines 184--201
[]
[6] [7]
Overfull \hbox (2319.18137pt too wide) in paragraph at lines 255--255
[]\OT1/cmtt/m/n/10.95 9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the
lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputd
riveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpu
llupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan
be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the v
oltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayo
fsensors
[]
[8] (./18.aux) )
Here is how much of TeX's memory you used:
3527 strings out of 494945
53604 string characters out of 6181032
120046 words of memory out of 5000000
6804 multiletter control sequences out of 15000+600000
8977 words of font info for 32 fonts, out of 8000000 for 9000
14 hyphenation exceptions out of 8191
39i,8n,38p,877b,250s stack positions out of 5000i,500n,10000p,200000b,80000s
</usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/c
mbx10.pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmbx12.
pfb></usr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr10.pfb></u
sr/share/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr6.pfb></usr/share
/texlive/texmf-dist/fonts/type1/public/amsfonts/cm/cmr8.pfb></usr/share/texlive
/texmf-dist/fonts/type1/public/amsfonts/cm/cmr9.pfb></usr/share/texlive/texmf-d
ist/fonts/type1/public/amsfonts/cm/cmsy10.pfb></usr/share/texlive/texmf-dist/fo
nts/type1/public/amsfonts/cm/cmtt10.pfb>
Output written on 18.pdf (8 pages, 125801 bytes).
PDF statistics:
63 PDF objects out of 1000 (max. 8388607)
44 compressed objects within 1 object stream
0 named destinations out of 1000 (max. 500000)
1 words of extra memory for PDF output out of 10000 (max. 10000000)

BIN
Attiny_Solar_Energy_Harvest/docs/18.pdf View File


+ 270
- 0
Attiny_Solar_Energy_Harvest/docs/18.tex View File

@ -0,0 +1,270 @@
\documentclass[11pt]{article}
%Gummi|065|=)
\usepackage{graphicx}
\usepackage{caption}
\usepackage{xcolor}
\usepackage[vcentering,dvips]{geometry}
\geometry{papersize={6in,9in},total={4.5in,6.8in}}
%\title{\textbf{Door Alarm}}
\author{Steak Electronics}
\date{}
\begin{document}
%\maketitle
%\tableofcontents
\textcolor{green!60!blue!70}{
\section{Attiny Solar Energy Harvest Tests}}
I have the following:
\begin{itemize}
\item Solar panels
\item Attiny 10
\end{itemize}
To this list, I will add a supercap, and an energy harvesting IC. The goal being to load the super cap during the day, and to run 24/7. I will need an exceptionally low power micro. The super cap will need to be about 3.3V or 5V.
\textcolor{green!60!blue!70}{
\subsection{Micro Considerations}}
The Arduino Atmega328P is not an option. I'm looking to have a current draw of only 1mA max, (ideally 500uA) when active. Moteino is also not an option for this. Those are made for batteries. I want to be battery free. A super cap, however can be used to store energy. I'll get to that shortly.
For micros, I have some Attiny10 on hand, and these have a reasonably low power pull in active mode. Let's build those up first. What will the micro do? No idea. I haven't a clue.
\textcolor{green!60!blue!70}{
\subsubsection{Micro Notes}}
Must run at 1.8V / 1MHz per front page of data sheet, for 200uA draw in active mode.
\\
\\
\textcolor{green!60!blue!70}{
\subsection{Energy Storage}}
I don't want a battery. Let's go with a super cap. The solar panels will only be active some of the time, so I will want to harvest energy with some kind of IC into the cap when the sun is out.\footnote{Reference: www.analog.com/media/en/technical-documentation/technical-articles/solarenergyharvesting.pdf is a start. I'll need to do more research.}
\textcolor{green!60!blue!70}{ \subsection{Make parts, not scrap}} I will
want to make sure that all parts I build are perf board parts, not
breadboard scrap (to be torn down and rebuilt again). This is an Attiny,
so no need to test much, yet.
\textcolor{green!60!blue!70}{
\subsection{Programming}}
To program the Attiny10, I'll use the Arduino adapter from the Junk + Arduino blog. I built it up\footnote{Had slight error where the Arduino + board wouldn't read - pins too short on headers, then the arduino wouldn't boot - due to bad connection on perf board shield. Thankfully, the USB port didn't try to run. Protection circuitry cut in on the laptop.}, and was able to Read the memory. In order to upload to the board, you will need a compiler setup. You can possibly do it in AVRGCC, but instead I opted for either Arduino IDE (via Attiny10Core which didn't work), and then went to Mplab. In order for mplab 5.25 to work, it will need XC8 compiler, and there is a pack that can be downloaded through the IDE to get Attiny10 support.
It appears the AVR Dragon (which I have) can not be used. However, other programmers can be used. Pickit 4, Mkavrii, stk600, I think.
\textcolor{green!60!blue!70}{ \subsubsection{Testing Arduino Loader}}
Tested this with the blink\_LED.c in code folder. The code is as simple as possible.
It is the following:
\begin{verbatim}
//#include <xc.h>
#include <avr/io.h>
#include <util/delay.h>
int main(void)
{
// PB2 output
DDRB = 1<<2;
while(1)
{
// Toggle PB2
PINB = 1<<2;
_delay_ms(500);
}
}
\end{verbatim}
When programmed in Mplab, with XC8 compiler, and Attiny10 support, I get the following
hex output:
\begin{verbatim}
:100000000AC020C01FC01EC01DC01CC01BC01AC01B
:1000100019C018C017C011271FBFCFE5D0E0DEBF41
:0A002000CDBF03D000C0F894FFCF5D
:10002A0044E041B940B95FE966E871E05150604087
:0A003A007040E1F700C00000F5CFB0
:02004400DDCF0E
:00000001FF
\end{verbatim}
The content of this hex isn't the focus of this passage. Instead, I want you to review the
results of a D for Dump Memory, by the Arduino Loader.
\begin{verbatim}
Current memory state:
registers, SRAM
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0000: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 03 00 00 79 00 03 00 00 00 00
0040: B7 AD AE FA 58 70 63 6B FB 5A B4 1B FF FF 35 3F
0050: 67 D7 33 43 DF 5F FB 72 C9 7D FE E9 9D C5 00 12
NVM lock
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F00: FF FF
configuration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F40: FF FF
calibration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F80: 79 FF
device ID
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3FC0: 1E 90 03 FF
program
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
4000: 0A C0 20 C0 1F C0 1E C0 1D C0 1C C0 1B C0 1A C0
4010: 19 C0 18 C0 17 C0 11 27 1F BF CF E5 D0 E0 DE BF
4020: CD BF 03 D0 00 C0 F8 94 FF CF 44 E0 41 B9 40 B9
4030: 5F E9 66 E8 71 E0 51 50 60 40 70 40 E1 F7 00 C0
4040: 00 00 F5 CF DD CF FF FF FF FF FF FF FF FF FF FF
4050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
4060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
(...some memory omitted here for brevity...)
43E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
43F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
\end{verbatim}
Notice that the "AC020C01F" is set. That is from the hex. But the 01000...
before it seems to be missing. Some deciphering of how the Arduino programs
the Attiny is in order here. It also doesn't end the same.
Regardless, when programming, the Arduino reports 70 bytes written, and
likewise in the Mplab project memorymap.xml file, it also notes 70 bytes
for the sketch. This lines up.\footnote{Although for an unknown reason, every command registers twice on the Arduino serial monitor, but this appears to be harmless.}
The blinking LED works. Let's move on.
\textcolor{green!60!blue!70}{\subsubsection{Conclusion on Arduino Programming Attiny10}}
It's possible, but you have to make a dedicated jig (almost), so it might be easier to use the official programming tools. However, based on this https://www.avrfreaks.net/forum/pickit-4-and-avr-mcu I might not have a choice. So I will use the Arduino for now. But will have to devise what on board parts are req'd for programming, and incorporate into proto board layout.
\textcolor{green!60!blue!70}{ \subsubsection{IO Port Switching Speed}}
Using the above code without any delay\_ms, I get the following results from a default clock
speed, and a 128KHz clock speed. This test was done to confirm that I could change the clock with
\begin{verbatim}
//Write CCP
CCP = 0xD8;
//change CLK to 128KHz
CLKMSR = 0b01;
\end{verbatim}
There was no issue.
\begin{verbatim}
Default CLK (8MHz? or 1MHz?): 160KHz IO Switch
128KHz CLK: 2.5KHz IO Switch
\end{verbatim}
I am going to pursue 128KHz for starters, for lower current dissipation. Note that with the Arduino loader, it is cumbersome to test and change code as you move along. It is
therefore going to be necessary to use a programmer, with a dedicated header on board.
\textcolor{green!60!blue!70}{ \subsubsection{VCC 1.8V}}
The lowest power supported: 1.8V can be applied, without any configuration
needed. It does not affect IO switching speed (although obviously amplitude is affected).
\begin{verbatim}
128KHz CLK (5.0V): 2.5256 KHz IO switch
128KHz CLK (3.3V): 2.5477 KHz IO switch
128KHz CLK (1.8V): 2.5849 KHz IO switch
\end{verbatim}
As voltage drops, IO increases.
\\
\\
\textbf{VCC Dropout voltage:}
\\
From 1.5, it drops out at 1.248V or so. Comes back at about 1.34V
\\
\\
Test size of 1.
\\
\\
Can't run this with one (AA) battery, but you could with 2.
\\
\\
Current Draw: 128KHz - IO test, 1.8V, 0.08mA (~78uA) (tested w/3478A)
\\
\\
\textcolor{green!60!blue!70}{\subsection{Application}}
First, I need a board for these and a programmer, to quickly program. Second, I need an application. I want extremely low power. Hopefully, solar with no batteries, to start. This is extremely low - that is the point. Let's keep this ridiculous.
Given the power requirements put me under 1mA (with my current panels), I'm considering the following: EEPROMs would require SPI protocol. Doable, but overcomplicated for now.
\\
\\
Eink (need to find a small and cheap enough option. So far, they have either too many pins, and/or use too much current. Something like what stores use to display prices would work, but that doesn't get the data out, only makes it readable.),
\\
\\
Third option would be RF. That is a viable path, but not today. Let's skip that for now.
\\
\\
Fourth option that comes to mind is IR. IR diodes, as in TV remotes, would work well here. I am choosing this as the first project. I will have dumb clients, that consist of - Attiny / IR / Sensor powered by solar. I will have a BBB that receives the IR data, and does all intelligent data gathering. To keep things simple, the IR will be binary ADC data, or otherwise sensor numbers. No SPI, no protocol complexity. That would require space on the Attiny.
\\
\\
Let's build some boards based on the above.
\\
\\
For sensors:
While building, I came across an option. Hall effect sensors. I think also capacitive sensors can be used. This may find a use in a gate sensor, for when a driveway gate is opened or closed. With a small battery, it would work for years.
Footprints: I had to make a footprint for this module on board package for one sensor. The solution to get footprints right? copy graphic image and make it into silkscreen on the board. Easy.
The sensor I looked at was a temp and humidity sensor SHT11 (SHT10 is obsolete). It is low power enough. However, it's \$20. So not in my price range. Otherwise, it would work here. Looks like communication is a shift register, or SPI.
\textcolor{green!60!blue!70}{
\subsubsection{Magnetic Current Sensor}}
There is this:
BM14270AMUV-LB
Which is low enough current here (<1mA). But \$7 in qty, and req's I2C. Not today.
\textcolor{green!60!blue!70}{
\subsubsection{Accelerometers}}
These are an option.
Best pinout (for deadbug) is LIS344ALHTR (but lacks vcc down to 1.8)
2nd Best pinout with full 1.8 -3.6 vcc is ADXL337BCPZ-RL7
(Keep in mind, these are low end options only)
(Analog output only. keep it simple for now.)
Runner up to all above, is KXTC9-2050-FR . But has worse pinout.
Going with AD part. \$5 in single qty.
Digital output Accelmeters are cheaper.
All have tiny package sizes.
Since I am grabbing 1 output only, will need to orient or choose correct output.
\textcolor{green!60!blue!70}{
\subsubsection{Temperature Sensors}}
Temperature can be boring, but why not. Let's throw one of these on: LMT84LP . Pin compatible with LM35. Supply current is maybe 8uA. Extremely low.
LM84 (1.5V starts, to 5.5), LM85 (1.8V to 5.5)
\textcolor{green!60!blue!70}{
\subsubsection{Gas Sensors}}
Lowest is 5mV as of writing on dkey. Skipping. The SHT would work, but its too expensive.
\textcolor{green!60!blue!70}{
\subsubsection{Supercap}}
For now, trying this:
FG0V155ZF
\textcolor{green!60!blue!70}{
\subsubsection{Hall Effect Sensors - Push Pull vs Open Drain Outputs}}
\begin{verbatim}9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputdriveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpullupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the voltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayofsensors
\end{verbatim} From DRV5032 data sheet.
\textcolor{green!60!blue!70}{
\subsection{Starting Sensors}}
So as a recap, to start with affordable, low power sensors for my project, I have the following types:
\begin{itemize}
\item Temp sensor (cheapest)
\item Magnetic Sensor (hall effect)
\item Movement Sensor (accellerometer) (analog output) (tiny package)
\item capacitive sensor (azoteq)(may only be short range)
\end{itemize}
And then output is currently IR via diode. Future output would be RF.
\end{document}

+ 256
- 0
Attiny_Solar_Energy_Harvest/docs/18.tex~ View File

@ -0,0 +1,256 @@
\documentclass[11pt]{article}
%Gummi|065|=)
\usepackage{graphicx}
\usepackage{caption}
\usepackage{xcolor}
\usepackage[vcentering,dvips]{geometry}
\geometry{papersize={6in,9in},total={4.5in,6.8in}}
%\title{\textbf{Door Alarm}}
\author{Steak Electronics}
\date{}
\begin{document}
%\maketitle
%\tableofcontents
\textcolor{green!60!blue!70}{
\section{Attiny Solar Energy Harvest Tests}}
I have the following:
\begin{itemize}
\item Solar panels
\item Attiny 10
\end{itemize}
To this list, I will add a supercap, and an energy harvesting IC. The goal being to load the super cap during the day, and to run 24/7. I will need an exceptionally low power micro. The super cap will need to be about 3.3V or 5V.
\textcolor{green!60!blue!70}{
\subsection{Micro Considerations}}
The Arduino Atmega328P is not an option. I'm looking to have a current draw of only 1mA max, (ideally 500uA) when active. Moteino is also not an option for this. Those are made for batteries. I want to be battery free. A super cap, however can be used to store energy. I'll get to that shortly.
For micros, I have some Attiny10 on hand, and these have a reasonably low power pull in active mode. Let's build those up first. What will the micro do? No idea. I haven't a clue.
\textcolor{green!60!blue!70}{
\subsubsection{Micro Notes}}
Must run at 1.8V / 1MHz per front page of data sheet, for 200uA draw in active mode.
\\
\\
\textcolor{green!60!blue!70}{
\subsection{Energy Storage}}
I don't want a battery. Let's go with a super cap. The solar panels will only be active some of the time, so I will want to harvest energy with some kind of IC into the cap when the sun is out.\footnote{Reference: www.analog.com/media/en/technical-documentation/technical-articles/solarenergyharvesting.pdf is a start. I'll need to do more research.}
\textcolor{green!60!blue!70}{ \subsection{Make parts, not scrap}} I will
want to make sure that all parts I build are perf board parts, not
breadboard scrap (to be torn down and rebuilt again). This is an Attiny,
so no need to test much, yet.
\textcolor{green!60!blue!70}{
\subsection{Programming}}
To program the Attiny10, I'll use the Arduino adapter from the Junk + Arduino blog. I built it up\footnote{Had slight error where the Arduino + board wouldn't read - pins too short on headers, then the arduino wouldn't boot - due to bad connection on perf board shield. Thankfully, the USB port didn't try to run. Protection circuitry cut in on the laptop.}, and was able to Read the memory. In order to upload to the board, you will need a compiler setup. You can possibly do it in AVRGCC, but instead I opted for either Arduino IDE (via Attiny10Core which didn't work), and then went to Mplab. In order for mplab 5.25 to work, it will need XC8 compiler, and there is a pack that can be downloaded through the IDE to get Attiny10 support.
It appears the AVR Dragon (which I have) can not be used. However, other programmers can be used. Pickit 4, Mkavrii, stk600, I think.
\textcolor{green!60!blue!70}{ \subsubsection{Testing Arduino Loader}}
Tested this with the blink\_LED.c in code folder. The code is as simple as possible.
It is the following:
\begin{verbatim}
//#include <xc.h>
#include <avr/io.h>
#include <util/delay.h>
int main(void)
{
// PB2 output
DDRB = 1<<2;
while(1)
{
// Toggle PB2
PINB = 1<<2;
_delay_ms(500);
}
}
\end{verbatim}
When programmed in Mplab, with XC8 compiler, and Attiny10 support, I get the following
hex output:
\begin{verbatim}
:100000000AC020C01FC01EC01DC01CC01BC01AC01B
:1000100019C018C017C011271FBFCFE5D0E0DEBF41
:0A002000CDBF03D000C0F894FFCF5D
:10002A0044E041B940B95FE966E871E05150604087
:0A003A007040E1F700C00000F5CFB0
:02004400DDCF0E
:00000001FF
\end{verbatim}
The content of this hex isn't the focus of this passage. Instead, I want you to review the
results of a D for Dump Memory, by the Arduino Loader.
\begin{verbatim}
Current memory state:
registers, SRAM
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
0000: 05 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0020: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0030: 00 00 00 00 00 00 03 00 00 79 00 03 00 00 00 00
0040: B7 AD AE FA 58 70 63 6B FB 5A B4 1B FF FF 35 3F
0050: 67 D7 33 43 DF 5F FB 72 C9 7D FE E9 9D C5 00 12
NVM lock
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F00: FF FF
configuration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F40: FF FF
calibration
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3F80: 79 FF
device ID
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
3FC0: 1E 90 03 FF
program
+0 +1 +2 +3 +4 +5 +6 +7 +8 +9 +A +B +C +D +E +F
4000: 0A C0 20 C0 1F C0 1E C0 1D C0 1C C0 1B C0 1A C0
4010: 19 C0 18 C0 17 C0 11 27 1F BF CF E5 D0 E0 DE BF
4020: CD BF 03 D0 00 C0 F8 94 FF CF 44 E0 41 B9 40 B9
4030: 5F E9 66 E8 71 E0 51 50 60 40 70 40 E1 F7 00 C0
4040: 00 00 F5 CF DD CF FF FF FF FF FF FF FF FF FF FF
4050: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
4060: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
(...some memory omitted here for brevity...)
43E0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
43F0: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
\end{verbatim}
Notice that the "AC020C01F" is set. That is from the hex. But the 01000...
before it seems to be missing. Some deciphering of how the Arduino programs
the Attiny is in order here. It also doesn't end the same.
Regardless, when programming, the Arduino reports 70 bytes written, and
likewise in the Mplab project memorymap.xml file, it also notes 70 bytes
for the sketch. This lines up.\footnote{Although for an unknown reason, every command registers twice on the Arduino serial monitor, but this appears to be harmless.}
The blinking LED works. Let's move on.
\textcolor{green!60!blue!70}{\subsubsection{Conclusion on Arduino Programming Attiny10}}
It's possible, but you have to make a dedicated jig (almost), so it might be easier to use the official programming tools. However, based on this https://www.avrfreaks.net/forum/pickit-4-and-avr-mcu I might not have a choice. So I will use the Arduino for now. But will have to devise what on board parts are req'd for programming, and incorporate into proto board layout.
\textcolor{green!60!blue!70}{ \subsubsection{IO Port Switching Speed}}
Using the above code without any delay\_ms, I get the following results from a default clock
speed, and a 128KHz clock speed. This test was done to confirm that I could change the clock with
\begin{verbatim}
//Write CCP
CCP = 0xD8;
//change CLK to 128KHz
CLKMSR = 0b01;
\end{verbatim}
There was no issue.
\begin{verbatim}
Default CLK (8MHz? or 1MHz?): 160KHz IO Switch
128KHz CLK: 2.5KHz IO Switch
\end{verbatim}
I am going to pursue 128KHz for starters, for lower current dissipation. Note that with the Arduino loader, it is cumbersome to test and change code as you move along. It is
therefore going to be necessary to use a programmer, with a dedicated header on board.
\textcolor{green!60!blue!70}{ \subsubsection{VCC 1.8V}}
The lowest power supported: 1.8V can be applied, without any configuration
needed. It does not affect IO switching speed (although obviously amplitude is affected).
\begin{verbatim}
128KHz CLK (5.0V): 2.5256 KHz IO switch
128KHz CLK (3.3V): 2.5477 KHz IO switch
128KHz CLK (1.8V): 2.5849 KHz IO switch
\end{verbatim}
As voltage drops, IO increases.
\\
\\
\textbf{VCC Dropout voltage:}
\\
From 1.5, it drops out at 1.248V or so. Comes back at about 1.34V
\\
\\
Test size of 1.
\\
\\
Can't run this with one (AA) battery, but you could with 2.
\\
\\
Current Draw: 128KHz - IO test, 1.8V, 0.08mA (~78uA) (tested w/3478A)
\\
\\
\textcolor{green!60!blue!70}{\subsection{Application}}
First, I need a board for these and a programmer, to quickly program. Second, I need an application. I want extremely low power. Hopefully, solar with no batteries, to start. This is extremely low - that is the point. Let's keep this ridiculous.
Given the power requirements put me under 1mA (with my current panels), I'm considering the following: EEPROMs would require SPI protocol. Doable, but overcomplicated for now.
\\
\\
Eink (need to find a small and cheap enough option. So far, they have either too many pins, and/or use too much current. Something like what stores use to display prices would work, but that doesn't get the data out, only makes it readable.),
\\
\\
Third option would be RF. That is a viable path, but not today. Let's skip that for now.
\\
\\
Fourth option that comes to mind is IR. IR diodes, as in TV remotes, would work well here. I am choosing this as the first project. I will have dumb clients, that consist of - Attiny / IR / Sensor powered by solar. I will have a BBB that receives the IR data, and does all intelligent data gathering. To keep things simple, the IR will be binary ADC data, or otherwise sensor numbers. No SPI, no protocol complexity. That would require space on the Attiny.
\\
\\
Let's build some boards based on the above.
\\
\\
For sensors:
While building, I came across an option. Hall effect sensors. I think also capacitive sensors can be used. This may find a use in a gate sensor, for when a driveway gate is opened or closed. With a small battery, it would work for years.
Footprints: I had to make a footprint for this module on board package for one sensor. The solution to get footprints right? copy graphic image and make it into silkscreen on the board. Easy.
The sensor I looked at was a temp and humidity sensor SHT11 (SHT10 is obsolete). It is low power enough. However, it's \$20. So not in my price range. Otherwise, it would work here. Looks like communication is a shift register, or SPI.
\subsubsection{Magnetic Current Sensor}
There is this:
BM14270AMUV-LB
Which is low enough current here (<1mA). But \$7 in qty, and req's I2C. Not today.
\subsubsection{Accelerometers}
These are an option.
Best pinout (for deadbug) is LIS344ALHTR (but lacks vcc down to 1.8)
2nd Best pinout with full 1.8 -3.6 vcc is ADXL337BCPZ-RL7
(Keep in mind, these are low end options only)
(Analog output only. keep it simple for now.)
Runner up to all above, is KXTC9-2050-FR . But has worse pinout.
Going with AD part. \$5 in single qty.
Digital output Accelmeters are cheaper.
All have tiny package sizes.
Since I am grabbing 1 output only, will need to orient or choose correct output.
\subsubsection{Temperature Sensors}
Temperature can be boring, but why not. Let's throw one of these on: LMT84LP . Pin compatible with LM35. Supply current is maybe 8uA. Extremely low.
LM84 (1.5V starts, to 5.5), LM85 (1.8V to 5.5)
\subsubsection{Gas Sensors}
Lowest is 5mV as of writing on dkey. Skipping.
\subsubsection{Supercap}
For now, trying this:
FG0V155ZF
\subsubsection{Hall Effect Sensors - Push Pull vs Open Drain Outputs}
\begin{verbatim}9.1.1OutputTypeTradeoffsThe push-pulloutputallowsfor the lowestsystempowerconsumptionbecausethereis no currentleakagepathwhenthe outputdriveshighor low. The open-drainoutputinvolvesa leakagepaththroughthe externalpullupresistorwhenthe outputdriveslow.The open-drainoutputsof multipledevicescan be tied togetherto forma logicalAND.In this setup,if any sensordriveslow, the voltageon the sharednodebecomeslow. Thiscan allowa singleGPIOto measurean arrayofsensors \end{verbatim} From DRV5032 data sheet.
\subsection{Starting Sensors}
So as a recap, to start with affordable, low power sensors for my project, I have the following types:
\end{document}

+ 20
- 0
Attiny_Solar_Energy_Harvest/docs/19.aux View File

@ -0,0 +1,20 @@
\relax
\@writefile{toc}{\contentsline {section}{\numberline {1}Attiny Solar Energy Harvest Tests}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.1}Micro Considerations}{1}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.1.1}Micro Notes}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.2}Energy Storage}{1}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.3}Make parts, not scrap}{2}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.4}Programming}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.1}Testing Arduino Loader}{2}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.2}Conclusion on Arduino Programming Attiny10}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.3}IO Port Switching Speed}{5}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.4.4}VCC 1.8V}{5}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.5}Application}{6}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.1}Magnetic Current Sensor}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.2}Accelerometers}{7}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.3}Temperature Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.4}Gas Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.5}Supercap}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.5.6}Hall Effect Sensors - Push Pull vs Open Drain Outputs}{8}}
\@writefile{toc}{\contentsline {subsection}{\numberline {1.6}Starting Sensors}{8}}
\@writefile{toc}{\contentsline {subsubsection}{\numberline {1.6.1}Farad to mA}{9}}

+ 345
- 0
Attiny_Solar_Energy_Harvest/docs/19.log View File

@ -0,0 +1,345 @@
This is pdfTeX, Version 3.14159265-2.6-1.40.17 (TeX Live 2016/Debian) (preloaded format=pdflatex 2019.8.17) 1 APR 2020 23:50
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
**/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/
Attiny_Solar_Energy_Harvest/docs/19.tex
(/home/layoutdev/Desktop/code/documentation_general/Electronics_Projects_2020/A
ttiny_Solar_Energy_Harvest/docs/19.tex
LaTeX2e <2017/01/01> patch level 3
Babel <3.9r> and hyphenation patterns for 3 language(s) loaded.
(/usr/share/texlive/texmf-dist/tex/latex/base/article.cls
Document Class: article 2014/09/29 v1.4h Standard LaTeX document class
(/usr/share/texlive/texmf-dist/tex/latex/base/size11.clo
File: size11.clo 2014/09/29 v1.4h Standard LaTeX file (size option)
)
\c@part=\count79
\c@section=\count80
\c@subsection=\count81
\c@subsubsection=\count82
\c@paragraph=\count83
\c@subparagraph=\count84
\c@figure=\count85
\c@table=\count86
\abovecaptionskip=\skip41
\belowcaptionskip=\skip42
\bibindent=\dimen102
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphicx.sty
Package: graphicx 2014/10/28 v1.0g Enhanced LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/keyval.sty
Package: keyval 2014/10/28 v1.15 key=value parser (DPC)
\KV@toks@=\toks14
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/graphics.sty
Package: graphics 2016/10/09 v1.0u Standard LaTeX Graphics (DPC,SPQR)
(/usr/share/texlive/texmf-dist/tex/latex/graphics/trig.sty
Package: trig 2016/01/03 v1.10 sin cos tan (DPC)
)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/graphics.cfg
File: graphics.cfg 2016/06/04 v1.11 sample graphics configuration
)
Package graphics Info: Driver file: pdftex.def on input line 99.
(/usr/share/texlive/texmf-dist/tex/latex/graphics-def/pdftex.def
File: pdftex.def 2017/01/12 v0.06k Graphics/color for pdfTeX
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/infwarerr.sty
Package: infwarerr 2016/05/16 v1.4 Providing info/warning/error messages (HO)
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ltxcmds.sty
Package: ltxcmds 2016/05/16 v1.23 LaTeX kernel commands for general use (HO)
)
\Gread@gobject=\count87
))
\Gin@req@height=\dimen103
\Gin@req@width=\dimen104
)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption.sty
Package: caption 2016/02/21 v3.3-144 Customizing captions (AR)
(/usr/share/texlive/texmf-dist/tex/latex/caption/caption3.sty
Package: caption3 2016/05/22 v1.7-166 caption3 kernel (AR)
Package caption3 Info: TeX engine: e-TeX on input line 67.
\captionmargin=\dimen105
\captionmargin@=\dimen106
\captionwidth=\dimen107
\caption@tempdima=\dimen108
\caption@indent=\dimen109
\caption@parindent=\dimen110
\caption@hangindent=\dimen111
)
\c@ContinuedFloat=\count88
)
(/usr/share/texlive/texmf-dist/tex/latex/xcolor/xcolor.sty
Package: xcolor 2016/05/11 v2.12 LaTeX color extensions (UK)
(/usr/share/texlive/texmf-dist/tex/latex/graphics-cfg/color.cfg
File: color.cfg 2016/01/02 v1.6 sample color configuration
)
Package xcolor Info: Driver file: pdftex.def on input line 225.
Package xcolor Info: Model `cmy' substituted by `cmy0' on input line 1348.
Package xcolor Info: Model `hsb' substituted by `rgb' on input line 1352.
Package xcolor Info: Model `RGB' extended on input line 1364.
Package xcolor Info: Model `HTML' substituted by `rgb' on input line 1366.
Package xcolor Info: Model `Hsb' substituted by `hsb' on input line 1367.
Package xcolor Info: Model `tHsb' substituted by `hsb' on input line 1368.
Package xcolor Info: Model `HSB' substituted by `hsb' on input line 1369.
Package xcolor Info: Model `Gray' substituted by `gray' on input line 1370.
Package xcolor Info: Model `wave' substituted by `hsb' on input line 1371.
)
(/usr/share/texlive/texmf-dist/tex/latex/geometry/geometry.sty
Package: geometry 2010/09/12 v5.6 Page Geometry
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifpdf.sty
Package: ifpdf 2016/05/14 v3.1 Provides the ifpdf switch
)
(/usr/share/texlive/texmf-dist/tex/generic/oberdiek/ifvtex.sty
Package: ifvtex 2016/05/16 v1.6 Detect VTeX and its facilities (HO)
Package ifvtex Info: VTeX not detected.
)
(/usr/share/texlive/texmf-dist/tex/generic/ifxetex/ifxetex.sty
Package: ifxetex 2010/09/12 v0.6 Provides ifxetex conditional
)
\Gm@cnth=\count89
\Gm@cntv=\count90
\c@Gm@tempcnt=\count91
\Gm@bindingoffset=\dimen112
\Gm@wd@mp=\dimen113
\Gm@odd@mp=\dimen114
\Gm@even@mp=\dimen115
\Gm@layoutwidth=\dimen116
\Gm@layoutheight=\dimen117
\Gm@layouthoffset=\dimen118
\Gm@layoutvoffset=\dimen119
\Gm@dimlist=\toks15
) (./19.aux)
\openout1 = `19.aux'.