You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

910 lines
24 KiB

/**************************************************
TPI programmer for ATtiny4/5/9/10/20/40
Make the connections as shown below.
To use:
***** Buad rate must be set to 9600 ****
- Upload to arduino and power off
- Connect ATtiny10 as shown
- Power on and open the serial monitor
- If things are working so far you should
see "NVM enabled" and "ATtiny10/20/40 connected".
- Input one-letter commands via serial monitor:
D = dump memory. Displays all current memory
on the chip
E = erase chip. Erases all program memory
automatically done at time of programming
P = write program. After sending this, paste
the program from the hex file into the
serial monitor.
S = set fuse. follow the instructions to set
one of the three fuses.
C = clear fuse. follow the instructions to clear
one of the three fuses.
L = Set Lock Bits No further programming & verification
possible
H = Toggle High Voltage Programming
T = Toggle +12v enabled by High, or Low
R/r = Quick reset
- Finally, power off the arduino and remove the
Attiny10/20/40
Arduino ATtiny10
----------+ +----------------
(SS#) 10 |--[R]-----| 6 (RESET#/PB3)
| |
(MOSI) 11 |--[R]--+--| 1 (TPIDATA/PB0)
| | |
(MISO) 12 |--[R]--+ |
| |
(SCK) 13 |--[R]-----| 3 (TPICLK/PB1)
----------+ +----------------
* *
----------+ +----------------
(HVP) 9 |--- | 6 (RESET#/PB3)
| |
* *
-[R]- = a 220 - 1K Ohm resistor
* *
this picture : 2011/12/08 by pcm1723
modified :2015/02/27 by KD
* *
thanks to pcm1723 for tpitest.pde upon which
this is based
**************************************************
Updates:
Apr 02, 2018: Ksdsksd@gmail.com
Added Lock bit setting to main menu
Jan 23, 2017: Ksdsksd@gmail.com
Thanks to InoueTaichi Fixed incorrect #define Tiny40
Mar 05, 2015: Ksdsksd@gamil.com
Added notifications to setting and clearing the system flags.
Feb 23, 2015: Ksdsksd@gamil.com
Changed the programmer Diagram, This is the config I use, and get a sucessful programming of a tiny10 at 9600 baud.
Mar 22, 2014: Ksdsksd@gmail.com
Added the quick reset to high before resetting the device.
Added code to stop the SPI and float the pins for testing the device while connected.
Mar 20, 2014: Ksdsksd@gmail.com
Added a quick reset by sending 'r' or 'R' via the serial monitor.
Added a High voltage programming option from pin 9, toggled by 'H'
Added a High/low option for providing 12v to the reset pin, toggled by 'T'
Mar 17, 2014: Ksdsksd@gmail.com
Had some trouble with the nibbles being swapped when programming on the 10 & 20,
added b1,b2 to hold the serial data before calling byteval()
Added Nat Blundell's patch to the code
Apr 10, 2013: Ksdsksd@gmail.com
Applied Fix for setting and clearing flags
Feb 7, 2013: Ksdsksd@gmail.com
Fixed programming timer, had intitial start at zero instead of current time.
Dec 11, 2012: Ksdsksd@gmail.com
Added detect and programming for 4/5/9
Dec 5-6, 2012: Ksdsksd@gmail.com
Incorperated read, and verify into program. Now have no program size limitation by using 328p.
Changed the outHex routines consolidated them into 1, number to be printed, and number of nibbles
Added a type check to distinguish between Tiny10/20/40
Added an auto word size check to ensure that there is the proper amount of words written for a 10/20/40
Removed Read program, Verify, and Finish from options
Changed baud rate to 19200 for delay from data written to the chip, to prevent serial buffer overrun.
Oct 5, 2012: Ksdsksd@gmail.com
*** Noticed that when programming, the verification fails
at times by last 1-2 bytes programmed, and the Tiny would act erratic.
Quick fix was adding 3 NOP's to the end the Tiny's code, and ignoring the errors, the Tiny then performed as expected.
Oct 4, 2012: Ksdsksd@gmail.com
Moved all Serial printed strings to program space
Added code to detect Tiny20
*/
#include <SPI.h>
#include "pins_arduino.h"
// define the instruction set bytes
#define SLD 0x20
#define SLDp 0x24
#define SST 0x60
#define SSTp 0x64
#define SSTPRH 0x69
#define SSTPRL 0x68
// see functions below ////////////////////////////////
// SIN 0b0aa1aaaa replace a with 6 address bits
// SOUT 0b1aa1aaaa replace a with 6 address bits
// SLDCS 0b1000aaaa replace a with address bits
// SSTCS 0b1100aaaa replace a with address bits
///////////////////////////////////////////////////////
#define SKEY 0xE0
#define NVM_PROGRAM_ENABLE 0x1289AB45CDD888FFULL // the ULL means unsigned long long
#define NVMCMD 0x33
#define NVMCSR 0x32
#define NVM_NOP 0x00
#define NVM_CHIP_ERASE 0x10
#define NVM_SECTION_ERASE 0x14
#define NVM_WORD_WRITE 0x1D
#define HVReset 9
#define Tiny4_5 10
#define Tiny9 1
#define Tiny10 1
#define Tiny20 2
#define Tiny40 4
#define TimeOut 1
#define HexError 2
#define TooLarge 3
// represents the current pointer register value
unsigned short adrs = 0x0000;
// used for storing a program file
uint8_t data[16]; //program data
unsigned int progSize = 0; //program size in bytes
// used for various purposes
long startTime;
int timeout;
uint8_t b, b1, b2, b3;
boolean idChecked;
boolean correct;
char type; // type of chip connected 1 = Tiny10, 2 = Tiny20
char HVP = 0;
char HVON = 0;
void setup() {
// set up serial
Serial.begin(9600); // you cant increase this, it'll overrun the buffer
Serial.println(F("setupend")); //anything?
// set up SPI
/* SPI.begin();
SPI.setBitOrder(LSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV32);
*/ start_tpi();
pinMode(HVReset, OUTPUT);
// initialize memory pointer register
setPointer(0x0000);
timeout = 20000;
idChecked = false;
} // end setup()
void hvserial()
{
if (HVP)
Serial.println(F("***High Voltage Programming Enabled***"));
else
Serial.println(F("High Voltage Programming Disabled"));
// M
Serial.print(HVON ? F("HIGH") : F("LOW"));
Serial.print(F(" supplies 12v"));
}
void hvReset(char highLow)
{
if (HVP)
{
if (HVON) //if high enables 12v
highLow = !highLow; // invert the typical reset
digitalWrite(HVReset, highLow);
}
else
digitalWrite(SS, highLow);
}
void quickReset()
{
digitalWrite(SS, HIGH);
delay(1);
digitalWrite(SS, LOW);
delay(10);
digitalWrite(SS, HIGH);
}
void start_tpi() {
SPI.begin();
SPI.setBitOrder(LSBFIRST);
SPI.setDataMode(SPI_MODE0);
SPI.setClockDivider(SPI_CLOCK_DIV32);
// enter TPI programming mode
hvReset(LOW);
// digitalWrite(SS, LOW); // assert RESET on tiny
delay(1); // t_RST min = 400 ns @ Vcc = 5 V
SPI.transfer(0xff); // activate TPI by emitting
SPI.transfer(0xff); // 16 or more pulses on TPICLK
SPI.transfer(0xff); // while holding TPIDATA to "1"
writeCSS(0x02, 0x04); // TPIPCR, guard time = 8bits (default=128)
send_skey(NVM_PROGRAM_ENABLE); // enable NVM interface
// wait for NVM to be enabled
while ((readCSS(0x00) & 0x02) < 1) {
// wait
}
Serial.println(F("NVM enabled"));
}
void setLockBits() {
Serial.print(F("Locking... Are you sure? Y/N"));
while (Serial.available() < 1);
char yn = Serial.read();
if (yn == 'n' || yn == 'N')
return;
setPointer(0x3F00);
writeIO(NVMCMD, NVM_WORD_WRITE);
tpi_send_byte(SSTp);
tpi_send_byte(0);
tpi_send_byte(SSTp);
tpi_send_byte(0xFF);
while ((readIO(NVMCSR) & (1 << 7)) != 0x00);
Serial.print(F("Locked..."));
}
void loop() {
Serial.print(F("Start"));
if (!idChecked) {
// start_tpi();
checkID();
idChecked = true;
finish();
}
// when ready, send ready signal '.' and wait
Serial.print(F("\n>"));
while (Serial.available() < 1) {
// wait
}
start_tpi();
// the first byte is a command
//** 'P' = program the ATtiny using the read program
//** 'D' = dump memory to serial monitor
//** 'E' = erase chip. erases current program memory.(done automatically by 'P')
//** 'S' = set fuse
//** 'C' = clear fuse
//** 'L' = Set Lock Bits
char comnd = Sread();
switch ( comnd ) {
case 'r':
case'R':
quickReset();
break;
case 'D':
dumpMemory();
break;
case 'H':
HVP = !HVP;
hvserial();
break;
case 'T':
HVON = !HVON;
hvserial();
break;
case 'P':
if (!writeProgram()) {
startTime = millis();
while (millis() - startTime < 8000)
Serial.read();// if exited due to error, disregard all other serial data
}
break;
case 'E':
eraseChip();
break;
case 'S':
setConfig(true);
break;
case 'C':
setConfig(false);
break;
case 'L':
setLockBits();
break;
default:
Serial.println(F("Received unknown command"));
}
finish();
}
void ERROR_pgmSize(void)
{
Serial.println(F("program size is 0??"));
}
void ERROR_data(char i)
{
Serial.println(F("couldn't receive data:"));
switch (i) {
case TimeOut:
Serial.println(F("timed out"));
break;
case HexError:
Serial.println(F("hex file format error"));
break;
case TooLarge:
Serial.println(F("program is too large"));
break;
default:
break;
}
}
// print the register, SRAM, config and signature memory
void dumpMemory() {
unsigned int len;
uint8_t i;
// initialize memory pointer register
setPointer(0x0000);
Serial.println(F("Current memory state:"));
if (type != Tiny4_5)
len = 0x400 * type; //the memory length for a 10/20/40 is 1024/2048/4096
else
len = 0x200; //tiny 4/5 has 512 bytes
len += 0x4000;
while (adrs < len) {
// read the byte at the current pointer address
// and increment address
tpi_send_byte(SLDp);
b = tpi_receive_byte(); // get data byte
// read all the memory, but only print
// the register, SRAM, config and signature memory
if ((0x0000 <= adrs && adrs <= 0x005F) // register/SRAM
| (0x3F00 <= adrs && adrs <= 0x3F01) // NVM lock bits
| (0x3F40 <= adrs && adrs <= 0x3F41) // config
| (0x3F80 <= adrs && adrs <= 0x3F81) // calibration
| (0x3FC0 <= adrs && adrs <= 0x3FC3) // ID
| (0x4000 <= adrs && adrs <= len - 1) ) { // program
// print +number along the top
if ((0x00 == adrs)
| (0x3f00 == adrs) // NVM lock bits
| (0x3F40 == adrs) // config
| (0x3F80 == adrs) // calibration
| (0x3FC0 == adrs) // ID
| (0x4000 == adrs) ) {
Serial.println();
if (adrs == 0x0000) {
Serial.print(F("registers, SRAM"));
}
if (adrs == 0x3F00) {
Serial.print(F("NVM lock"));
}
if (adrs == 0x3F40) {
Serial.print(F("configuration"));
}
if (adrs == 0x3F80) {
Serial.print(F("calibration"));
}
if (adrs == 0x3FC0) {
Serial.print(F("device ID"));
}
if (adrs == 0x4000) {
Serial.print(F("program"));
}
Serial.println();
for (i = 0; i < 5; i++)
Serial.print(F(" "));
for (i = 0; i < 16; i++) {
Serial.print(F(" +"));
Serial.print(i, HEX);
}
}
// print number on the left
if (0 == (0x000f & adrs)) {
Serial.println();
outHex(adrs, 4);
Serial.print(F(": ")); // delimiter
}
outHex(b, 2);
Serial.print(F(" "));
}
adrs++; // increment memory address
if (adrs == 0x0060) {
// skip reserved memory
setPointer(0x3F00);
}
}
Serial.println(F(" "));
} // end dumpMemory()
// receive and translate the contents of a hex file, Program and verify on the fly
boolean writeProgram() {
char datlength[] = "00";
char addr[] = "0000";
char something[] = "00";
char chksm[] = "00";
unsigned int currentByte = 0;
progSize = 0;
uint8_t linelength = 0;
boolean fileEnd = false;
unsigned short tadrs;
tadrs = adrs = 0x4000;
correct = true;
unsigned long pgmStartTime = millis();
eraseChip(); // erase chip
char words = (type != Tiny4_5 ? type : 1);
char b1, b2;
// read in the data and
while (!fileEnd) {
startTime = millis();
while (Serial.available() < 1) {
if (millis() - startTime > timeout) {
ERROR_data(TimeOut);
return false;
}
if (pgmStartTime == 0)
pgmStartTime = millis();
}
if (Sread() != ':') { // maybe it was a newline??
if (Sread() != ':') {
ERROR_data(HexError);
return false;
}
}
// read data length
datlength[0] = Sread();
datlength[1] = Sread();
linelength = byteval(datlength[0], datlength[1]);
// read address. if "0000" currentByte = 0
addr[0] = Sread();
addr[1] = Sread();
addr[2] = Sread();
addr[3] = Sread();
if (linelength != 0x00 && addr[0] == '0' && addr[1] == '0' && addr[2] == '0' && addr[3] == '0')
currentByte = 0;
// read type thingy. "01" means end of file
something[0] = Sread();
something[1] = Sread();
if (something[1] == '1') {
fileEnd = true;
}
if (something[1] == '2') {
for (int i = 0; i <= linelength; i++) {
Sread();
Sread();
}
}
else {
// read in the data
for (int k = 0; k < linelength; k++) {
while (Serial.available() < 1) {
if (millis() - startTime > timeout) {
ERROR_data(TimeOut);
return false;
}
}
b1 = Sread();
b2 = Sread();
data[currentByte] = byteval(b1, b2);
currentByte++;
progSize++;
if (progSize > (type != Tiny4_5 ? type * 1024 : 512)) {
ERROR_data(TooLarge);
return 0;
}
if (fileEnd) //has the end of the file been reached?
while (currentByte < 2 * words) { // append zeros to align the word count to program
data[currentByte] = 0;
currentByte++;
}
if ( currentByte == 2 * words ) { // is the word/Dword/Qword here?
currentByte = 0; // yes, reset counter
setPointer(tadrs); // point to the address to program
writeIO(NVMCMD, NVM_WORD_WRITE);
for (int i = 0; i < 2 * words; i += 2) { // loop for each word size depending on micro
// now write a word to program memory
tpi_send_byte(SSTp);
tpi_send_byte(data[i]); // LSB first
tpi_send_byte(SSTp);
tpi_send_byte(data[i + 1]); // then MSB
SPI.transfer(0xff); //send idle between words
SPI.transfer(0xff); //send idle between words
}
while ((readIO(NVMCSR) & (1 << 7)) != 0x00) {} // wait for write to finish
writeIO(NVMCMD, NVM_NOP);
SPI.transfer(0xff);
SPI.transfer(0xff);
//verify written words
setPointer(tadrs);
for (int c = 0; c < 2 * words; c++) {
tpi_send_byte(SLDp);
b = tpi_receive_byte(); // get data byte
if (b != data[c]) {
correct = false;
Serial.println(F("program error:"));
Serial.print(F("byte "));
outHex(adrs, 4);
Serial.print(F(" expected "));
outHex(data[c], 2);
Serial.print(F(" read "));
outHex(b, 2);
Serial.println();
if (!correct)
return false;
}
}
tadrs += 2 * words;
}
}
// read in the checksum.
startTime = millis();
while (Serial.available() == 0) {
if (millis() - startTime > timeout) {
ERROR_data(TimeOut);
return false;
}
}
chksm[0] = Sread();
chksm[1] = Sread();
}
}
// the program was successfully written
Serial.print(F("Successfully wrote program: "));
Serial.print(progSize, DEC);
Serial.print(F(" of "));
if (type != Tiny4_5)
Serial.print(1024 * type, DEC);
else
Serial.print(512, DEC);
Serial.print(F(" bytes\n in "));
Serial.print((millis() - pgmStartTime) / 1000.0, DEC);
Serial.print(F(" Seconds"));
// digitalWrite(SS, HIGH); // release RESET
return true;
}
void eraseChip() {
// initialize memory pointer register
setPointer(0x4001); // need the +1 for chip erase
// erase the chip
writeIO(NVMCMD, NVM_CHIP_ERASE);
tpi_send_byte(SSTp);
tpi_send_byte(0xAA);
tpi_send_byte(SSTp);
tpi_send_byte(0xAA);
tpi_send_byte(SSTp);
tpi_send_byte(0xAA);
tpi_send_byte(SSTp);
tpi_send_byte(0xAA);
while ((readIO(NVMCSR) & (1 << 7)) != 0x00) {
// wait for erasing to finish
}
Serial.println(F("chip erased"));
}
void setConfig(boolean val) {
// get current config byte
setPointer(0x3F40);
tpi_send_byte(SLD);
b = tpi_receive_byte();
Serial.println(F("input one of these letters"));
Serial.println(F("c = system clock output"));
Serial.println(F("w = watchdog timer on"));
Serial.println(F("r = disable reset"));
Serial.println(F("x = cancel. don't change anything"));
while (Serial.available() < 1) {
// wait
}
char comnd = Serial.read();
setPointer(0x3F40);
writeIO(NVMCMD, (val ? NVM_WORD_WRITE : NVM_SECTION_ERASE) );
if (comnd == 'c') {
tpi_send_byte(SSTp);
if (val) {
tpi_send_byte(b & 0b11111011);
} else {
tpi_send_byte(b | 0x04);
}
tpi_send_byte(SSTp);
tpi_send_byte(0xFF);
} else if (comnd == 'w') {
tpi_send_byte(SSTp);
if (val) {
tpi_send_byte(b & 0b11111101);
} else {
tpi_send_byte(b | 0x02);
}
tpi_send_byte(SSTp);
tpi_send_byte(0xFF);
} else if (comnd == 'r') {
tpi_send_byte(SSTp);
if (val) {
tpi_send_byte(b & 0b11111110);
} else {
tpi_send_byte(b | 0x01);
}
tpi_send_byte(SSTp);
tpi_send_byte(0xFF);
} else if (comnd == 'x') {
// do nothing
} else {
Serial.println(F("received unknown command. Cancelling"));
}
while ((readIO(NVMCSR) & (1 << 7)) != 0x00) {
// wait for write to finish
}
writeIO(NVMCMD, NVM_NOP);
SPI.transfer(0xff);
SPI.transfer(0xff);
if (comnd != 'x') {
Serial.print(F("\n\nSuccessfully "));
if (val)
Serial.print(F("Set "));
else
Serial.print(F("Cleared "));
Serial.print(F("\""));
if (comnd == 'w')
Serial.print(F("Watchdog"));
else if (comnd == 'c')
Serial.print(F("Clock Output"));
else if (comnd == 'r')
Serial.print(F("Reset"));
Serial.println(F("\" Flag\n"));
}
}
void finish() {
writeCSS(0x00, 0x00);
SPI.transfer(0xff);
SPI.transfer(0xff);
hvReset(HIGH);
// digitalWrite(SS, HIGH); // release RESET
delay(1); // t_RST min = 400 ns @ Vcc = 5 V
SPI.end();
DDRB &= 0b11000011; //tri-state spi so target can be tested
PORTB &= 0b11000011;
}
void checkID() {
// check the device ID
uint8_t id1, id2, id3;
setPointer(0x3FC0);
tpi_send_byte(SLDp);
id1 = tpi_receive_byte();
tpi_send_byte(SLDp);
id2 = tpi_receive_byte();
tpi_send_byte(SLDp);
id3 = tpi_receive_byte();
if (id1 == 0x1E && id2 == 0x8F && id3 == 0x0A) {
Serial.print(F("ATtiny4"));
type = Tiny4_5;
} else if (id1 == 0x1E && id2 == 0x8F && id3 == 0x09) {
Serial.print(F("ATtiny5"));
type = Tiny4_5;
} else if (id1 == 0x1E && id2 == 0x90 && id3 == 0x08) {
Serial.print(F("ATtiny9"));
type = Tiny9;
} else if (id1 == 0x1E && id2 == 0x90 && id3 == 0x03) {
Serial.print(F("ATtiny10"));
type = Tiny10;
} else if (id1 == 0x1E && id2 == 0x91 && id3 == 0x0f) {
Serial.print(F("ATtiny20"));
type = Tiny20;
} else if (id1 == 0x1E && id2 == 0x92 && id3 == 0x0e) {
Serial.print(F("ATtiny40"));
type = Tiny40;
} else {
Serial.print(F("Unknown chip"));
}
Serial.println(F(" connected"));
}
/*
send a byte in one TPI frame (12 bits)
(1 start + 8 data + 1 parity + 2 stop)
using 2 SPI data bytes (2 x 8 = 16 clocks)
(with 4 extra idle bits)
*/
void tpi_send_byte( uint8_t data ) {
// compute partiy bit
uint8_t par = data;
par ^= (par >> 4); // b[7:4] (+) b[3:0]
par ^= (par >> 2); // b[3:2] (+) b[1:0]
par ^= (par >> 1); // b[1] (+) b[0]
// REMEMBER: this is in LSBfirst mode and idle is high
// (2 idle) + (1 start bit) + (data[4:0])
SPI.transfer(0x03 | (data << 3));
// (data[7:5]) + (1 parity) + (2 stop bits) + (2 idle)
SPI.transfer(0xf0 | (par << 3) | (data >> 5));
} // end tpi_send_byte()
/*
receive TPI 12-bit format byte data
via SPI 2 bytes (16 clocks) or 3 bytes (24 clocks)
*/
uint8_t tpi_receive_byte( void ) {
//uint8_t b1, b2, b3;
// keep transmitting high(idle) while waiting for a start bit
do {
b1 = SPI.transfer(0xff);
} while (0xff == b1);
// get (partial) data bits
b2 = SPI.transfer(0xff);
// if the first byte(b1) contains less than 4 data bits
// we need to get a third byte to get the parity and stop bits
if (0x0f == (0x0f & b1)) {
b3 = SPI.transfer(0xff);
}
// now shift the bits into the right positions
// b1 should hold only idle and start bits = 0b01111111
while (0x7f != b1) { // data not aligned
b2 <<= 1; // shift left data bits
if (0x80 & b1) { // carry from 1st byte
b2 |= 1; // set bit
}
b1 <<= 1;
b1 |= 0x01; // fill with idle bit (1)
}
// now the data byte is stored in b2
return ( b2 );
} // end tpi_receive_byte()
// send the 64 bit NVM key
void send_skey(uint64_t nvm_key) {
tpi_send_byte(SKEY);
while (nvm_key) {
tpi_send_byte(nvm_key & 0xFF);
nvm_key >>= 8;
}
} // end send_skey()
// sets the pointer address
void setPointer(unsigned short address) {
adrs = address;
tpi_send_byte(SSTPRL);
tpi_send_byte(address & 0xff);
tpi_send_byte(SSTPRH);
tpi_send_byte((address >> 8) & 0xff);
}
// writes using SOUT
void writeIO(uint8_t address, uint8_t value) {
// SOUT 0b1aa1aaaa replace a with 6 address bits
tpi_send_byte(0x90 | (address & 0x0F) | ((address & 0x30) << 1));
tpi_send_byte(value);
}
// reads using SIN
uint8_t readIO(uint8_t address) {
// SIN 0b0aa1aaaa replace a with 6 address bits
tpi_send_byte(0x10 | (address & 0x0F) | ((address & 0x30) << 1));
return tpi_receive_byte();
}
// writes to CSS
void writeCSS(uint8_t address, uint8_t value) {
tpi_send_byte(0xC0 | address);
tpi_send_byte(value);
}
// reads from CSS
uint8_t readCSS(uint8_t address) {
tpi_send_byte(0x80 | address);
return tpi_receive_byte();
}
// converts two chars to one byte
// c1 is MS, c2 is LS
uint8_t byteval(char c1, char c2) {
uint8_t by;
if (c1 <= '9') {
by = c1 - '0';
} else {
by = c1 - 'A' + 10;
}
by = by << 4;
if (c2 <= '9') {
by += c2 - '0';
} else {
by += c2 - 'A' + 10;
}
return by;
}
char Sread(void) {
while (Serial.available() < 1) {}
return Serial.read();
}
void outHex(unsigned int n, char l) { // call with the number to be printed, and # of nibbles expected.
for (char count = l - 1; count > 0; count--) { // quick and dirty to add zeros to the hex value
if (((n >> (count * 4)) & 0x0f) == 0) // if MSB is 0
Serial.print(F("0")); //prepend a 0
else
break; //exit the for loop
}
Serial.print(n, HEX);
}
// end of file